A. A. Rodríguez, P. Fernandes, and A. Valli, Weak and strong formulations for the time-harmonic eddy-current problem in general multi-connected domains, European Journal of Applied Mathematics, vol.14, issue.4, pp.387-406, 2003.
DOI : 10.1017/S0956792503005151

C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Mathematical Methods in the Applied Sciences, vol.2, issue.9, pp.823-864, 1998.
DOI : 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B

H. Bateman, The Mathematical Analysis of Electrical and Optical Wave-Motion on the basis of Maxwell's Equations, 1915.

O. Biro, K. Preis, K. R. Richter, R. Heller, P. Komarek et al., FEM calculation of eddy current losses and forces in thin conducting sheets of test facilities for fusion reactor components, IEEE Transactions on Magnetics, vol.28, issue.2, pp.1509-1512, 1992.
DOI : 10.1109/20.123983

A. Bossavit, Electromagnétisme, en vue de la modélisation, ) [Mathematics & Applications, 1993.

A. Buffa, H. Ammari, and J. Nédélec, A Justification of Eddy Currents Model for the Maxwell Equations, SIAM Journal on Applied Mathematics, vol.60, issue.5, pp.1805-1823, 2000.
DOI : 10.1137/S0036139998348979

G. Caloz, M. Dauge, E. Faou, and V. Péron, On the influence of the geometry on skin effect in electromagnetism, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.9-12, pp.9-121053, 2011.
DOI : 10.1016/j.cma.2010.11.011

URL : https://hal.archives-ouvertes.fr/hal-00503170

M. Costabel, M. Dauge, and S. Nicaise, Singularities of eddy current problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.5, pp.807-831, 2003.
DOI : 10.1051/m2an:2003056

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.366.6216

B. Delourme, H. Haddar, and P. Joly, ON THE WELL-POSEDNESS, STABILITY AND ACCURACY OF AN ASYMPTOTIC MODEL FOR THIN PERIODIC INTERFACES IN ELECTROMAGNETIC SCATTERING PROBLEMS, Mathematical Models and Methods in Applied Sciences, vol.8, issue.13, pp.2433-2464, 2013.
DOI : 10.1002/mma.1670020103

URL : https://hal.archives-ouvertes.fr/hal-00682357

M. Duruflé, V. Péron, and C. Poignard, TIME-HARMONIC MAXWELL EQUATIONS IN BIOLOGICAL CELLS ??? THE DIFFERENTIAL FORM FORMALISM TO TREAT THE THIN LAYER, Confluentes Mathematici, vol.03, issue.02, pp.325-357, 2011.
DOI : 10.1142/S1793744211000345

M. Duruflé, V. Péron, and C. Poignard, Abstract, Communications in Computational Physics, vol.144, issue.01, pp.213-238, 2014.
DOI : 10.1088/0031-9155/46/1/315

K. O. Friedrichs, Differential forms on riemannian manifolds, Communications on Pure and Applied Mathematics, vol.60, issue.4, pp.551-590, 1955.
DOI : 10.1002/cpa.3160080408

C. Geuzaine, P. Dular, and W. Legros, Dual formulations for the modeling of thin electromagnetic shells using edge elements, IEEE Transactions on Magnetics, vol.36, issue.4, pp.799-803, 2000.
DOI : 10.1109/20.877566

V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations: theory and algorithms. Springer series in computational mathematics, 1986.
DOI : 10.1007/978-3-642-61623-5

H. Haddar and Z. Jiang, Axisymmetric eddy current inspection of highly conducting thin layers via asymptotic models, Inverse Problems, vol.31, issue.11, p.31115005, 2015.
DOI : 10.1088/0266-5611/31/11/115005

URL : https://hal.archives-ouvertes.fr/hal-01214308

R. Hiptmair, Symmetric Coupling for Eddy Current Problems, SIAM Journal on Numerical Analysis, vol.40, issue.1, pp.41-65, 2002.
DOI : 10.1137/S0036142900380467

