C. Bailer, B. Taetz, and D. Stricker, Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation, ICCV, pp.4015-4023, 2015.

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, A naturalistic open source movie for optical flow evaluation, ECCV, pp.611-625, 2012.

C. Chang and C. Lin, Libsvm: a library for support vector machines, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, p.27, 2011.

Q. Chen and V. Koltun, Full flow: Optical flow estimation by global optimization over regular grids, 2016.

G. Farnebäck, Two-frame motion estimation based on polynomial expansion, Scandinavian conference on Image analysis, pp.363-370, 2003.

D. Fortun, P. Bouthemy, and C. Kervrann, Optical flow modeling and computation: a survey, Computer Vision and Image Understanding, vol.134, pp.1-21, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01104081

S. Han, Z. Meng, P. Liu, and Y. Tong, Facial grid transformation: A novel face registration approach for improving facial action unit recognition, ICIP, pp.1415-1419, 2014.

X. Huang, S. Wang, X. Liu, G. Zhao, X. Feng et al., Spontaneous facial micro-expression recognition using discriminative spatiotemporal local binary pattern with an improved integral projection, 2016.

X. Huang, G. Zhao, X. Hong, W. Zheng, and M. Pietikäinen, Spontaneous facial micro-expression analysis using spatiotemporal completed local quantized patterns, Neurocomputing, vol.175, pp.564-578, 2016.

B. Jiang, B. Martinez, M. F. Valstar, and M. Pantic, Decision level fusion of domain specific regions for facial action recognition, ICPR, pp.1776-1781, 2014.

V. Kazemi and J. Sullivan, One millisecond face alignment with an ensemble of regression trees, CVPR, pp.1867-1874, 2014.

I. Kotsia, S. Zafeiriou, P. , and I. , Texture and shape information fusion for facial expression and facial action unit recognition, Pattern Recognition, vol.41, issue.3, pp.833-851, 2008.

C. Lee and R. Chellappa, Sparse localized facial motion dictionary learning for facial expression recognition, International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.3548-3552, 2014.

X. Li, T. Pfister, X. Huang, G. Zhao, and M. Pietikäinen, A spontaneous micro-expression database: Inducement, collection and baseline, FG, 2013.

C. Liao, H. Chuang, C. Duan, L. , and S. , Learning spatial weighting for facial expression analysis via constrained quadratic programming, Pattern Recognition, vol.46, issue.11, pp.3103-3116, 2013.

Y. Liu, J. Zhang, W. Yan, S. Wang, G. Zhao et al., A main directional mean optical flow feature for spontaneous micro-expression recognition, 2015.

P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar et al., The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression, CVPR Workshops, pp.94-101, 2010.

R. Péteri and D. Chetverikov, Dynamic texture recognition using normal flow and texture regularity, Iberian Conference on Pattern Recognition and Image Analysis, pp.223-230, 2005.

J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid, Epicflow: Edge-preserving interpolation of correspondences for optical flow, CVPR, pp.1164-1172, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01142656

M. Su, Y. Hsieh, and D. Huang, A simple approach to facial expression recognition, Proc. of the WSEAS Conference on Computer Engineering and Applications, pp.456-461, 2007.

S. Wang, W. Yan, X. Li, G. Zhao, and X. Fu, , 2014.

, Micro-expression recognition using dynamic textures on tensor independent color space, ICPR, pp.4678-4683

S. Wang, W. Yan, G. Zhao, X. Fu, and C. Zhou, Micro-expression recognition using robust principal component analysis and local spatiotemporal directional features, ECCV Workshop, pp.325-338, 2014.
DOI : 10.1007/978-3-319-16178-5_23

Y. Wang, J. See, R. C. Phan, and Y. Oh, Lbp with six intersection points: Reducing redundant information in lbp-top for micro-expression recognition, Asian Conference on Computer Vision, pp.525-537, 2014.
DOI : 10.1007/978-3-319-16865-4_34

J. Whitehill, M. Bartlett, and J. Movellan, Automatic facial expression recognition for intelligent tutoring systems, CVPR Workshops, 2008.
DOI : 10.1109/cvprw.2008.4563182

W. Yan, X. Li, S. Wang, G. Zhao, Y. Liu et al., Casme ii: An improved spontaneous micro-expression database and the baseline evaluation, PloS one, issue.1, p.9, 2014.
DOI : 10.1371/journal.pone.0086041

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0086041&type=printable

Y. Zhang and Q. Ji, Active and dynamic information fusion for facial expression understanding from image sequences, vol.27, pp.699-714, 2005.

L. Zhong, Q. Liu, P. Yang, B. Liu, J. Huang et al., Learning active facial patches for expression analysis, CVPR, pp.2562-2569, 2012.