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Abstract—This paper addresses energy-aware control in a  On the other hand, in the systems and control community,
wireless control system. The goal is to save energy in a smartthere has been an active interest in saving energy in wireless

sensor node by co-designing its use of the radio chip together Ncs. Two research lines have emerged, which seek to reduce
with the control policy. The focus is on exploiting the fact '

that in many radio-chips used in wireless nodes the depth of the amou_nt c_)f communications needed to achieve a given
S|eep can be manipu|ated dynamica”y_ The choice of the mode control Ob]eC“Ve. On the one hand, there have been studies on
involves a trade-off, since deeper sleep is cheaper to stay in, butthe minimum data-rate required to control a system, aiming at
leads to higher future transition costs. The opportunities arising reducing the number of bits transmitted at each sampling time,

from the use of multiple non-transmitting radio-modes have not - geq (51 On the other hand, the number of transmissions can be
been studied in the systems control literature. The present work

presents a rst step towards lling this gap. We propose a control red_uce_d, by moylng from periodic schemes, Wher_e a cont_rol
scheme that manages the radio-modes of a single sensor node wittCtion is transmitted and actuated based on periodic sampling,
computation capabilities. This smart sensornode is in charge to event-based control, where a control action is transmitted
of sensing the system state, computing the control law to be only when needed. This means that a control input is sent

sent to the actuator, and managing its own radio chip. The ; ; .
joint optimization problem of nding the best switching policy and applied to the system only when a given event occurs; for

for the radio-chip mode and the best feedback control law is |nstance_),_ only if the syst_em CrosSses a given threshold around
obtained off-line using dynamic programming. The optimal policy ~the equilibrium point. A rich literature has emerged on event-
is formulated over a nite horizon and implemented according to  based control, and this is still an active research area, see the
the model predictive control paradigm. Practical stability of the  surveys [6], [7] and references therein.

resulting control scheme is assessed and careful simulation studies Most of the literature addresses communication and
document the potential energy savings that can be obtained with

this technology. control problems separately. Interestingly, the works [8],

[9] illustrate that further energy can be saved in control
Index Terms—event-based control, dynamic programming,

networked control radio-chin mode management. eneray of cient applications by a multi-layer approach. Here, two or more
Sgnsgrse control, radio-chip mode management, energy €t cient - ot the four layers relevant for NCSs are designed: physical

layer, in charge of the radio modulation; data-link (MAC)
layer, managing transmissions; network layer, routing data to
I. INTRODUCTION destination; application layer, related to the overall control
scheme. Few works consider the challenge of co-designing
Networked Control Systems (NCS) are systems where tharious layers. The two papers [10], [11] highlight the lack
communication between the sensors, the controller and the at-a communication protocol dedicated to NCS, and derive
tuators occurs through a network [1]. Energy is a key resourseitable new protocols, which expose useful parameters to
in those systems, in particular in wireless networks, whetiee application layer, so that a desired trade-off between
wireless nodes are often battery-driven. Energy-ef ciency ireliability/latency and control performance can be found.
wireless sensor networks has given rise to a rich literature, Seiee work [12] studies a state estimator that accounts for
e.g, [2], [3], [4]. The bulk of this literature is focused on thepacket loss probabilities which depend upon time-varying
transmission, regardless of the nature of the data or the rglannel gains, packet lengths and transmission power levels
application. In a closed-loop system, the control performanoé the sensors; by adapting the source coding scheme and
is crucial, but has not been explicitly taken into account ithe transmission level at the sensor side, one can trade
most works focused on communications. off energy and estimation performance. A communications
and control co-design method is proposed in [13], [14].

Part of this work was done during a visit of the rst author to The Universityjara  an optimization problem is formulated describing
of Newcastle, supported binria’s Programme Explorateur This research ' '

was also partially supported under EU STREP project FeedNetBack Flbio-th the (_zontml ObjeCtive_ and the C(_)St of transmissions.
ICT-2007-2. The goal in these works is to transmit only when needed
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where the objective function is the energy consumption |l. FEEDBACK CONTROL WITH A SMART SENSOR

of the network, while the constraints are thresholds fo{ proplem description

the packet loss probability and delay, thereby ensuring aW ¢ . d of d
desired control quality. In [16], the authors compare wireless e Tocus our attention on a setup composed of two nodes,

network implementations of various aperiodic-samplin s”dzpltcr:ed n F'tg' 1 and des;r'bid hereéﬁﬁhe rsé node, i
control policies, by taking into account implementatio alie € Smart sensor node, has sensing and computing

issues in full detail. To be more specic, in [16] the authorgapab'“_t'es' It is in c_harge of sensing the system state,
build a wireless architecture based on the IEEE 802.158MPuling the control input and deciding whether or not to

protocol, and consider co-design of the aperiodic Contrtﬁend the contrgl Input to the.second node. The latter is in
charge of applying the control input to the actuator. The smart

the wireless MAC protocol and the scheduling algorithm; ) i irol d db batt
they achieve low energy consumption by carefully switchin FNSOr1S an autonomous WIreless hode powered by a batlety.
wireless channel is located between the smart sensor node

off components for as much time as possi , using a . .
P P ey g d the actuator node. The actuator node is co-located with

self-triggered technique [17]. The authors of [18] consid . .
the case where the wireless communication is multi-hop e actuator. This node has access to an unlimited energy
I;’)urce since the actuator itsele.g, a motor, a solenoid

exploiting relay nodes in addition to sensor and controll | I 4 | i t of Th
nodes. They design the optimal joint policy for the controlle\Fave) generally needs a relevant amount of energy. ther,

and for the multi-hop forwarding policy, with energy adur focus is on saving energy at the smart sensor side. This

a constraint; their approach is based on decomposing i guration, also callebne-channel feedback NCB often

problem into two subproblems, transmission scheduling fgﬁnsmelred mhthe I|teritutreé s«segi [1]. The effedctz (I)f theh
maximizing the deadline-constrained reliability, and optim annel, such as packet dropouts, errors, and delays, have