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.7900

H. Igarashi, A. Kost, and T. Honma, Impedance boundary condition for vector potentials on thin layers and its application to integral equations, The European Physical Journal Applied Physics, vol.1, issue.1, pp.103-109, 1998.
DOI : 10.1051/epjap:1998123

J. Jin, J. L. Volakis, C. L. Yu, and A. C. Woo, Modeling of resistive sheets in finite element solutions (EM scattering), IEEE Transactions on Antennas and Propagation, vol.40, issue.6, pp.727-731, 1992.
DOI : 10.1109/8.144609

E. F. Knott and T. B. Senior, Non-specular radar cross section study, 1974.

L. Krähenbühl and D. Muller, Thin layers in electrical engineering-example of shell models in analysing eddy-currents by boundary and finite element methods, IEEE Transactions on Magnetics, vol.29, issue.2, pp.1450-1455, 1993.
DOI : 10.1109/20.250676

I. D. Mayergoyz and G. Bedrosian, On calculation of 3-D eddy currents in conducting and magnetic shells, IEEE Transactions on Magnetics, vol.31, issue.3, pp.1319-1324, 1995.
DOI : 10.1109/20.376271

W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations, 2000.

J. Mcwhirter, Computation of three-dimensional eddy currents in thin conductors, IEEE Transactions on Magnetics, vol.18, issue.2, pp.456-460, 1982.
DOI : 10.1109/TMAG.1982.1061860

J. Nédélec, Acoustic and electromagnetic equations : integral representations for harmonic problems Applied mathematical sciences, 2001.

V. Péron, K. Schmidt, and M. Duruflé, Equivalent Transmission Conditions for the Time-Harmonic Maxwell Equations in 3D for a Medium with a Highly Conductive Thin Sheet, SIAM Journal on Applied Mathematics, vol.76, issue.3, pp.1031-1052, 2016.
DOI : 10.1137/15M1012116

J. Poltz and K. Romanowski, Solution of quasi-stationary field problems by means of magnetic scalar potential, IEEE Transactions on Magnetics, vol.19, issue.6, pp.2425-2428, 1983.
DOI : 10.1109/TMAG.1983.1062878

D. Rodger and N. Atkinson, Finite element method for 3D eddy current flow in thin conducting sheets, IEE Proceedings A Physical Science, Measurement and Instrumentation, Management and Education, Reviews, vol.135, issue.6, pp.369-374, 1988.
DOI : 10.1049/ip-a-1.1988.0059

K. Schmidt and A. Chernov, A Unified Analysis of Transmission Conditions for Thin Conducting Sheets in the Time-Harmonic Eddy Current Model, SIAM Journal on Applied Mathematics, vol.73, issue.6, pp.1980-2003, 2013.
DOI : 10.1137/120901398

K. Schmidt and A. Chernov, Robust Transmission Conditions of High Order for Thin Conducting Sheets in Two Dimensions, IEEE Transactions on Magnetics, vol.50, issue.2, pp.41-44, 2014.
DOI : 10.1109/TMAG.2013.2285437

K. Schmidt and R. Hiptmair, Asymptotic boundary element methods for thin conducting sheets, Discrete Contin. Dyn. Syst. Ser. S, vol.8, issue.3, pp.619-647, 2015.

K. Schmidt and S. Tordeux, Asymptotic modelling of conductive thin sheets, Zeitschrift f??r angewandte Mathematik und Physik, vol.33, issue.3, pp.603-626, 2010.
DOI : 10.1007/s00033-009-0043-x

URL : https://hal.archives-ouvertes.fr/inria-00527608

K. Schmidt and S. Tordeux, High order transmission conditions for thin conductive sheets in magneto-quasistatics, ESAIM: Mathematical Modelling and Numerical Analysis, vol.45, issue.6, pp.1115-1140, 2011.
DOI : 10.1051/m2an/2011009

URL : https://hal.archives-ouvertes.fr/inria-00473213

T. Senior, Approximate boundary conditions, IEEE Transactions on Antennas and Propagation, vol.29, issue.5, pp.826-829, 1981.
DOI : 10.1109/TAP.1981.1142657

O. V. Tozoni and I. D. Mayergoyz, Analysis of three-dimensional electromagnetic fields, 1974.