Asymptotic Models and Impedance Conditions for Highly Conductive Sheets in the Time-Harmonic Eddy Current Model

Victor Péron 1, 2
2 Magique 3D - Advanced 3D Numerical Modeling in Geophysics
LMAP - Laboratoire de Mathématiques et de leurs Applications [Pau], Inria Bordeaux - Sud-Ouest
Abstract : This work is concerned with the time-harmonic eddy current problem for a medium with a highly conductive thin sheet. We present asymptotic models and impedance conditions up to the second order of approximation for the electromagnetic field. The conditions are derived asymptotically for vanishing sheet thickness $\varepsilon$ where the skin depth is scaled like $\varepsilon$. The first order condition is the perfect electric conductor boundary condition. The second order condition turns out to be a Poincar\'e-Steklov map between tangential components of the magnetic field and the electric field.
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01505612
Contributeur : Victor Péron <>
Soumis le : dimanche 4 mars 2018 - 12:57:23
Dernière modification le : dimanche 8 avril 2018 - 12:33:32

Fichier

eddycurrent_V2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01505612, version 2

Collections

Citation

Victor Péron. Asymptotic Models and Impedance Conditions for Highly Conductive Sheets in the Time-Harmonic Eddy Current Model. 2017. 〈hal-01505612v2〉

Partager

Métriques

Consultations de la notice

55

Téléchargements de fichiers

13