control under packet loss. een Widgly studied. In this paper, our focys is on energy
consumption and on the use of non-periodic transmissions.
For simplicity, we assume an ideal channel, where all
In this paper, we investigate energy saving by communjansmitted messages are received correctly and tifnely.
cation and control co-design, focusing our attention on the
radio chip of the wireless nodes. To limit the number of Energy can be saved at the smart sensor not only by limiting
transmissions, our method transmits a control input only whefle amount of communication, but also by a suitable choice of
necessary. Further, we propose to manage the radio-megle |ow-consuming radio-mode when no transmission occurs.
when it is not transmitting. Indeed, radio chips allow fof gw-consuming radio-modes are described in Subsection 1I-B.
intermediate modes betwedrx and Sleep : When a node They correspond to partial use of the radio components, while
is not transmitting, its radio can be switched to one of iig,e sensing and computing units are always operating.
several non-transmitting (low-consuming) radio-modes. Thewe consider an optimal control formulation, which leads
management of the radio chip modes can lead to interestidgeyent-based communication, on the base of discrete-time
energy savings [3], [4], and management in accordance Wiihnitoring. This means that the smart sensor monitors the
the needs of a control application is a non-trivial and to da&‘i/stem at a given sampling period. At each sampling instant,
unexplored problem. depending on the state of the system, the smart sensor decides
Our main technical contribution consists in consideringj a transmission occurs at the current time. This is the same
several low-consuming radio-modes in an optimal contr6etup as irperiodic event-based contr¢21]. In comparison
problem. Our strategy is a joint design of the radio-mod@ continuous-time monitoring, this is better suited for prac-
switching policy and the feedback control law used to govetige. Moreover it avoids theoretical subtleties such as Zeno
the system actuators. We adopt a nite horizon optimal contrbehaviors.
framework. The optimization problem is solved using dynamic When a transmission occurs, the smart sensor also decides
programming, with the value iteration method. This papéhe control input to be sent to the actuator. At instances
extends our previous work [19] by giving detailed proowhere no transmission occurs, the smart sensor decides on
of the stability results, introducing a more detailed system low-consuming radio-mode to switch to. Our goal is the
description, and including new simulation studies. joint optimization of the transmission pattern, of the feedback
The remainder of this manuscript is organized as fO"()ngntrol to be sent to the actuator (when a transmission occurs),

in Section Il, we describe the system and we introduce tﬁ'@d of the choice of the low-consuming radio-mode (when no

problem of interest. In Section Ill, we give a mathematical foffansmission occurs).
mulation of the problem as a nite-horizon optimization; then
we propose a solution, based on dynamic programming, to Be Radio modes

run off-line to obtain a jointly optimal feedback law and radio- | ow-consuming modes are non-transmitting modes. They

mode switching policy; nally we discuss the implementationylow one to save energy by turning off some components

of the feedback law and radio-mode switching policy over a

receding horizon. Section IV establishes stability results of the'A two-nodes setup captures the challenges of energy ef ciency without

derived scheme in the framework of Input-to-State Stabmtg}troducmg the dif cultl_es appearing in a multi-nodes setup (such as medium
. . . . . . ccess control or routing).

Simulation results are included in Section V. Section VI draWSZFor event-based control over unreliable communication channels sge,

conclusions. [20]
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Fig. 1. The smart sensor node measures the systemxgtatedecides whether to send a feedback control input to the actuator node. If controlling is chosen,
then it sends the feedbadi . If not, it manages the mode of the radio chip, by selecting a low-consuming mode. The transmission channel is ideal, and the
receiver is able to determine if it has received a value or not.

at each sampling instant. Since the monitoring of the system
is periodic, the decision to send a control update (and then to
change the state of the radio) is also periodic. At each sampling
instant, the sensor node is in a statand has to choose the
next statg of the automaton, paying the cost associated
with changing state (or staying in the current statg, #f i).

We will denote withEy the amount of energy consumed since
Fig. 2. lllustration of the transition costs witth = 3. Idle is an intermediate the commissioning up to timle. In|t|aI|2|ng Eo =0, we thus

mode between the transmitting mode and$teep mode. Arrows represent obtain
transitions, labeled with their costs. Exs1 = E + MM e

We also introduce the convention to order the modes according
in the radio chip, such as the frequency synthesizer, ttetheir energy costs, namely
crystal oscillator, or the voltage regulator (see [3], [4] for _
details). Time and energy are needed to switch between 11> 22 NN O

modes, depending on the depth of sleep, the amount of  Transition costs need to be computed by taking into account
components that are turned off. Switching delays are usualhe sampling time and the details of the radio-chip at hand.
not an issue, being often smaller than the sampling time of titfis includes all the steps to be done at the radio level for
dynamical system. Energy, however, is crucial. Physical detajife transition, including their duration and energy cost, and
of the radio-modes are application-dependent. Here, we giffn also the cost to stay in the new mode until the end of the

a high-level description, aggregating in transition costs all tk@mpling time. In our current work, we have focused on the
information we need about the energy consumption. following example.
We denote withN the number of radio-modes; we consider ) )
one transmitting mode and 1 non-transmitting mode. Example 1. We consider the CC;lOO tran§rece|ver from Texas
The state of the radio chip of the smart sensor is the radigStruments [22]. We de ne an intermediatdle mode in
mode at timek, denoted by betweerx and Slgep modes and we compute the transmpn
costs for a sampling time & ms. The modes at the radio
mg2 M, Mi[ My; chip level €.g, Sleep, Idle, Calibrate, FastTX, RXover ow) are
] o . different from the high-level ones that we want to expose to the
whereM; , flgis the set containing the transmitting modeyqntro| application. Hence, the transition costs must take into
andMz, £2;3;  ;Ngis the set of non-transmitting modes,ccount a composition of actions done at the radio level, each
A radio chip can be modeled by an automaton (as the o jts time duration and its current consumption, thereby
depicted in Figure 2 in the case &f = 3), with N states egjting in an overall energy expenditure. As an example, the
describing the radio modee@, 1 = Tx, 2 = Idle , and ompytation of 55 (i.e. the cost to stay in thedle mode
3 = Sleep ), and transition costs modeling energy used fqp; 5 sampling time) is straightforward from the values of the
radio-mode switching. We model the behavior of the radio chi,rent drawn in this mode4Q0 nA from [22, Table 4]), the
SAlternative works, such as [12], [13], [14], focus on controlling mumpleChlpI;llﬁlga%eer?(.)?j\i)gor;ns)[z?rlh-le—aglr(e)dﬂz:taggt:]heesgTr?t'esep?/rglu(gs

transmitting modes and aggregate all the non-transmitting modes into a sirﬁfém ) -
mode. gives 3.3 = 60 nJ. To characterize other transition costs, more



careful computations are needed. For instance, switching froffne notion of receding horizon is mainly used in model

Sleep to ldle needs to consider the time spent to turn opredictive control, see, e.g., [23], [24] for background on this

the crystal oscillator, namelyQ:15 ms [22, Table 7]) using topic.

