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Les automates synchrones pour la reconnaissance d’activités
Résumé : La reconnaissance d’activité est devenue de plus en plus importante dans différents domaines
comme la surveillance et la santé, pour sa sécurité et sûreté. Nous proposons de décrire les activités en
tant que série d’actions déclenchées et pilotées par des événements provenant de l’environnement, et nous
utilisons les automates synchrones pour les représenter. Nous avons choisi le paradigme synchrone pour
sa sémantique bien fondée et parce qu’il assure le déterminisme et la composition parallèle. De plus, nous
avons déjà développé des outils synchrones qui peuvent être adaptés à la reconnaissance d’activité. Nous
proposons aussi un nouveau langage synchrone pour exprimer ces automates synchrones. Ce langage est
basé sur une sémantique formelle qui permet de vérifier et valider nos modèles d’activités à reconnaitre
à l’aide des preuves du model-checking, de les compiler dans des systèmes d’équations, et de générer
automatiquement son code de reconnaissance correspondant.

Mots-clés : reconnaissance d’activités, automates synchrones, langage synchrone, algèbre, sémantiques
formelles
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1 Introduction
For security and safety reasons, many applications require to recognize various activities, corresponding
to interesting behaviors in the application domain. Activity Recognition aims at recognizing a sequence
of actions that follow a predefined model of an activity1. We mainly work on video-surveillance and
monitoring applications; in such applications, the data coming from sensors (video-cameras, etc.) are
first processed to recognize and track objects and to detect low-level events. This low-level information
is collected and transformed into high-level data (a.k.a. events). We are mainly interested in medical
applications to help physicians to detect abnormal behaviors. We propose to describe activities by finite
automata, since automata are simple and “natural” means to describe behaviors. There are several models
of automata, and because we have worked with reactive systems for a long time, we chose synchronous
finite automata . The Synchronous Paradigm relies on a discrete logical time composed of a sequence of
logical instants, defined by the system reactions. Synchronous systems have many interesting properties
such as determinism, parallelism, and formal verification. We also chose this kind of representation
because we have experience in this field and we have already developed tools to formalize, prove and
recognize activities.

This report is organized as follows: the next section introduces the synchronous model of automata
and describes our activity description language. Then, in section 3, we introduce the semantics and the
mathematical concepts on which we rely to define and verify the behavior of programs and to compile
them, before concluding in section 4.

1Several authors use “scenario recognition” instead of “activity recognition”. Strictly speaking, an activity may include choices,
loops, concurrency whereas a scenario is just a trace (an instance) of the activity. Nevertheless, in this report we use equally both
terminologies.

RR n° 9059



Scenario Semantics 4

2 Synchronous Automata
There are several models of automata and, for each model, several possible representations. We choose
the synchronous model and we propose a textual user dedicated language to define the automata.

2.1 Synchronous Model of Automata
Reactive systems listen to input events coming from the external environment and react to them by gen-
erating output events towards the environment. Such systems can be complex. The synchronous model is
a way to reduce the complexity of behavior description by considering their evolution along successive
discrete instants. An instant starts when some input events are available. All these events are frozen; the
output and internal events deriving from these inputs are computed until stability (fixed point) is achieved;
the instant finishes by delivering the output events to the environment. No inputs occurring “during” the
instant are considered. Hence, instants are atomic, their sequence defines a logical time2.

The synchronous paradigm is interesting because it ensures determinism and it supports concurrency
through deterministic parallel composition. It is also well-founded, it relies on a well-defined semantics,
and many tool sets have been developed for simulation, verification, and code generation of synchronous
automata.

Synchronous models can be represented as Mealy machines. The Mealy machines that we consider
are 5-uples of the form < Q,qinit , I,O,T >, where Q is a finite set of states, qinit ∈ Q is the initial state, I
(resp. O) is a finite set of input (resp. output) events; T ⊆ (Q× I)× (Q×O) is the transition relation.

This is an explicit representation of Mealy machines as automata. Mealy himself introduced an other
representation as Boolean equation systems that calculate both the output event values and the next state
from the input events and the current state [6]. We call this representation “implicit” Mealy machines.

For the users to describe synchronous automata, synchronous languages such as Lustre, Esterel, Scade
and Signal [5] have been defined. These languages are for expert users. We propose another synchronous
language that is easier to understand and use for non computer scientists (e.g., physicians). We call it
ADeL (Activity Description Language) and we describe it in the next section.

2.2 Activity Description Language
ADeL is a modular and hierarchical language, which means that an activity may contain one or more
sub-activities. The description of an activity consists of several parts: first the user defines the types of
the activity participants, their roles, and the initial state.

In the body, the user describes the expected behavior using a set of control operators. These operators
are the base of the ADeL language, they deal with events coming from the external environment. Some
of these operators are instantaneous and others take at least one instant to process. By composing these
operators (detailed in Table 1) one can build complex instructions, describing sub-scenarios.

2.3 Use Case
We present an example of the ADeL language. This program describes the activity of a person (e.g.,
suffering from Alzheimer) answering a phone call. Note that we consider the regular “clock time” (e.g.,
min) as just another input event so that ADeL operators (such as timeout) can cope with it. Figure 1
shows the corresponding automaton.

2In this model, instants take “no time” with respect to the logical time they define.

RR n° 9059



Scenario Semantics 5

nothing does nothing and terminates instantaneously.
[wait] S waits for event S and suspends the execution of the sce-

nario until S is present; operator wait can be implicit or
explicit.

p1 then p2 starts when p1 starts; p2 starts when p1 ends; the se-
quence terminates when p2 does.

p1 parallel p2 starts when p1 or p2 starts; ends when both have termi-
nated.

p1 during p2 p1 starts only after p2 starts and must finish before p2
ends.

while condition {p} p is executed only if the condition is verified. When p
ends, the loop restarts until the condition holds.

stop {p} when S alert S1 executes p to termination as long as S is absent, other-
wise when S is present, aborts p, sends an alert S1, and
terminates.

if condition then p1 else p2 executes p1 if condition holds, otherwise executes p2.
p timeout S {p1} [alert S1] executes p; stops if S occurs before p terminates and pos-

sibly sends alert S1; otherwise executes p1 when p has
terminated.

alert S raises an alert.
local(events) {p} declares internal events to communicate between sub

parts of p.
call(scenario) calls a sub-scenario.

Table 1: ADeL operators. S,S1 are events (received or emitted); p, p1 and p2 are instructions; condition
is either an event or a Boolean combination of event presence/absence.

Figure 1: Synchronous automaton of the phoneCall program. In this explicit representation, transitions
bear labels interpreted as follows: the left part of the label (before the “/” sign) is the trigger and the right
part represents the output events.

RR n° 9059
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Type Person , Equipment , Zone;
Scenario phoneCall:
Roles

patient: Person;
phone: Equipment;
table: Equipment;
TV: Equipment;
livingRoom: Zone;

Subscenarios
next_to(Person , Equipment );
hear(Person , Equipment );
pick_up(Person , Equipment );
start_talking(Person );
finish_talking(Person );
hang_up(Person , Equipment );
watch(Person , Equipment );

InitialState : inside_Zone(patient , livingRoom );
Start

next_to(patient , table) || hear(patient , phone)
then
pick_up(patient , phone) timeout 2.0 min

{
start_talking(patient)
then
finish_talking(patient)
then
hang_up(patient , phone) timeout 2.0 min

{
watch(patient , TV)

}
alert you_should_hang_up_the_phone

}
alert you_should_pick_up_the_phone

End

3 Semantics and Compilation
To provide the language with sound foundations we turn to a formal semantic approach. First, conditional
rewriting rules are a classical and rather natural way to formally express the intuitive semantics. This form
of behavioral semantics gives an abstract description of a program behavior and facilitates its analysis.
However it is not convenient as an implementation basis nor suitable for proofs (e.g., model-checking).
Hence we also define an equational semantics which maps an ADeL program into a Boolean equation
system representing its automaton. The ADeL compiler can easily translates this equation system into
an efficient code. Using such a double semantics is somewhat traditional in the synchronous language
area [2].