8:2 mA [22, Table 4]). Further, a calibration is needed before

any transmission when the sleep mode has been activated.

Also, when all operations for the transition are shorter than

the sampling time, one needs to also account for the time sp&ntMathematical model

in the mode after having reached it. 1) System modelThe system to be controlled is a linear
Taking into account the above, the following costs aigiscrete-time system:

obtained, given irmJ:

11 =219 12 =1:8; 1;3=1:9; Xiep = AXic+ BUg, (1)

21 =32 22=14 - 23=6 10 55 wherexy is the system state (fully observed, for simplicity)
51735 32=3:75 107 33=6 10> and ux is the control input taking values iR"™ and R"

As noted before, our approach considers several nomespectively. The system is controllable, and may be unstable.
transmitting modes in order to save further energy than whér goal is to stabilize this system around the origin,= O,
using a simpl®O/Off pattern. However, because of transitionvhile saving energy.
costs, in some cases switching to intermediate non-transmitting®) Channel model: The channel is considered here as
modes may result in more energy waste than holding parfect,i.e., if a control inputdy is sent by the smart sensor,
transmitting mode. Our approach will effectively reduce thehen it is correctly received by the actuator node.
energy consumption, only under some assumptions on the) Switching policy and feedback lawfhe sensor node
transition costs. embeds a switching policy (whose joint-design with the

Assumption 1. The energy cost to stay in the transmittin'g_j[eedbaCk law ~will be described hereafter) to govern the

mode is positive and larger than the cost of staying in a 8z;1d|o—mode. The decision to swnch.b.etween modes is based
n the overall system state, comprisirg, the last control

non-transmitting mode0 i < 11 forali2 My, Al ; ;
transitions between distinct states have positive cagt:> 0 input ux 1 applied to the system and the current radio-mode,
forall i 6 j. ’ denotedmy. Denoting the memory of the last control input

by
Assumption 2. The transition from (and to) the transmitting

. I - the = Uk 1} @)
mode is larger when considering a deeper non-transmitting
modes: For anyi;j 2 Mg, if i <j (i.e, i ii ») then the switching decision is given by =  (Xi;th;my). The
L 1 and i1 g1 smart sensor has perfect knowledge of the last control input

Assumption 1 is quite natural, since a deeper mode HaRplied to the system (since any update sent to the actuator

more components switched off. However, there is no guaranf¥¥!€ is indeed received and applied to the system). The radio-
that Assumption 2 is always satis ed, due to the fact th&FCde is updated according to the switching decisiogi; =

ij represents the energy consumed over an entire samperHq_ ) )

interval, including the cost to remain in the mode after having 1 he control input applied to the system, denoted de-
reached it. pends on the arrival of the updatg, which in turn depends

on the decision to send an update. If an update is received,
then the optimal control input is used, as computed by the
smart sensor according to the law described in the next section,
denotedlyy = (Xg;t; my). Otherwise, the control input is

Our goal is to nd suitable policies both for the radio-modee|d to its previous value as long as no update is received
of the smart sensor and for the feedback control law. Therelygm the smart node:

I11. OPTIMAL CO-DESIGN OF RADIO-MODES AND
FEEDBACK CONTROL

we seek to obtain a satisfying trade-off between the control ( _ o
performance and the energy consumption. In this section, U = Ok, in case of transmission, 3)
after giving a detailed mathematical description of the system, k= ug 1, otherwise.

we formulate an optimization problem with the minimization

of a cost function that accounts for the control performance4) Switched model:The evolution of the system under
and the energy consumed by the radio, as modeled tive different choices of radio-mode can be formulated as a
Subsection II-B. The minimization problem is solved of ineswitched linear system withh modes. From a control point
with dynamic programming. The optimization is over a niteof view, the different modes are actually reduced to two cases:
horizon, but the closed-loop system is implemented onlinghen a transmission occurse(, the control loop is closed)
using Model Predictive Control ideas. Indeed, the ofinend when the system runs open loop. However the different
procedure provides a feedback sequence and mode-switchimgdes affect the energy consumption. Choosing the switching
sequence over the nite horizon for any initial state of th@olicy at timek is equivalent to choosing the radio-mode. The
system state space. On-line, only the rst element of eaewolution of the switched system depends»qn on wy, and
sequence is used and the procedure is repeaddd nitum. on my, the mode of the radio chip. Accordingly, we de ne



Zx as the system state augmented with the control memgry where
de ned in Eq. (2):
Xk

Z = 2 RMx* N, Vich » (Vi3 o0 Ve 1)
b

. are the control and switching sequences along the horizon,
Then, the state of the switched system becomes: g °eq g

and the symmetric positive de nite matriQr is a weighting
(z;mg) 2 X, R™*Mv M: factor on the nal augmented state at the end of the horizon.

. . . The optimization problem consists in nding the optimal
The evolution of the system in Eg. (1) with the feedback la trol poli th timal switchi i
described in Eqg. (3), together with the radio-mode switchi tontro policy sequence.,, and the optimal switching policy

: : . . ) uence/, .., that minimize the cost function in Eq. (7):
policy , gives rése to the following switched system: g kiH a- (7)

2 Zka = fy (z; 0k) Iy (zi;mi), JIn (.Zk;mk;Uk;H »Vie ) .
> Mier = V= (2emi) 4) = min I (zi; i Ui 5 Vigr ),
' O = (zx;my),

where superscripts refer to the optimal values.
where the functiorf,, is de ned as o : . .
Remark 1 (Time-invariance) It is worth noting that the

fvo (20, wzk+ v Ok, problem is time invariant, which means that the control inputs
and the matrices y,; v, for vy 2 M, are as follows: and switching quISIOHS depend on the current S("’*e”.‘k)
. L . and on the horizon lengtH , but not onk. It is thus suf cient
1) if v =1, i.e, if a transmission occurs, then )
to solve the problem with the state as a parameter.
A 0 . _ B

vk = CLZOO, vk = CL—|§ _ _ _
C. Dynamic programming solution
The optimal sequences),.,; , V,.; , dened in Eq. (8)
(0= oL = A B ()= oL = 0 ~ can be computed using dynamic programming with the value
: 0o 1’ « 0 ° iteration method (see [25], [26], [27]). The problem being time
invariant, it is suf cient to nd a solution parametrized in the
B. Finite-horizon optimization problem current state #;; my). The value iteration method de nes a
We de ne a stage cost (or cost-to-gd),k (Zk; Mg Uk) as Value functionVy (Zk; mk) which is given by the foIIowing
a joint criterion capturing the feedback performance and thecursion: the value function is initialized as
energy consumed by the sensor over one sampling interval:

2) if vx 2 My, i.e, if there is no transmission, then

Vo(Zk+ H i Mk+ 1) = Zih 1y QF Zk+ W 9)

v (Z MG U = Xp QX + P Rug + :

i (2 Mi; Uk) rﬁ{?_ﬁ Fﬁé_f [pad} and then, forali =1;:::;H,

performance control energy  transmission energy
®) Vi(Zk+H isMk+n i)
for symmetric positive de nite matrice® and R, and for a = min Vienw 1 (ZkeH Mken i UkeH )
. . Uk+H iVk+H i

parameter . The latter can be tuned to give different trade-offs . _ _
between feedback performance and energy consumption. Via(fvew (@een iUken i)iVien 1) 0 (10)

This stage cost can be expressed in the switched formujasis method gives the optimal solution
tion, as follows:
. Jn (Z; M) = Vi (z; mie)):
v @M u) = Zg QuZk + U Ry, U+ myy, i (6) 4

where the matrice®y, andRy, , for v 2 M, are as follows: It turns out that in our case, the value function takes the

1) if vy =1, then explicit form:
i X i > -1 D R
0n=0c= 2 9. R, =R =R Vitzam), | min oz zck m, 5i210L1Hg,
Vk CL O 0 ] Vi CL y (11)
2 1 2 M, hen whereP; is a set of pair§ ; ), where is a square matrix
Q0 of dimensionny, + n, and is a vector of dimensiolN. ;

Qu=Qo = 5 g+ Rw=Ro =0 refers to thei™ component of the vector.
The cost function is de ned as the sum of the stage costs!ndeed, when =0, Eq. (9) Implles thaVo(zk+ 1 ; M+ )
over a nite-horizon of lengthH : satis es Eq. (11) withPo = f(QF; 0)g.
Then, forO<i  H, and assuming that:
In (2; Mic; U 5 Vich )

ke 1 @) Vi 1(Zksn i1 MeeH i+1)
= vi(Ziimisui) + 20 QF Zks s =  min

>
Zyvn i+l Zk+H i1 T miw a o (12)
i=k (3 )2Pi 1



we can compute®; such thatVi(zx+n i;mk+n i) can be Lemma 1. The optimal cost functiod,, (zx; my) that solves
written in the same form. To ease the notation, we omit tiee problem(8) is given by:
index and we add the superscriptto denote the indices _ N
1, while the absence of a superscript refersi tRecalling I (zZk; M) = Vu (z;me) . min -z ze+
in (3 )2Py
Eg. (10), we thus obtain:

17)
V(z;m) = e v(Zmiu)+ Vo(fy(zu)v) wherePy is a set of paird ; ), with a square matrix of
— i dimensiomy + n, and a vector of dimensiolN (whosej th
=min zZ2Q,z+ U Ryu+ ) X . . .
uv Q v m o entry is denoted by;). Py is computed with the following
+( mggp fu(z;u)”> fu(ziu)+ recursion:
; n B _
- m|n Z> (QV + \7 V)Z PO - f(QF ro)gv -
uvi (5 )2P o Pi=Pl[P2 8 2f12:::;Hg,
+U Ry+ § Ly Uu+2U07 7 yZ+ gt oy where
13)
— R + > 1 > .
We shall use the fact that matricesare symmetric (this can cL cL ¢t cL  CL»
be easily proved) and distinguish two casesv IE 1, then 80 2 319
Eqg. (13) becomes: % 11t 1
i n + 2 > > § 2;1+ 12
V(z;m) = [ Z7(QcL + ¢ cL)z Pl = E ct™ e ct cL ¢t :
u( )
> > 14 N;1+ 1
FURe* o e o (14) such that( ; )2P; 1 ’
+ 2 U> EL CL Z+ m; 1 + 1 -
and
80 2 319
We can compute separately % Mingam, f 1w+ vg E
. > > . min f v T+
u ., argumln U (ReL + &L cL)u+2u & cLZ ; 02 QoL+ 3 oL V2 M, . 2y vgz =
1 . .
by noting that E minyam, T nv + V0 E

suchthat( ; )2P; ; !

@ > > >
— U (ReL + u+2u z . .
@u (Ree + o) oL ot Recursively, foi 2f0;1;:::1;H  1g, let:
= ReL+ ¢ c U+ g cLz _ g
(w iy moi)= agmn  z; Zait m,
so that ()2Pw
u = ReL + 2. oL 1 2L clz, K z The optimal switching d(;cision at tinket+ i is given by:
Replacing the value ofi in Eq. (14) yields: <SLf(w 5w )2Ph
N Visi = i(Zk+i-mk+i): : argmin mesiv T v ; else.
V(z;m) = ( mi)n mi1t 1 vaMz
7 )2P
. S . 0 Whenv, . ; =1, the optimal control input is given by:
+27 Qe+ ¢ e tK”T G oLz . (15)
. . Uesi = i (Zksismisi) Zkei = K XK+ i
In the second case,2 M, the control input is held to the kel e . " " i "
previous value, see Eq. (3), and does not appear anymoreniiere , , = K , , 0 and
the minimization. Eq. (13) thereby reduces to:
1
n K,.,= ReL+ & HicL oL i cL:
V(z;m) = min Z(QoL+ oL oL)zZ
v2Mai( 5 )2P 0 The optimal control inputs and switching decisions over the
+ mv+ v . (16) horizon are then given bW, = (U U iiiiUey 1)
andViy = (Vi Ve 3555 Ve n 1)+ O

From Egs. (15)-(16), one can buil (where the details

about the elements in the set are given in the following Iemma% ; . ; g .
) : . needs to be run of ine. It provides the optimal decisions with
such thatVi(zk+n i;Mk+n ;) can be written in the same

: . - the system state as a parameter. Online, the optimal switching
:ert]lt?s in £q. (12). The above analysis leads to the f0|IOW|n(9ecision and feedback control input are then derived for the

current state of the system, as described below.