Since we have two different semantics, it is mandatory to establish their relationship. In fact we want
to prove that what is executed–on the basis of the equational semantics–also conforms to an equivalent
behavioral semantics.

3.1 Mathematical Context
The ADeL semantics rely on the notion of an environment which is a finite set of events. An event
contains the information about its status (that is its presence). Environments memorize the status of their
events in each instant. To formally define the ADeL semantics, we represent the event status with an
algebra structure.

RR n° 9059
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3.1.1 The ξ 4-valued Algebra

We use a 4-valued algebra (ξ = {⊥,0,1,>}) to represent the status of events. ⊥ means that the status of
the event is not determined, 0 that the event is absent, 1 that the event is present, and > that the status of
the event can not be determined because it has two incompatible status in the same instant (e.g., it has the
values 0 and 1 in different parts of the program).

The semantics we will propose to rely on for both verification and compilation purposes, associates a
ξ equation system to each program instead of a Boolean one as other semantics for synchronous language
do. In each reaction, the equation system helps us to compute an output environment from an input one.
This means that at least we must supply ξ with the usual logical operators: ¬, � , �which should have
a Boolean like definition to be able to express the status of output and local signals from input and local
signal status. Moreover, for the parallel operator (P1‖P2), the overall equation system must be deduced
from the respective equation systems of P1 and P2. In particular, when the same event has a status in each
equation systems, in the resulting equation system, its status should be the “unification” of the information
of its respective status in P1 and P2 equation systems. For instance, assume that event S has the status ⊥
in P1 equation system and the status 1 in P2 equation system, then it should have 1 has status in P1‖P2
equation system. Thus, we must also supply ξ with such an operation, called Unify (t) which perform
the union of information concerning an event in different environments. On another hand, the semantics
computes the unique least fixed point E = F(E) in the 4-valued algebra considered. To ensure that least
fixed points exist and can be computed, we need a 4-valued algebra with operators making F monotonic.
To this aim, we will also consider the symmetric operator of t , called u .

Thus to fill these requirements, we supply ξ with a bilattice structure [4]. Bilattices are mathematical
structures having two distinct partial orders denoted ≤B and ≤K and a ¬ operation. ≤B represents an
extension of the usual Boolean order and ≤K expresses the level of information about the presence of an
event:

Definition 1. (Ginsberg[4]) A bilattice is a structure (B, ≤B ≤K , ¬) consisting of a non empty set B,
partial orderings ≤B and ≤K and a mapping ¬ : B 7→B such that:

1. (B, ≤B) and (B, ≤K) are complete lattices

2. x≤B y⇒¬y≤B ¬x, ∀x,y ∈B

3. x≤K y⇒¬x≤K ¬y, ∀x,y ∈B

4. ¬¬x = x, ∀x ∈B

In ξ , we define two orders as follows:

⊥ ≤K 0 ≤K >
⊥ ≤K 1 ≤K >

0 ≤B ⊥ ≤B 1
0 ≤B > ≤B 1

Our goal is to provide (ξ , ≤B, ≤K , ¬) with a bilattice structure. For this, we need to endow (ξ , ≤K)
with a lattice structure. Thus we define t and u as the meet and the join for the knowledge order:

t 1 0 > ⊥
1 1 > > 1
0 > 0 > 0
> > > > >
⊥ 1 0 > ⊥

u 1 0 > ⊥
1 1 ⊥ 1 ⊥
0 ⊥ 0 0 ⊥
> 1 0 > ⊥
⊥ ⊥ ⊥ ⊥ ⊥

We also want that (ξ , ≤B) fits a lattice structure. Thus, similarly we define � and � as meet and join
for the Boolean order:

RR n° 9059
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x≤K (xt y) x≤B (x� y) x≤B y and z≤B t => xt z≤B yt t
x≤K y => (xt z)≤K (yt z) (x� y)≤B x x≤B y and z≤B t => xu z≤B yu t
x≤K y => (xu z)≤K (yu z) x≤B y => (x� z)≤B (y� z) x≤K y and z≤K t => x� z≤K y� t
⊥≤K (xt y)≤K > x≤B y => (x� z)≤B (y� z) x≤K y and z≤K t => x� z≤K y� t
⊥≤K (xu y)≤K > 0≤B (x� y)≤B 1
x≤K y => ¬x≤K ¬y 0≤B (x� y)≤B 1

x≤B y => ¬y≤B ¬x

Table 2: ≤K and ≤B properties

� 1 0 > ⊥
1 1 1 1 1
0 1 0 > ⊥
> 1 > > 1
⊥ 1 ⊥ 1 ⊥

� 1 0 > ⊥
1 1 0 > ⊥
0 0 0 0 0
> > 0 > 0
⊥ ⊥ 0 0 ⊥

Finally, we define the ¬ operation. Indeed, we expect that it inverts the notion of truth from a Boolean
point of view, but its role with respect to ≤K has to be transparent : we know no more and no less about
x and ¬x:

x ¬ x
1 0
0 1
> >
⊥ ⊥

With these definitions, orders have the properties described in table 2, proved in [?].
The structure (ξ , ≤B, ≤K , ¬) is a bilattice: (1) By construction, (ξ , ≤K) is a lattice with ⊥ and > as
extremums, and so is (ξ , ≤B) with 0 and 1 as extremums. According to table 2, we can ensure that ¬
operator inverts the Boolean order and preserves the knowledge order. Finally, obviously, ¬¬x = x, for
each element of ξ .

Although the ξ algebra can be considered as an extension of Boolean algebra, it is not itself a Boolean
algebra,because for instance, x�¬x is not always equal to 1. Thus, we cannot benefit from Boolean
algebra laws. Hence, we study which of these laws hold. Results are detailed in table 3 and the proofs are
in [?].

These laws are useful to compute the ξ -equation system solutions. Moreover, distributivity is a cor-
nerstone to apply bilattice properties.

3.1.2 The ξ Algebra Encoding

As already said, the goal of the equational semantics is to associate with each program a ξ -equation
system computing the status of its events in each instant. To make this computation efficient, we define
an encoding of ξ elements as pair of Boolean ones. There exist several possible encoding functions and
we choose the most suited one to express the increasing information with respect to the ≤K order:

e : ξ 7→ B×B : x ∈ ξ , e(x) = (xh,xl)

RR n° 9059
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Neutral and absorbing element laws:
⊥t x = x 1� x = 1 0� x = 0 >t x =>
⊥u x =⊥ 0� x = x 1� x = x >u x = x
Distributivity laws:
(x� y)� z = (x� z)� (y� z) (xt y)u z = (xu z)t (yu z) (xt y)� z = (x� z)t (y� z)
(x� y)� z = (x� z)� (y� z) (xu y)t z = (xt z)u (yt z) (xt y)� z = (x� z)t (y� z)
(xu y)� z = (x� z)u (y� z) (x� y)t z = xt z� yt z (x� y)t z = xt z� yt z
(xu y)� z = (x� z)u (y� z) (x� y)u z = xu z� yu z (x� y)u z = xu z� yu z
Associativity laws:
(xt y)t z = xt (yt z) (xu y)u z = xu (yu z) (x� y)� z = x� (y� z) (x� y)� z = x� (y� z)
Absorption laws:
xt x = x xu x = x x� x = x x� x = x
Idempotence laws:
xt x = x xu x = x x� x = x x� x = x
De Morgan laws:
¬(x� y) = ¬x�¬y ¬(x� y) = ¬x�¬y ¬(xt y) = ¬(x)t¬(y) ¬(xu y) = ¬(x)u¬(y)

Table 3: The ξ algebra properties

Here B is the usual Boolean set with two elements: tt and f f . e is defined as:

⊥ 7→ ( f f , f f )
0 7→ ( f f , tt)
1 7→ (tt, f f )
> 7→ (tt, tt)

The previously described encoding function extends to the ξ operators. The structure (B, ≤) is a
complete lattice for the f f ≤ tt order. The structure: B

⊙
B= (B×B,≤B,≤K ,¬) defined as follows

(x1,x2)≤B (y1,y2) iff x1 ≤ y1 and y2 ≤ x2
(x1,x2)≤K (y1,y2) iff x1 ≤ y1 and x2 ≤ y2
¬(x1,x2) = (x2,x1)

is a bilattice. Then, the following theorem holds:

Theorem 1. (ξ , ≤B, ≤K , ¬) and B
⊙

B are isomorphic.

To prove this theorem we show that the encoding e previously defined is an isomorphism between (ξ ,
≤B, ≤K , ¬) and B

⊙
B. Indeed, the four binary operations and the negation one of the (ξ , ≤B, ≤K , ¬)

bilattice are preserved in B
⊙

B. The proof is detailed in [3].
As a consequence of the theorem, we can extend the encoding e previously defined for ξ elements

to the bilattice (ξ , ≤B, ≤K , ¬) operators (in the following equations, + and . denote the join and meet
operations of the lattice (B,≤)): 

e(xt y) = (xh + yh,xl + yl)
e(xu y) = (xh.yh,xl .yl)
e(x� y) = (xh + yh,xl .yl)
e(x� y) = (xh.yh,xl + yl)


Thus, we can efficiently convert ξ -equation systems into the Boolean universe.

RR n° 9059
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3.1.3 Extension to Environments

Owing to the ξ algebra, we can now formally introduce the notion of environments. Environments are
finite sets of events where each event has a single status.

More formally, consider a finite set of events S = {S0,S1, ...Sn, ...}. A valuation V : S 7→ ξ is a
function that maps an event S ∈ S to a status value in ξ . Each valuation V defines an environment:
E = {Sx | S ∈S ,x ∈ ξ ,V (S) = x}. The goal of the semantics is to refine the status of the events of a
program in each instant from ⊥ to > according to the knowledge order (≤K).

Then, for each program P, built with ADeL operators, let us denote S (P) the finite set of its events
and E (P) the set of all possible environments built from S (P). Operations in (ξ , ≤B, ≤K , ¬) can be
extended to environments3:

¬E = {Sx|S¬x ∈ E}
E �E ′ = {Sz|∃Sx ∈ E,∃Sy ∈ E ′,z = x� y}

∪ {Sx|Sx ∈ E, 6 ∃y ∈ ξ ,Sy ∈ E ′}
∪ {Sy|Sy ∈ E ′, 6 ∃x ∈ ξ ,Sx ∈ E}

We introduce an order relation (�) on environments as follows:

E � E ′ iff ∀Sx ∈ E,∃Sy ∈ E ′|Sx ≤K Sy

Thus E � E ′ means that each element of E is less than an element of E ′ according to the lattice knowledge
order of ξ . As a consequence, the� relation is a total order on E (p) and tand uoperations are monotonic
according to �. Moreover, (E (P) , �) is a complete lattice, its greatest element is {S> | S ∈S (P)} and
its least element is {S⊥ | S ∈S (P)}. According to Tarski’s theorem, each monotonic increasing function
F has a least fixed point, computed by iteration of F from the least element [8]. This ensures that the
behavioral semantics has solutions.

A specific operation of “temporal translation” (Pre) is also needed on environments, it is useful to
express the semantics of the temporal operators ADel supplies.

Pre(E) = {S⊥ | Sx ∈ E}∪{Sx
pre | Sx ∈ E}

This operation creates new occurrences of events in the environment to record the status of events at the
previous instant of the logical time. Each event Sx is renamed as Sx

pre and the event S⊥ is added. S⊥ status
will be increased by operations on the environment performed by the semantics rules when needed by the
temporal operators of ADel.

For environments, the toperation is also called “unification”.

3.2 Behavioral Semantics
This semantics formalizes each reaction of a program by formally computing the output environment

from the input one. It defines a set of rewriting rules of the form P E ′−→
E

P′ which describes the program

execution, and where P is an ADeL program, E and E ′ are respectively the input and output environ-
ments, and P′ is the derivative of P, which represents the new program that will react to the next input
environment. For a program P, an input environment is composed of input events, present events having
1 for status and output events with ⊥ as status.

The equational semantics runs structurally on a program to compute its equation system. Thus, the
rewriting rules of the whole program apply from the root instruction following structurally the syntactic
tree of the program. A rule has the form:

p
E ′,term−−−−→

E
p′

3We introduce only the operations needed to define both semantics. However, the five operators of ξ can be similarly extended.
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where p and p′ are two instructions of ADeL, E is the input environment, E ′ is the resulting output
environment, and term is a Boolean flag which describes the termination of p, and which turns to true
when p terminates.

Operator nothing
Operator nothing doesn’t have an influence on the current environment, it starts and ends in the same
instant and the flag term is always true.

nothing E, tt−−→
E

nothing

Operator parallel

The operator parallel (‖) has two argument instructions, it computes them concurrently, possibly
broadcasting events between them. Thus the evolution of both instructions can impact both environments.
The operator ends when the two instructions terminate, i.e. when term1 and term2 become true and the
resulting output environment is the unification of the respective resulting environments computed for p1
and p2.

p1
E1,termp1−−−−−→

E tE2
p′1 , p2

E2,termp2−−−−−→
E tE1

p′2

p1‖p2
E1 tE2, termp1 and termp2−−−−−−−−−−−−−−−→

E
p′1‖p′2

Operator then
The then operator has two arguments. It behaves as a sequencing operator, the computation of the second
arguments cannot start until the first argument ends (rule then1).

p1
E1, f f−−−−→

E
p′1

p1 then p2
E1, f f−−−−→

E
p′1 then p2

(then1)

When the first argument ends, the environment E evolves and transforms into a new output environ-
ment called E1, which is the input environment to compute the operator output environment. When the
second argument terminates, the environment E1 increases to a new resulting output environment E2 (rule
then2).

p1
E1, tt−−−→

E
nothing , p2

E2,termp2−−−−−→
E1

p′2

p1 then p2
E2,termp2−−−−−→

E1
p′2

(then2)

Operator if then else

This operator has the usual behavior of test operators. Its behavior depends on the condition to verify.
If the condition evaluates to 1 with respect to the input environment4, the then statement is executed:

4denoted (cond,E)� 1 in the rules
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p1
E1,termp1−−−−−→

E
p′1, p2

E2,termp2−−−−−→
E

p′2, (cond,E)� 1

if(cond, p1, p2)
E1,termp1−−−−−→

E
p′1

(i f 1)

Otherwise , the else statement is executed:

p1
E1,termp1−−−−−→

E
p′1, p2

E2,termp2−−−−−→
E

p′2,(cond,E)� 1

if(cond, p1, p2)
E2,termp2−−−−−→

E
p′2

(i f 2)

Operator wait S
The semantics of "wait" provides that it does not react in the first instant. So we introduce an intermediate
operator that we call "iwait" to express the behavior of wait. Thus, first wait S is not ready to terminate
and leave and is rewritten into iwait S .

wait S E, f f−−−→
E

iwait S (wait)

iwait S reacts instantaneously to the presence of the event S. If S is present, term becomes true and iwait
terminates. It rewrites int nothing and without having any influence on the current environment.