It is worth emphasizing that the value iteration method only



D. MPC implementation was received is less than the horizon length. Alternatively, one

While the ofine procedure provides sequences of contrdi@y Use other elements of the control sequence at the actuator
inputs and switching decisions over a nite horizéh, an side (as suggested by works such as [32]). With this, f[he smart
in nite horizon controller can be formulated by adopting &'°d€ would have to send the whole sequence, which would
receding horizon approach. Only the rst element of eacflPly @ consequent energy consumption, which is precisely
sequence is used at a tirkeand the optimal sequences ovelVhat we want to avoid. On the other hand, applying the other
the horizonH are computed again at the next sampling instafifements of the contrql sequence may result in bgtter open-
k + 1. This allows one to de ne the joint switching poIicy'OOp performance, which may in turn extend the time spent

and feedback law that we use onlie ; ) as de ned in Without updating the control sequence.
the switched formulation in Eq. (4) as the rst laws in the The current formulation could be extended to encompass
sequences obtained from the value iteration method: suchpacketized transmissiongithout major dif culties. Note

however that the switched system as given in @y would
(zk;mi) = oz M) have to be modi ed accordingly. In particular, the dimension
(18) -
(Z; M) = o(zi; M), of the switched system should be augmenteH byl to keep
the memory of thél control inputs in the sequence.
As noted above, our scheme can be divided into an of ine
computation and an online computation part. The joint policy
( ; ) is computed of ine. Then the following algorithm is IV. STABILITY ANALYSIS
run online on the smart node at each sampling time:
Find the switching decision,e., the next radio-moden+

This section investigates the stability of the closed-loop

vV, = (z;mg) and system designed in Section IlII-C. Our stability analysis is
if v, 2 My, nd the optimal control inputu, = based on the framework of Input-to-State Stability (ISS), and
(z¢;my) and send it to the actuator, relies on the works [33], [34]. A general approach to global
if v, 2 M3, do nothing. ISS for discrete-time systems can be found in [33]. The authors

Interestingly, our optimization leads to an event-based coiH—[34] extend the general approach to consider constraints on

trol law, where the mode switching policy triggers control tf}e state space and the clontrol!)_?pace, and introduce t;‘e nﬁtlon
updates based on the current stige mg). Indeed, the space0 Input-to-State practical Stability (ISpS), meaning that the

X is divided into regions whose crossings trigger events, ﬁ¥§tem converges to a bounded invariant set rather than to a

a similar manner that threshold crossings trigger events Rint. i ) - ]
event-based control [7]. Our approach is related to works!SS IS often used to examine the stability of a system despite

on event-triggered model predictive control, such as [nge presence of distgrbances. Here, we use it .in a different

[29], except that our method includes management of multigh@ntext, where the dif culty comes from the, at times, open-

radio-modes. loop operation when transmissions are interrupted to save
The solution of the optimization problem as given in Lemm@&nergy- We analyze stability of the statenly. Indeed, ther

1 provides an optimal feedback sequehke, and an optimal term in the state is a memory of the applied inputs and hence

switching sequenceV,,, . However the receding horizonits stability does not need to be assessed directly. It follows

approach uses the rst element of these sequences only,@& the one oi. The radio moden, which can only take a
described by Eq. (18). According to Eq. (3), when a contrdiite number of values, may not be converging to a particular

update is not received by the actuator node, the actuator keBjde; but this does not prevent the stati® be bounded. The
applying the last control input. results given in [33], [34] must be adapted to our setup where

we are dealing with stability of part of the state only.
Remark 2 (Computations) The online burden in the smart \we will need the following notation and de nitions:
node is limited to fetch data in a lookup table. The size of this
table is related to the discretization of the state space used
in the of ine step. One can adapt the accuracy of the lookup
table to the precision needed and the computation resources
available online.

Afunction (s): R ¢! R gisaK-function, or of class
K, if it is continuous, strictly increasing and(0) = 0.
If moreover (s)!1 ass!1l ,then (s)isaKjy -
function, or of clasK; .

A function (s;k): R g Z ¢! R ¢ is said to be
Remark 3 (Explicit MPC). The value iteration method (which a KL -function, or of clasKL , if for each xedk 0,
includes an of ine step) is different from the so-called explicit ( ;k) is of classK, and for each xeds 0, (s; ) is
MPC schemes [30], [31], which consist in solving a sub-  decreasing, and(s;k) ! Oask!1

optimal or parametrized problem ofine in order to lighten 1(s) denotes, when it exists, the inverse of a function
the online burden. (s).
Remark 4 (Packetized Predictive ControlBince an optimal 1 2(), 1l 2(S)) denotes the composition of two

functions 1(s) and »(S).

control sequence over an horizéh has been computed at the
d P id(s) is the identity functionj.e., id(s) = s; 8s.

smart node side, one may argue that holding the control input
at the actuator side is not the best choice when no updateWe are interested in the stability of the closed-loop state
is received and when the time elapsed since the last updaigectories of system (1) with the policy (18) and arbitrary



initial conditions(zg; Mg) = ( Xo; tg; Mg). The system evolves  Assumption 3 is akin to the so-calléerminal costinequal-

as f0||0W582 ity that can be found in nite horizon optimization problems,
> Zesr = Fy, (Zc(Xo to; Mo); Uy) and is dlscus_sed for instance in [36]_. _Note that the existence
o ) 19 of the gain is only used in the de nition of Assumption 3;
s> Mirn = Vie= (26 Mi) 19 this gain is not necessarily used afterwards as the closed-loop
' U= (zc;my). feedback gain. The following result establishes GISpS of the
We consider the following notion of Global Input-to-StatyStém of interest.
practical Stability (GISpS). Theorem 1. Suppose that Assumption 3 holds. Then the
De nition 1. The closed-loop syste(ti9) is said to be GISps ¢l0sed-loop(19) is GISpS.
if there exist aKL -function and a (nite) constantc 0, Proof. See the appendix. |

such that, for any initial conditiorfxo; tig; mg) 2 X, . ) ) .
Since the cost function penalizes transmission energy (and

kxyk (kxok;K)+ ¢c; k2 Z ,. (20) thereby does not use closed-loop control when the system state
. . . . ._is small), asymptotic stability of the origin cannot be achieved
N‘.’F'Ce that this de nition dgscrlbes Inpqt-to-State practlcqﬁ general. The best one can hope for is stability of a bounded
stability only for thex term in the stateif. amounts to set, as established in Theorem 1. The situation is akin to that

a form of partial stability). In particular, if the closed-loop ; ;
. ; " encountered in sparse control formulations, such as [37].
system (19) is GISpS, as stated in De nition 1, then for any P (371

> 0 and for any initial condition, there exists a nite time

k (depending on the initial condition and orf) such that _ _ o
kzxk c+ forallk k; this can be easily inferred from \We simulate the proposed control and radio-mode switching