S1 ∈ E

iwait S E,tt−−→
E

nothing

If S is not present, the value of term is false and the iwait S does not evolve in that instant, and
continues to wait for S in the next instants without having any influence on the environment.

S1 /∈ E

iwait S E, f f−−−→
E

iwait S

Operator stop

The behavior of this operator depends on the computation of its body statement p and on the presence
of the aborting signal S. However, the presence or absence of S has no influence in the first reaction. So,
to express the rules of the stop operator, we introduce its immediate version (istop), similarly to the wait
operator. Hence, we wait at least one instant:

p
E1,termp−−−−−→

E
p′

stop(p, S, S1)
E1,termp−−−−−→

E
istop(p′, S, S1)

(stop)

Then, we describe the rules for the istop operator. If S is not present and p terminates, then the operator
istop (p, S, S1) ends and rewrites into nothing. The environment E becomes E1 as the result of the
application of the semantic rules to p (rule istop1).

p
E1, tt−−−→

E
nothing , S /∈ E

istop(p, S, S1)
E1, tt−−−→

E
nothing

(istop1)
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If S is not present p continues its execution. The environment evolves into a new resulting output envi-
ronment E1, and the operator waits for S in the next instant(rule istop2).

p
E1, f f−−−→

E
p′ , S /∈ E

istop(p, S, S1)
E1, f f−−−−→

E
istop(p′, S, S1)

(istop2)

If S is present, then the computation of the operator waits the end of the current instant of the execution
of p and finishes in rewriting into nothing. Moreover term becomes true. The final environment is the
output environment E1 resulting from the execution of p, where the status of the event S1 becomes 1 (rule
istop3).

p
E1,termp−−−−−→

E
p′ , S ∈ E

istop(p, S, S1)
E1∪{S1

1}, tt
−−−−−−→

E
nothing

(istop3)

Operator while

The operator while behaves like a loop which terminates only when its condition is no more 1. If
the condition evaluates to 1 with respect to the status of events in the current environment, the operator
while(cond, p) never terminates and behaves like p′ then while(cond,p) (rule while1).

p
E1,termp−−−−−→

E
P′1 , (cond,E)� 1

while(cond, p)
E1, f f−−−−→

E
p′ then while(cond, p)

(while1)

If the condition evaluates to 0, the operator while ends and rewrites into nothing, term becomes true.
The final environment is the output environment E1 resulting from the execution of p (rule while2).

p
E1,termp−−−−−→

E
p′, (cond,E)� 0

while(cond, p)
E1, tt−−−→

E
nothing

(while2)

Operator during
The operator during has two arguments and its computation depends on the behaviors both of them. The
first argument cannot be executed before the second argument starts (rule during1).

p2
E2, f f−−−−→

E
p′2

p1 during p2
E2, f f−−−−→

E
p1 during p′2

(during1)

The second argument cannot finishes before the first one:

not p1
E1, termp1−−−−−−→

E
p′1 , p2

E2,−−→
E

nothing

p1 during p2
E2, tt−−−→

E
nothing

(during2)

p1
E1, f f−−−−→
E tE2

p′1 , p2
E2, tt−−−→
E tE1

nothing

p1 during p2
E1 tE2, tt−−−−−−→

E
nothing

(during2−bis)

RR n° 9059



Scenario Semantics 14

When p2 started, p1 can start. At one point, the two arguments will be executed in parallel and both
of them will have an impact on both of their environments (rule during3).

p1
E1, f f−−−−→
E tE2

p′1 , p2
E2, f f−−−−→
E tE1

p′2

p1 during p2
E1 tE2, f f−−−−−−→

E
p′1 during p′2

(during3)

Finally, the second argument cannot terminates before the end of the first argument: when p1 termi-
nates, it’s flag will change to true and it rewrites into nothing, and then p2 can terminate its execution.
The final resulting output environment will be the last environment resulting from the execution of p2
(rule during4).

p1
E1, tt−−−→

E
nothing , p2

E2,termp2−−−−−→
E

p′2

p1 during p2
E1 tE2,termp2−−−−−−−−→

E
p′2

(during4)

Operator local
The local operator behaves as an encapsulation. It is used to define events that are not visible in the
surrounding environment.

p
E ′, termp−−−−−→
E∪{S⊥}

p′

local(S, p)
E ′\{S}, termp−−−−−−−−→

E
local(S, p′)

Operator timeout
The behavior of this operator p timeout S{p1}alertS1 depends on the computation of its instruction p
and on the status of S. If S is not present and p terminates, p1 will start its execution.(rule timeout1).

P
E1, tt−−−→

E
nothing, p1

E2,termp1−−−−−→
E1

p′1

timeout(p, S , p1,S1)
E2,termp1−−−−−→

E
p′1

(timeout1)

If S is present (i.e., timeout elapsed), the computation of the operator stops the execution of p and
finishes by generating nothing as final result and changing term to true. The final environment is the
output environment E, where the status of the event S1 becomes 1(rule timeout2).

p
E1,termp−−−−−→

E
p′ , (S,E)� 1

timeout(p, S, p1,S1)
E1∪{S1

1}, tt
−−−−−−→

E
nothing

(timeout2)

If S is not present in the environment, its status can be either ⊥ or 0. If it is ⊥, the evaluation cannot
progress and it is terminated (rule timeout3):

p
E1,termp−−−−−→

E
p′ , (S,E)�⊥

timeout(p, S, p1,S1)
E1, tt−−−→

E
nothing

(timeout3)
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Otherwise, if S is absent, p continues its evaluation (rule timeout4):

p
E1, f f−−−→

E
p′ , (S,E)� 0

timeout(p, S, p1,S1)
E1, f f−−−−→

E
timeout(p′, S, p1,S1)

(timeout4)

Operator alert S
The alert operator emits an event of alert to the environment, it starts and ends in the same instant and
changes the flag term to true:

alert S
E∪{S1}, tt−−−−−−→

E
nothing

3.3 Equational Semantics
The equational semantics allows us to make an incremental compilation of the ADeL programs by trans-
lating each program into a ξ -equation system. An equation system is defined as the 3-tuple < V,R,D >
where V contains variables representing the status of the input events, the output events, and the local
events. R are the registers, i.e specific variables acting as memories to record values useful to compute
the next instant, and D the definition of the equation system to calculate the status of each event.

Similarly to the behavioral semantics, we compute the output environment of a program applying
the semantics rules to its root instruction. Thus, we define it first for the operators of ADeL and then
we extend these definitions to programs. The equational semantics is a function Se which computes an
output environment from an input one. An input environment contains the input events of the program
where present events have 1 for status while the the output events have ⊥. Moreover, it also contains the
registers needed by the program and introduced for some operators, they have the status computed in the
previous reaction.

Let p be an ADeL instruction and E an input environment. We denote Dp, its equation system and
〈p〉E the resulting output environment, computed by Se. It is defined as follows:
Se(p,E) = 〈p〉E iff E ` Dp ↪→ 〈p〉E . From the event status valuation of E, the equation system D(p)
results in the event status valuation of 〈p〉E . To compute output event values and register next values, we
rely on the ξ algebra laws detailed in table 3.