Eq. (20) and the fact that(kzok;k) ! Oask!1 .Asfar Scheme onasecond-order plant. We focus on an unstable plant
as thet term is concerned, recall from Eq. (2) that this iecause energy-ef ciency is more critical in the case where the
a memory of the previously-applied control inputs, which i§ystem is not converging naturally. We consider the following
updated whenever a transmitting decision is taken, and k&ygtem
constant otherwise. When it is updated, it is a linear function x(t) = 02 é
of thex term in the state, so that if we prove thais bounded,
then also is bounded. The modem takes values in a nite discretized with sampling periods = 0:05s. We consider
set, and we are not concerned with its convergence: it mightee radio-modes with the transition costs described in Ex-
settle to a constant value or keep varying, without preventimgnple 1. In the de nition of the cost-to-go (Eg. (5)), we x
convergence oX. Q =0:11, R =0:1, while we use as a design parameter,
We will prove that the closed-loop system (19) is GISpS. T explore different tradeoffs between control cost and energy.
do so, we will make use of the following notion of Lyapunov4in our optimization, to nd the optimal policy, we consider an

V. SIMULATION STUDIES

X(t) + 2 u(t)

like function. optimization horizonH :210, and a ter?inal cost
Denition 2. V : X! R g is called a GISpS-Lyapunov 15 0 O
function for the systerl9) if Qe =40 15 05:
1) there exist a pair oK, -functions 1, », and a constant 0 0 01
c1 O such that, for all((x; &);m) 2 X: We want to examine the energy savings obtained by the

C - introduction of the low consuming moddle (mode 2) in
(k) V(OaE)im) - okxk) + ¢ (21) betweenTx (mode 1) andSleep (mode 3). To this end, we
2) there exist a suitabl&; -function 3 and a constant run simulations using three modes, and compare them with
c; 0 such that, for all((x; &); m) 2 X: simulations with only two modesi,e., using only Tx and
Sleep . An example of simulation (with = 2) is shown
V(Gse)im), V(I ((Ge)u)iv) V(X ®8)imM) iy Figure 3. The system is stabilized in both cases, as shown
3(kxk) + c: (22) by the state trajectories in Figure 3(a), with a similar control
Ipen‘ormance (upper curve in Figure 3(b)). The energy cost
used to obtain a similar control performance is lower when
using three modes (lower curve in Figure 3(b)), particularly in
the second part of the simulation, after the system has reached
Assumption 3. The weighting factoiQg in Eq. (7) is pos- the invariant set around its equilibrium point. Figure 3(c)
itive de nite, and there exists 2 R": ("x*NMu) gych that illustrates the switching decisions for the radio mode. In the
maxfj eigs( c. cL )jg 1landQ?2 O, where time interval of 20s shown in the gure, the total number of
transmissions is the same for both schemes: 53 transmissions
Q, @ (e ct ) Qr( cL ct ) QoL and 347 non-transmissions; tile  mode was used 57 times
>RcL . (23) inthe 3-modes scheme. Notice that it is quite natural to have
a similar number of transmissions, but in general there is
“4For nonlinear systems this aspect becomes more subtle, see [35]. N0 guarantee to have exactly the same number, because the

Our stability result is subject to a condition on the na
weighting factorQg in Eq. (7), as stated in the following
assumption.
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Fig. 3. Online simulations comparing the cases with two and three radio modes.

joint optimization of control and radio-mode might lead tgossible control cost, but at the price of high energy cost for
different transmission decisions in the two cases. The totehnsmissions. Other values pflead to tradeoffs which are
energy consumption of the radio chip is of 215.62 mJ for thegni cantly worse than the ones obtained when optimizing
3-modes scheme, which improves upon the 226.22 mJ of tihe transmission pattern, either with two or with three modes.
2-modes schemes; clearly, transmitting at all times would have

required a much higher energy, of 1157.1 mJ. We would like to emphasize that, as mentioned in Remark 2,
Figure 4 illustrates different tradeoffs between total contréthe optimization problem can be run of ine, since the problem

E,ost :‘;0 (X7 Qxj + u7 Ru;) and energy consumptidg,, = is time-invariant. Online, the choice of the new radio-mode
K¢

' m .:m,,obtained with different values of in the cost- and of the control gain are functions of the current state only,

to-go de nition in Eq. (5). Both costs are cumulative over th@nd can be encoded in look-up tables. To give a pictorial
simulation horizon 0f20 s. Points in the plots are obtainedepresentation of such functions, we consider a 1-dimensional
averaging over 16 different initial conditions for the state System (1), so that we can use a color-code to represent them.
and over all initial radio-modes. Our example is the systeRk.; = 1:074xx  1:4808u, with

In Figure 4(a), we can see that better tradeoffs are obtairié@e step durationls = 0:05 s, parameters of the cost-to-go
by using three modes rather than only two, thus showing tke = 0:01, R = 0:1, =1, and the optimization horizon
interest of using an additionddle mode. is H = 10; radio-modes are the three ones from Example 1.

In Figure 4(b), we compare our technique with a case wherégure 5 shows the new radio-mode and the control gain (for
two modes Tx and Sleep ) are used in a periodic mannerthe cases when the radio-modeTis), as a function of current
namely a control input is transmitted once evgrytime X;thm.
steps, and the control is held constant until next transmission;
we use LQR control for the resulting periodic system. For VI. CONCLUSION
p = 1, this is classic LQR control with transmissions at We have presented an energy-ef cient joint control law and
every time step, so clearly this method obtains the bestdio-mode switching policy for a networked control system
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architecture which comprises a smart sensor node in chargenyd account a distributed architecture involving several smart
computing the control updates. In order to save energy at thedes. Indeed, within our framework, the derivation of the
smart node, at each sampling instant, the smart sensor nogémal control law relies on the assumption that the smart
decides whether or not to send an optimal control updateode has exact knowledge of not only the state of the system,
When running open loop, the smart node decides amobagt also of its evolution regarding its own choice. When con-
several low-consuming radio-modes depending on the curraidering several sensors, this assumption does not necessarily
level of awareness that is needed by the smart node. All thég®d, and new techniques need to be devised.

choices are made by evaluating the future impact of currentAnother possible extension is to consider a nonlinear sys-
decisions in terms of energy-transition costs and control péem. This is again very challenging, since optimal control
formance. These decisions involve a trade-off between enexgynonlinear systems is very dif cult even in the absence of
consumption and control performance. The control law armghergy issues, while here we are building upon the explicit
the switching policy are derived jointly in the framework ofsolution of LQR.

optimal control and solved using dynamic programming and

value iteration methods. The stability of the proposed method APPENDIX

has been elucidated in the framework of practical Input-to- PROOF OETHEOREM 1

State Stab|.I|ty. i _ ) ) Our subsequent analysis is inspired by [33], [34]. Authors in
Future directions include the extension to a stochastic c388] consider asymptotic stability to a point, while authors in
where communication failures are taken into account. Hefg4] consider practical stability but they introduce constraints
one could study the use of several transmission power |evg|$ihe state or control spaces that we do not consider. The cur-
that can be used to increase the success probability of {8t setup has the particularity to consider an ISpS-Lyapunov

transmission, at the price of consuming more energy, cf. [12linction depending o, & andm while the practical stability
A much more challenging extension would be to takis limited to x.