Let P be an ADeL program and E a global input environment (i.e., an environment where output and
local event variables have ⊥ as status and the registers have 0). The equational semantics formalizes a
reaction of P with respect to E: (P,E) 7−→ E ′ iff Se(β (P),E) = E ′, β (P) being the instruction repre-
senting the body of P, i.e, the root instruction of the syntactic tree of P. Thus, we deduce the equation
system of an instruction from semantic rules defined for each operators of the language. To express these
rules, we add to each operator three specific events: an input event START to start the instruction, an input
event KILL to kill the instruction, and an output event FINISH to send the termination information to the
enclosing instruction. For each instruction, its START, KILL and FINISH events are added to the input
environment.

The operator equation systems are defined using operator semantic rules to compute the status of the
FINISH, output, and local events, according to the status of START, KILL, input and local events.

We describe the equational semantics of ADeL operators and we present their rules.

Operator nothing
As we said previously, nothing does nothing, its output environment is calculated as following:

E `Dnothing ↪→ 〈nothing〉E .
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This operator’s corresponding equation system is simple :5.

Dnothing =
[

FINISH = START
]

Operator wait S
wait S is a temporal operator. It does not react in the first instant. To calculate its output environment
〈wait S〉E we use the specific "temporal translation" operation Pre (see section 3.1.3). The output envi-
ronment of wait operator is calculated as following:

〈wait S〉E = Pre(E ′) and E `Dwait S ↪→ E ′

The corresponding equation system of the operator wait S is as follows. It does not terminates instan-
taneously, thus, we need to create a register to memorize that the operator execution has started (START
has been true).

Dwait =

[
REG+ = START�¬ REG �¬ KILL � REG �¬ S �¬ KILL
FINISH = S� REG

]
Operator parallel

The operator parallel unifies (operation t ) the respective environments of its two operands. The
output environment is calculated using the following rule:

〈p1〉E t〈p2〉E `D‖ ↪→ 〈p1‖p2〉E
The rule to define Dp1‖p2 introduces two registers REG1 and REG2 to record the respective status of

the FINISH events of the two parallel arguments, since this operator ends when both of its operands have
terminated. Note that the operands do not in general terminate in the same instant.

D‖ =



REG+
1 = REG1 � ¬FINISHp2 � ¬KILL� ¬REG2 �

FINISHp1 � ¬FINISHp2 � ¬KILL
REG+

2 = REG2 � ¬FINISHp1 � ¬KILL � ¬REG1�
¬FINISHp1 � FINISHp2 � ¬KILL

STARTp1 = START
STARTp2 = START
KILLp1 = KILL
KILLp2 = KILL
FINISH = REG1 � ¬REG2 � FINISHp2 � REG2 � ¬ REG1 � FINISHp1 �

¬REG1 � ¬REG2 � FINISHp1 � FINISHp2


Operator then
The output environment of this operator is computed as following:

〈p2〉〈p1〉E `Dthen ↪→ 〈p1then p2〉E

5In the following, to express the equation systems of an operator, its specific events will be denoted START, KILL and FINISH
while the specific events of its potential arguments will be indexed with the argument respective name.
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In the operator equation system, the second arguments starts when the first argument finishes (equation
1). The FINISH event of the operator is related to the end of the second argument. (equation 2).

Dthen =


STARTp1 = START
KILLp1 = KILL
STARTp2 = FINISHp1 (1)
KILLp2 = KILL
FINISH = FINISHp2 (2)


Operator stop
The output environment of the stop instruction is computed as following:

〈p〉E `Dstop ↪→ 〈stop(p,S,S1)〉E .

The operator stop does not terminates instantaneously when the aborting event is present. Indeed, in
this case, the environment continues to evolve until the current instant terminates.

Dstop =


REG+ = START � ( REG � ¬ S) � ¬ FINISHp
STARTp = START
KILLp = (S � ¬KILL � REG)�KILL
FINISH = REG� (FINISHp � S)
S1 = REG�S�¬FINISHp


Operator while
The output environment of this operator is computed as following:

〈p〉E `Dwhile ↪→ 〈while(p,cond)〉E .

The while statement terminates only when the condition event is no more present.

Dwhile =


REG+ = (REG � cond) � (¬REG � cond � START � ¬KILL)
STARTp = (REG � cond � FINISHp) � (¬REG � cond � START �¬KILL)
KILLp = (REG� ¬cond) � (¬REG� KILL)
FINISH = (REG � ¬cond)� (¬REG � ¬cond � START � ¬KILL)


Operator if then else
The output environment of this operator is calculated as following:

〈p1〉E t〈p2〉E `Di f ↪→ 〈if(cond, p1, p2)〉E .

In the equation system of this operator, the START event is linked to the "then statement p1" when the
test event is present and to the "else statement p2" when it is not. The FINISH event of this operator is
present when the FINISH event of its selected argument is present.

Di f =


STARTp1 = START � cond
STARTp2 = START � ¬cond
KILLp1 = KILL
KILLp2 = KILL
FINISH = FINISHp1 � FINISHp2


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Operator during

The equations of this operator reflects the fact that the first argument starts after the second one and
terminates before the end of the second argument. Same to parallel, this operator unifies (operation t )
the input environments of its two operands. The output environment is calculated using the following rule:

〈p1〉E t〈p2〉E `Dduring ↪→ 〈p1during p2〉E
We need two registers to record the state of the two arguments. Its corresponding equation system is

the following:

Dduring =



REG+
1 = (REG1 � REG2 � ¬FINISHp2) � (¬REG1 � ¬REG2 � START) �

(REG1 � ¬REG2 � ¬FINISHp1 � ¬FINISHp2)
REG+

2 = (REG1 � ¬REG2 � FINISHp1 � ¬FINISHp2) �
(¬REG1 � REG2 � ¬FINISHp2) � (¬REG1 � ¬REG2 � START)

STARTp2 = ¬REG1 � ¬REG2 � START
STARTp1 = REG1 � REG2 � ¬FINISHp2
KILLp1 = KILL
KILLp2 = KILL
FINISH = (¬REG1 � REG2 � FINISHp2) � (REG1 � REG2 � FINISHp2)

(REG1 � ¬REG2 � FINISHp1 � FINISHp2)


Operator local
We consider that the events declared local are new and do not belong to the input environment. The output
environment of this operator is calculated as following:

〈p〉E `Dlocal ↪→ 〈local(p,S)〉E

The body statement p starts when the operator local starts it’s execution, and the end of p causes the
end of the local operator. The equation system is as follows :

Dlocal =

 STARTp = START
KILLp = KILL
FINISH = FINISHp


Operator timeout
The output environment of instruction p timeout S {p1} alert S1 is computed as follows:

〈p1〉〈p〉E `Dtimeout ↪→ 〈timeout(p,S, p1,S1)〉E .