A. Preliminaries

To prove Theorem 1, we will rst introduce the following
preliminary technical result:

Lemma 2. If the system(19) admits a GISpS-Lyapunov
function, then it is GISpS.

Proof. This proof is based on the proofs of ISS and ISp

in [33], [34]. We assume that Egs. (21)-(22) hold,, that 4+ Ay(9)

11

Let be aK; -function such tha{id ) is also aK; -
function; for example, we can considefs) = s=2. We de ne
! 1 landcs, ¢+ (c1), and the set

4
, f(z;m)2 X:V(z;m) !(c3)0: (27)

We assume thatid 4) is aK; -function. This assump-
tion is not restrictive, since Lemma B.1 in [33] proves that, in
§ase(id 4) is notK, , there exists & -function 4 such
4(s) and (id 74) is K1 , so that™4 can be

the system (19) admits an GISpS-Lyapunov function, denotgda instead of 4 in the rest of this proof.

V(z;m). Let's prove that the closed-loop system is GISpS in | gi'g consider(z;m) 2 . From Eq.(26) , we get
the sense of De nition 1. The proof is divided into three steps:

rst we prove that the closed-loop system admits an invariant

V(fy (z;u);v) V(z;m) 4(V(z;m)) + cs;

seP; then we show that the invariant set is attractive; nallyand hence

we establish that having an attractive invariant set is equivalent

to practical stability.

Step 1:Finding an invariant set  X.

We de ne,(s), 2(s)+ s. Noting thatc;
and » is increasing, Eq. (21) implies

0, kxk O

V ((x; &); m) 2(kxk+ ¢1) + kxk+ ¢ = To(kxk + ¢p):

Hence,

YV a);m)) k xk+ ¢ (24)

Let (s) be aK; -function. If ¢; k xk, thenm% k xk
which implies

kxk + ¢

> 3(kxk)

3 a(kxk) +  (c1):

If c; > kxk, similarly we obtain

kxk + ¢

5 (c1)

3(kxk) + (c1):

Introducing the function
n
_3(s), min

we have just proved that
_a(kxk+ 1)

a(kxk) + (cp); 8x: (25)

Notice that 3 is aKy -function, and in particular is increas-
ing, so that Egs. (24) and (25) imply

_3 2 HV((x; #);m))

If we introduce

a(kxk) +  (c1):

then we have

4(V((x; &);m))

By Eq. (22), this gives

3(kxk) +  (c1):

V((X; &); m) s(kxk)+ ¢ (c))+ (c)
a(V((x);m))+ c2+ (c1): (26)
5A set X is called an invariant set for system (19) if afg; m) 2

veries f (zmy(z; (z;m)); (z;m) 2

V(fy (z;u);v)
Since(id
V(fy (z;u);v)

(id  4)(V(z;m))+ cs:
4) is increasing andz; m) 2

(id ) (cs)+ c3
=1 (cs) Y(cs)+ c3=1(cs) (id

Since(id ) is aKj -function, (id  )(
showing that

, this implies

(ca)):
0, thus

X
*(c3))

V(fy (z;u);v) 1(c);

which establishes that is an invariant set for the closed-loop
system (19).

Step 2:Proving that the invariant set is attractive.

We want to prove that, for anfz,; my) 2 , there exists
a nite kK k such that(z,;m,) 2 . Consider the trajectory
which at timek is in (z«;my), and letk  k be the rst time
where this trajectory enters. Having already proved that
is an invariant set, clearlig >k, (zn;mp) 2 forallh< k
and (zy;mp) 2 for all h k. Notice thatk is possibly
in nite (in case the trajectory never enterg and our goal is
indeed to prove that is nite.

For allh < k, (zn;mp) 2 means that

! 1(03);

V(zn;mp) >1! (c3) = 4

thereby,
4(V(zn; mp)) >c3: (28)
Moreover, by Eq. (26),
V(zn; mp) 4 (V(zn;mp)) + c3;
which can be re-written as follows:
(id ) a(V(z;m))
so that, by Eq. (28),
V(z;m) (id ) a(V(zm)): (29)

Eq. (29) holds for allz,; my, with 0 h < k; notice that
(id ) 4isaKj -function. According to [38, Lemma 4.3],
this implies that there exists laL -function ~(s; h) such that

"(V(z0;mo); h); 8h < k: (30)

Now, when considering xedq; mg (as we are looking at
one trajectory), (V (zo; mp); h) is a decreasing function df,
which tends to0 for h 1 1 . Without loss of generalit§,let

4(V(z;m))+ cs;

V(zn; mp)

bSince! (c3)= 4t I( (c) + ), ! (c3)

c1 = ¢ =0. We can instead considet; e > 0.

0.1f! (c3) =0, then
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us assume thdt(cz) > 0. Hence, there exists a nite timk characterization is in Lemma 1. Before starting the proof, it is

such that, for alh t, (V(zo;mp);h) ! (c3) and hence convenient to make the following observation about matrices

alsoV(zn;mp) ! (c3), i.e, (zh;mp) 2 , thus completing involved in this characterization: Looking at the de nition

the proof that is an attractive set. of Pj, we can notice that if ; ) 2 P,(f) i (equivalently, if
Step 3:Proving that Eq. (20) holds. ~ V,.; 61),then is positive de nite, while if( ; )2P .

Eq. (21) implies thakxck — *(V((Xk; th); Mk)). Since (e, v,,, = 1), then is positive semi-de nite, and more

1 ! is increasing, we shall use bounds Bi6(X; t ); My ). precisely

If ((xg;t);mg) 2 , by denition of , it holds that _ « 0 .
V((Xk;tk);mg) ! (c3), and hencekxyk 11(! (c3)). - 0O 0
If ((Xg;t);mg) 2 , then we have proved that

where  is of sizeny ny and positive de nite.
Step 1 Proving that there exists; of classK; such that
1(kxk)  Vu (z;m), wherez = ( x; ).

kxy k 110 (V((xo; tro); mo); K))) : We consider the expression fof; given in Lemma 1, and

. . in particular Eq. (17). We note thai; 0; 8(i;j) 2 M?
From this, we will look for a looser but more useful boundi‘mplies that , ©O; 8v2 M: 8( ; )2Py. Hence,

Eq. (21) implies thaV ((xo; to); Mo) 2(kxok)+ ¢;, which

V((Xk;th);mg) M (V((Xo; tro); Mp); k)) for a suitableKL -
function * (see Eq. (30)), so that

gives V4 (z; m) mn 2= z
kxyk 11(,\( 2(kxoK) + ¢1;K)) : (31) (; )(sz )
Notice that, for xedk, (" (s;k)) is aK; -function in = min mn 2z z min Z z
the variables. For any function (s) of classK; , if s; s, ()P (:)2p?
then (si+sz)  (2s1), whileifs; s, then (s1+s2) Let's consider the two minima separately: For allin the
(2s2), and hence, in both cases, rst minimization we have = 3 with positive de nite
(s1+ s2) (2s1)+ (2s0): «. Then, | i 2
i ; . . min z= z 1kxk=;
Applying this bound to the function * (" (s;k)) in Eq. (31), ()P ®
we obtain

where ; > 0 is the minimum of the eigenvalues of all
kx k 1E(M @2 a(kxok);K) + (M (e k) ¢ the blocks y for matrices appearing iPS). Al in the
. 1/n ) . o , second minimization are positive de nite; letting > 0 be
The function , * (" (2¢1;K)) is of classK, ; in particular, yhe minimum of their eigenvalues, we have
being decreasing, it attains its maximum for= 0, which
gives min z7 z  ,kzk®  ,kxk?;
( ;2P

kxick 11 (2 2(kxoK) k) + 1 (N (2010 (32) which leads to the bound:

Recalling that we have obtained Eq. (32) for all ) ; . 2 .
((xk;t);mg) 2, while the costV ((Xk;t);mk) ! (c3) Vi(zim) - minf i aglock®, - a(lodk);

for all ((xk;tk);mk) 2 , we can conclude that for all as desired.
((xk; & ); my) we can boundkxgk by the sum of these two Step 2 Proving that there exists, of classK; and a
bounds. This shows that constantc; such thatVy (z; m) 2(kxk) + ¢, wherez =
] ] (X; o).
kxick (kxok k) + ¢; We look again at Lemma 1, Eq. (17). Clearly, for any xed
with (s;k)= 1 (" (2 2(s);k)) and (;)2Pnu,
c= ' eo)+ (! () Vi(zim) 27 z+

This proves Lemma 2. O Then, notice that,, H  max, Where

Having established that if the system admits a GISpS- max irjﬂ%f ij O

Lyapunov function, then it is stable in the sense of De nition 1,

we will next prove Theorem 1, by showing that a GISpSHence,

Lyapunov function exists for our closed-loop system.

>

Vy(z;m) 27 z+ H pax:

Now notice thaPy = Pﬁ) [P ,S,z) and thalP,(f) iS non-empty.

B. Proof of Theorem 1 Thus, we can choose being inP’ and thereby having the
Now we want to prove that the system (19) is GISpS. Wafructure = 3 . This gives
will rst show that, under the stated conditions, the system (19) >

. . P 7z maxkxk?;
admits a GISpS-Lyapunov function; by Lemma 2, this implies

that it is GISpS. Our proof is in three steps, one for each of thehere 5« is the largest eigenvalue of. Consequently, we
inequalities in De nition 2. As a candidate Lyapunov functionhave
we take the value functioy (z;m) = Jy,(z;m), whose Vy (z; m) 2(kxk) + ¢;



with  o(kxk), maxkxk?® andc, H mnax.
Step 3 Proving that there exists3 of classK;
constantc, such that Vy (z;m) 3(kxk) + c;.
We need to nd an upper bound to

and a

WVh (Zk; M) = VH (Zker s Mie1 ) Vi (2 mi);

where (zes1 ;Mis1) = fu, (Zk: UV
Notice that

Vi (Zk+1 s Mie1 ) = I (Zksr ; My )

= min

Jn (Zk+1 s Mis ; Ukt i1 s Ve 1 )
Uk+1 H Vk+1 H

Hence, if we take a particular policy

(Uk+1 15 Ve 1) = (Ui sn s Vist 1 );
which might not be the optimal one, then it holds that

Vi (Zk+1 i Mi+1) I (Zkes s Mist s Uker s Vs om ) (33)

We consider the following policy:

(34)

wherevg:ny =1 anduUg+ny =  Zk+n With
that Assumption 3 is satis ed. In Eq. (34), the terms and
v, are taken from the optimal policy from timle over an

IH (Zsr s Miar s U h s Vissm)
= Vi (2x; M) \Vk (zi; Mi; Uy ) Z;+HQF Zk+H
+  1(Zkr v M v Uke ) + Zgs g QF Zke vt

This, together with Eq. (33), gives

Vi (zme) v, (Z MG U)  Zeoy QF Zke

+  1(Zkr H M H o Uka o)+ Zga o1 QF Zkrna: (35)
We recall thatvg+y = 1 andug+py =

Zx+n+ =( cL
the de nition of the cost-to-go; (see Eq. (5)), we obtain

Zk+H, SO that

N . . —_ >
1(Zk+H MK Uk+H) = Zie y QcL Zk+ H
> >
+ Ziy RcL Zk+n + Mg+ y sl

and

Zgrn+1 QF Zke 41
ct ) Qr( cL

so that Eqg. (35) can be re-written as follows:

—_ > .
= Zi+n CL cL Zk+H,

> A0
Zio 1 QF Zks 1
+

Vi (zi; M) v, (2 My uy)

Mg+ H ;l;

where we have used the de nition &%, see Eq. (23). By

Assumption 3Q% 0, and trivially

Mgsn il max i;rjn?,fﬂ(f ij 9

chosen such

cL K)zk+n . Considering the latter and [8]
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Hence,

Vi (zcme) v (@amicu) o max:
Recalling the de nition of the stage cost in (6), and noting
thatR\,k 0, we have

Vi (zi;me)  Z¢ Qu, % min *  max;
where
min |Tn2|rl\lllf ij O

Now notice thatz; Qu, z is equal tox; Qxx whenv, =1,
and equal toxy Qxy + Hi Rbx Xy Qxx whenv, = 1.
Finally, letting > O be the smallest eigenvalue ¢f, we
obtain

Vi (zi; my) kxk? + (' max min );

from where the result follows.
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