The Dtimeout(p,S,p1) equation system contains also two registers to memorize the way this instruction
terminates: either with the normal termination of its argument (p) or when the timeout signal becomes
true. To express the rule for timeout operator, we use the same rules to denote events as in the previous
operator.
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Dtimeout =



REG+
1 = REG1 � ¬S� ¬FINISHp � ¬KILL �

¬REG1 � ¬REG2 � START � ¬KILL
REG+

2 = REG1 � REG2 � ¬FINISHp1 � ¬KILL �
REG1 � ¬REG2 � ¬S � ¬FINISHp � ¬FINISHp1 � ¬KILL �
¬REG1 � REG2 � ¬FINISHp1

STARTp = ¬REG1 � ¬REG2 � START
STARTp1 = REG1 � ¬REG2 � ¬S � FINISHp
KILLp = KILL
KILLp1 = S � ¬KILL � REG1 � KILL
FINISH = REG1 � ¬REG2 � S � ¬REG1 � REG2 � FINISHp1 �

REG1 � ¬REG2 � ¬S � FINISHp � ¬FINISHp1
S1 = REG1 � ¬REG2 � S�¬FINISHp


Operator alert S
This operator sends immediately an event of alert. The output environment is calculated using the fol-
lowing rule:

E `Dalert ↪→ 〈alert S〉E
The equation system of this operator is simple:

Dalert =

[
FINISH = START
S = FINISH

]

3.4 Relation between Behavioral and Equational Semantics
The behavioral semantics is a “macro” step semantics that gives the meaning of a reaction for each ADeL
program. Nevertheless, a reaction is the least fixed point of a “micro” step semantics [1] that computes
the output environment from the initial one. According to the fact that the toperation is monotonic with
respect to the � order on environments, we can ensure that for each instruction, this least fixed point

exists. Practically, we have p
E ′,term−−−−→

E
p′ if there is a sequence of micro steps:

p
E1,term1
−−−−�

E
p1, p1

E2,term2
−−−−�

E1
p2, ..., pn

En+1,termn+1−−−−−−−�
En

p′

At each step Ei+1 = F i(Ei). Since the Fi functions rely on the � operator to increase information about
events, they are monotonic and then ∀i,Ei+1 ≤K F i(Ei)

6. Then, we have E ′ = tnFn(En), thus it turns out
that E ′ is the least fixed point of the family of Fn functions. Since (ξ ,≤K) is a complete lattice, so is the
set of environments, and, as a consequence, such a least fixed point exists.

On the other hand, the equational semantics allows us to compile the language by associating an
equation system to each operator. To verify that the equational semantics is correct, we prove that it is
equivalent to the behavioral one. Indeed, for a program P, we have to show that both semantics agree on
the set of emitted events as well as on the termination flag value. To this aim, we prove the following
theorem :

6We also call ≤K the extension of the ≤K order to environments.
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Theorem 2. Let p be an ADeL instruction and E its input environment. If 〈p〉E is the resulting environ-
ment computed by the equational semantics, then the following property holds:

∃p′ such that p
E ′,e(FINISHp)h−−−−−−−−→

E|B
p′ and ∀o ∈ E ′,o output event, o has the same status in 〈p〉E and E ′

E |B is the environment E where all the START, FINISH, textsckill and REG events have been sup-
pressed. It is composed of the real input, output and local events of an instruction.

The theorem means that if the equational semantics yields a solution, there exists also a behavioral
solution with the same outputs. Thus, if the equational semantics computes a termination value (i.e the
status of FINISH value of the instruction), the behavioral semantics agrees. However, the status of the
FINISH event is a value in ξ while the termination flag of the behavioral semantics is a Boolean. It is why
we consider the first projection of the encoding of FINISH in the theorem. Indeed, the relevant values of
the FINISH events is either 0 or 1. > would means that a FINISH event has 2 incompatible status in 2
branches f a parallel operator, this is not possible since the FINISH events are generated for each operators
and cannot be shared between 2 branches of a parallel. ⊥ would means that the START event of the
considered operator has never been present and that the execution has never started. Thus, according to
the definition of the encoding function (see section 3.1.2), e(0) = ( f f , tt) and e(1) = (tt, f f ). Then the
first projection of 0 encoding is f f and the first projection f 1 encoding is tt.

To prove this theorem, we introduce the notion of size of an instruction (roughly speaking the number
of nodes in its syntax tree) and we use it in a proof by induction on the size of a program.

• [nothing] = 1

• [waitS] = 1

• [alertS] = 1

• [p1 ‖ p2] = max([p1] , [p2])+1

• [p1 then p2] = [p1]+ [p2]+1

• [stop p when S alert(S1)] = [p]+1

• [while cond{p}] = [p]+1

• [if cond then p1 else p2] = max([p1] , [p2])+1

• [p1 during p2] = [p1]+ [p2]+1

• [p timeout S {p1}alert S1] = [p1]+1

The proof is an induction n the size of the ADeL operators.

[p] = 1

First, we prove the theorem for basic statements with size 1, which are nothing, wait and alert. The
goal is to prove that in each reaction, both the equational and the behavioral semantics agree with the
termination of the operator and compute the same values for output events. In the equational semantics,
we distinguish the first reaction where the status of START is 1 from the following where it is 0.
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nothing
According to the equational semantics of this operator we have:

In the initial reaction we have: FINISH = START = 1 and thus e(FINISH)h = tt. On the other side we
have termp = tt.

We also have for output environment of the behavioral semantics E ′ = E |B= /0 from the operator
rule, so the property for output environment holds.

wait S

In the initial reaction, we have in the equational semantics REG = 0; KILL = 0; FINISH = 0. On the
other part, termwait = f f .
Considering the output events of the environment resulting of the application of the rule wait of the
behavioral semantics, it is clear that there is no change, then the property is true.

When it isn’t the initial reaction, according to to the system equation, it is obvious that REG+ = 1 in
the first reaction, so REG = 1 in the current reaction. The proof depends on the status of S and falls into
two cases:

1. S is present
When S is present we have S = 1 and we have REG = 1 because it memorizes the value of the
previous instant, thus we have FINISH = 1. In the behavioral semantics, it is the first rule of the
iwait operator which applies and so termiwait = tt. On the other side, similarly to the first reaction,
we have no change concerning output in the resulting environment of the behavioral semantics.

2. S is not present: we have S = ⊥ or S = 0, and REG = 1 as it contains the value of the previous
instant. Hence we have FINISH = 0. The second rule of the behavioral semantics for iwait applies
and then termiwait = f f . Moreover, the resulting environment for the behavioral semantics does
not change any more.

alert S
This operator is instantaneous and we have FINISH = START = 1. Concerning the behavioral semantics,
the rule says that termalert = tt. Moreover, both semantics add S1 in their respective output environments
and it is the only change. As we start to compute with the same values for the output events in the
respective input environments of each semantics, ∀o ∈ E ′, o has the same status in 〈alert〉E .

[p] = n

p1 ‖ p2

With this operator the proof of the theorem falls into 4 cases:

1. p1 terminates before p2 does
In this case, FINISHp1 = 1. Notice that it is the first reaction where FINISHp1 = 1, since the FINISH
events are 1 only once, according to equation systems. Thus, the REG1 register was 0 and will
become 1 in the next reaction. For the current reaction,REG1 = REG2 = 0 and then FINISH = 0.
In the behavioral semantics, we have termp1 = tt, termp2 = f f thus term‖ = f f . Notice that, the

RR n° 9059



Scenario Semantics 22

application of the behavioral semantics rule is:

p1
E1,1−−−→

E tE2
nothing , p2

E2,termp2−−−−−→
E tE1

p′2

p1‖p2
E1 tE2, termp2−−−−−−−−−→

E
nothing‖p′2

In the next instants, while FINISHp2 remains 0, REG1 is 1 and REG2 is 0, so FINISH is 0 and term‖
is f f . When FINISHp2 becomes 1, REG1 is 1, according to the equation system, but REG1+ is set to
0, thus REG1 will become 0 in the next reactions. Moreover, REG2 is also 0 and then FINISH = 1. In
this case, taking account the previous comment, we have the following rewriting in the behavioral
semantics:

nothing E,1−−→
E

nothing , p2
E2,1−−→

E
nothing

nothing‖p2
E tE2, 1−−−−−→

E
nothing‖nothing

because, by induction we know that termp2 = e(FINISHp2)h = tt.

2. p2 terminates before p1 does
This proof for this case is symmetric to the first item.

3. p1 and p2 terminates simultaneously
we have REG1 and REG2 both equal to 0, thus the equation for FINISH computes 1 and the behavioral
semantics rule is the Boolean and of termp1 and termp2 . Both of them are tt, so is term‖.

4. p1 and p2 never terminates
REG1 and REG2 remains 0, hence FINISH too. By induction, termp1 and termp2 are f f , thus term‖=
f f .

Concerning the output event values, by induction we know that all the output events of E1 have the
same status in 〈p1〉E and similarly for E2. In the behavioral semantics, we perform a t operation on
environment. This means that, ∀o ∈ E ′, o output event, either o ∈ E1 and o ∈ E2 and then, in the resulting
environment E ′, its status is the unification of its respective status in E1 and E2. By induction , we know
that the status of o in E1 is the same in 〈p1〉E and similarly for its status in E2. Thus, according to the
equational semantics rule, o has the same status in 〈p1 ‖ p2〉E . Or o ∈ E1 and o /∈ E2, then the result
straightly comes from the induction hypothesis. The dual case is similar.

p1 then p2
The execution of the sequence operator depends on the status of FINISHp1 , hence, the proof falls into two
cases:

1. FINISHp1 = 0:
in the equational semantics, we have STARTp2 = FINISHp1 = 0 and FINISH = FINISHp2 = 0. How-
ever, as STARTp2 is 0, FINISHp2 is also 0. In the operator equations, there is no way to have FINISH
equal to 1 if START = 0 (A similar induction will provide us with the proof), thus FINISH = 0. We
know by induction that termp1 = e(FINISHp1)h = 0. Then, the rule then1 of the behavioral seman-
tics is applied, and term = f f .
For output events of E ′, in this case, by induction, we know that they have the same status in 〈p1〉E .
As STARTp2 = 0, no equation in p2 equation system can change the value of p2 events, so 〈p2〉〈p1〉E
= 〈p1〉E , and the property holds applying the induction hypothesis.
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2. FINISHp1 = 1:
Here we have by induction e(FINISHp2)h = termp2 . From the equational semantics, we have
STARTp2 = FINISHp1 and FINISH = FINISHp2 .
Let o be an output event in E ′ = E2 in this case. By induction, we know that o has the same status
in E1 and in 〈p1〉E . However, E1 = (〈p1〉E)B , hence applying the hypothesis induction for p2 with
〈p1〉E as input event, we get the expected result concerning the output events of E ′.

stop p when S alert S1

In the initial reaction, we have in the equational semantics REG = 0, KILL = 0 and FINISH = 0. It
is the rule stop that applies in the behavioral semantics and thus termstop = f f .
Moreover, neither the equations or the rule stop change the values of the output event.
Notice that, in this first reaction, the equational semantics set REG+ = 1, so in the next reactions, the
value of reg will be 1.

For the following reactions, we have three cases:

1. S is not present and FINISHp = 1
As already said, the value of reg is 1. So according to the equation for FINISH, we deduce that its
value is 1. In the behavioral semantics, the rule istop1 is applied and termstop = f f .
In the istop1 rule, the output environment is the output environment of p. The equations associated
with the stop operator does not change the values of the output events different from FINISH or the
next values of the register reg. Thus, only the equations associated with p change the values of
these output events in the input environment, and by induction, we know that these output event
values are the same.

2. S is not present and FINISHp 6= 1
When S is not present we have REG = 1 but S = 0 or S = ⊥ and FINISHp = 0 or FINISHp = ⊥ ,
thus FINISH = 0 or FINISH = ⊥. However e(FINISHp)h = f f and by induction, we know that it is
the value of termp. Thus, the rule istop2 of the behavioral semantics is applied, and the value of
termp = f f = e(FINISH)h.
Concerning the value of the output events in the resulting environment of the behavioral semantics,
the same reasoning as for item 1 holds.

3. S is present
When S is present we have REG = 1 and S = 1 thus we have FINISH = 1. On the other hand, it is
the rule istop3 of the behavioral semantics that applies, and so termstop = tt.
Concerning the value of the output events in the resulting environment of the behavioral semantics,
in both semantics, the only change is to add S1

1 to the environment. Thus, relying on the induction
hypothesis, we get the expected result.

while cond{p}

The process of the operator while depends on the presence and the absence of the condition, and here
the theorem falls into two cases:

1. cond =1:
When the condition is 1 we have in the equational semantics FINISH = 0, whatever the value
of reg is. Hence, when cond is 1, the rule while1 of the behavioral semantics applies and then
termwhile = f f .
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2. cond = 0:
When the condition is 0, if REG = 1 then FINISH = 1. Otherwise, if reg = 0 , this means that we
are in the first reaction, so START = 1 and then FINISH is also 1. In this case, the rule while2 applies
and termwhile = tt.

Notice that, if cond = ⊥, the register remains 0 as STARTp and FINISH and there is no rule in the
behavioral semantics.

For output event in the output environment of the behavioral semantics (E1), it is the output environ-
ment of the application of the rules for p. By induction we know that its output events have the same
status than in 〈p〉E , and the equation for the while operator do not change the value of output events in the
environment. Only the equations of p have an influence on them, so applying the induction hypothesis
the property holds.

If cond then p1 else p2
The theorem falls into two cases:

1. cond = 1
We have STARTp1 = 1 and STARTp2 = o in the equational semantics, and so we have FINISH =
FINISHp1 . In the behavioral semantics, the rule i f 1 applies and then the termination flag is termp1 .
By induction, we also know that e(FINISHp1)h = termp1 so e(FINISH)h = termp1 .
Concerning the output event status of the behavioral semantics (E1), we know that the output event
of E1 have the same status in 〈p1〉E . The equational semantics performs the unification of the
respective output environment of p1 and p2 (〈p1〉E t〈p2〉E ). However, let us consider o an output
belonging to E1, with a status s1, it has the same status in 〈p1〉E . If o is emitted in p2 by an alert, or
a stop or an timeout, its equation in 〈p2〉E depends on the FINISH of the operator. So, the status of
o in 〈p2〉E can be 1 only if this FINISH is 1 otherwise it remains to ⊥. As, STARTp2 = 0, FINISHp2
cannot be 1 and o will never be set to 1. So, o has status s1 t ⊥ in 〈p1〉E t〈p2〉E and according to
the definition of the toperation, it has the status s1. None of the equations of D〉{ can change its
status and then o has status s1 in E ′, the output environment of the equational semantics.

• condition is 0
If the condition is 0, we have STARTp2 = 1 and STARTp1 = 0 in the equational semantics, and so
FINISH = FINISHp2 . In the behavioral semantics, the rule i f 2 applies and then the termination flag
is termp2 . By induction we have FINISHp2 = termp2 so FINISH = termp2 .
Concerning the output event status of the behavioral semantics (E1), we are in the “dual” case and
a similar reasoning leads us to the expected conclusion.

p1 during p2
The behavior of this operator depends on the respective START and FINISH of p1 and p2.

Dduring has 2 registers, this means that there are 4 combinations as values for these registers and
combinations represent the states of the finite state machine encoded by the equation system.

1. the initial state corresponds to REG1 = 0 and REG2 = 0:
In this first reaction, START = 1 and thus, FINISH = 0. Moreover, REG+

1 and REG+
2 are set to 1. In

the behavioral semantics, the rule during1 applies and thus termduring = tt = e(FINISH)h.

2. the next state is characterized by REG1 = 1 and REG2 = 1:
If FINISHp2 = 0 then STARTp1 = 1. Moreover, REG+

1 = 1 and REG+
2 = 0. With these values for

register, the equation for FINISH computes 0 as value. On the other hand, in the behavioral se-
mantics, the rule during3 applies, since both p1 and p2 continues their evaluation, and in this case
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termduring = f f . If FINISHp2 = 1, STARTp1 = 0. The next values for registers are REG+
1 = 0 and

REG+
2 = 0. This means that, the next state is the initial state and that the execution is terminated.

The value of FINISH is 1. In this case, the rule during2 of the behavioral semantics applies since
p2 finishes and p1 has not started and then termduting = f f = e(FINISH)h.

3. REG1 = 1 and REG2 = 0:
In this state, p1 and p2 have begin their evaluation, since STARTp1 and STARTp2 have been both 1 in
the previous states, but not in the same states (see previous items)). Then, 3 cases appear depending
of the respective values of the FINISH event of p1 and p2:

(a) FINISHp1 = 0 and FINISHp2 = 0. Then FINISH = 0. In the behavioral semantics, the rule
during3 applies and then termduring = f f . The next values of register are: REG+

1 = 1 and
REG+

2 = 0, so the next state is unchanged.

(b) FINISHp1 = 0 and FINISHp2 = 1. Then FINISH = 0. We are in the case where p1 is executed
and does not terminates whereas p2 terminates. So, in the behavioral semantics, the rule
during2− bis applies and termduring = f f . In this case, the next state is (0, 0) (next register
values), meaning that the evaluation is ended.

(c) FINISHp1 = 1 and FINISHp2 = 0. In such a situation, FINISH = 0. In the behavioral semantics,
it is the rule during4 that applies, so termduring = termp2 . By induction, we know that termp2 =
e(FINISHp2)h = f f . Computing the next values for registers, we can deduce that the next state
is 0, 1 (studied in item 4).

(d) FINISHp1 = 1 and FINISHp2 = 1. In this case, the value of FINISH is 1. On the behavioral
semantics parts, it is during4 rule that applies since p1 terminates. So, as for the previous
situation, termduring = termp2 = e(FINISHp2)h = tt. In this case, the next state is 0, 0 meaning
that the execution is over.

4. REG1 = 0 and REG2 = 1:
We reach this state from state (1, 0) and then p1 has terminated its execution (see item (c)). Only ,
the value of FINISHp2 is relevant in this state. With REG1 = 0 and REG2 = 1, the equation for FINISH
defines it as FINISHp2 . In the behavioral semantics, it is the rule during4 that applies, because as
p1 has been rewritten in nothing, the application of this rule yields to:

nothing E tt−−→
E

nothing , p2
E2,termp2−−−−−→

E
p′2

nothing during p2
E2,termp2−−−−−→

E
p′2

By induction we know that termp2 = e(FINISHp2)h and so termduring = e(FINISH)h.

Concerning the output event values in the output environment (E ′) of the behavioral semantics, let us
consider o such an event.

• If the rule during1 has been applied, then E ′ = E2, the output environment of the rewriting of p2. In
the equational semantics, the starting environment to apply equation from Dduring is 〈p1〉E t〈p2〉E .
On the other hand, we are in state (0, 0) (because the rule during1 is applied), thus STARTp1 = 0
and no equation in Dp1 are activated, then 〈p1〉E = E. Moreover, the equations help us to refine the
status of events from ⊥ to > according to the ≤K order. Hence, E t eqsemp2E = eqsemp2E. By
induction, we know that o has the same status in E2 and eqsemp2E.

• If the rule during2 has been applied, then E ′ = E2. According to the first part of the proof for this
operator, in the equational semantics, we are in state (1, 1) and STARTp1 = 0. Then we can rely on
a similar reasoning than in the previous item to conclude.
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• When one of the other operator rules is applied, then E ′ = E1tE2. In the equational semantics, the
starting environment to compute Dduring equations is 〈p1〉E t〈p2〉E . By induction, we know that
o has the same status in E1 and 〈p1〉E on one hand, and in E2 and 〈p2〉E on the other hand. Thus o
has the same status in E1tE2 and in 〈p1〉E t〈p2〉E . Indeed, none of Dduring equations change the
value of o status, so o has the same status in 〈p1 during p2〉E .

local(S) {p}
In the equational semantics we have FINISH = FINISHp and we know by induction that FINISHp = termp
and thus we have FINISH = termp
According to the induction hypothesis, we also know that each output event o in the output environment
(E ′) of the behavioral semantics of p has the same status in 〈p〉E . As, the output environment of the
operator is E ′ \ S on one hand, and 〈local〉E \ S on the other hand, o has the same status in both
semantics output environments.

p timeout S {p1} alert S1
The operator equation system has two registers, thus there are 4 combinations of values to determine the
states.

1. REG1 = 0 and REG2 = 0. By definition, it is the starting state of any evaluation. In this state,
START = 1 and thus, REG+

1 = 1 and REG+
2 = 0, that determines the next state. Then STARTp is

1 and FINISH = 0. In the behavioral semantics, it is the rule timeout3 which is applied in such a
setting. Thus the termination flag is f f = e(FINISH)h.
The output environment of the rule timeout4 is E1∪{S0

1}, E1 being the output environment of the
rewriting of p. By induction, we know that each output event in E1 as the same status in 〈p〉E . It is
the starting environment to compute the equations in Dt imeout and the only equation that change
the status value of an output is the setting of S1, which is set to 0. So, each output event in the
output environment of the rule timeout3 has the same status in 〈timeout〉E .

2. REG1 = 1 and REG2 = 0. In this state, we must distinguish the different values for S and FINISHp:

(a) FINISHp = 0. As S is a 4-valued event, the status of which is refined from ⊥, we studied the
different values it can have:

• S = ⊥ : with this valuation for registers, FINISH = 1. In the behavioral semantics, it is
the rule timeout3 which applies, and the termination flag is tt.

• S = 0: in this case, FINISH = 0. In the behavioral semantics, the rule timeout4 applies
and the termination flag is f f .

• S = 1: with this valuation for registers, FINISH = 1 and its is the rule timeout2 of the
behavioral semantics that applies. Hence, the termination flag is tt.

Concerning the output event statuses computed in the behavioral semantics, by induction, we
know that each output event in E1 as the same status in 〈p〉E . The value of S1 is only changed
in the last case, but it is set to 1 in the behavioral semantics as well as in the equational one,
so the property holds.

(b) FINISHp = 1. In this case, STARTp1 is set to 1 by the equations. Similarly to the previous case,
we study the different values for S status:

• S = ⊥ : with this valuation for registers, we also have FINISH = 1. In the behavioral
semantics, it is the rule timeout3 which applies, and the termination flag is tt.
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• S = 0: in this case, the status of FINISH depends on the status of FINISHp1 . Computing
the equation, we get FINISH = FINISHp1 . In this case, the rule timeout1 of the behavioral
semantics applies, and the termination flag is equal to termp1 . By induction, we have
e(FINISHp1)h = termp1 . So, the result holds.

• S = 1: with this valuation for registers, FINISH = 1 and its is the rule timeout2 of the
behavioral semantics that applies. Hence, the termination flag is tt.

Concerning the output event statuses of the behavioral semantics, the only difference with the
case where FINISHp = 0 is when it is the rule timeout1 is applied. Then, in this case, both
semantics set the status of S1 to 0. So, by induction we get the result.

3. REG1 = 0 and REG2 = 1. From the possible values for REG+
1 and REG+

2 computed in Dtimeout , we
can reach this state only from the state(1, 0). With this valuation for registers, in the equational
semantics, we compute FINISH = FINISHp1 . On the other part, in the behavioral semantics, it is
the rule timeout1 that continues its application, the termination flag is termp1 and applying the
induction hypothesis, we have e(FINISH)h = termtimeout .
Concerning the output event values in the respective output environment of both semantics, as
neither the behavioral semantics or the equational one change the status of S1, the result comes
from the induction hypothesis.

�
As a corollary, this theorem extends to ADeL programs.

3.5 Compilation and Validation
To compile an ADeL program, we first transform it into an equation system which represents the syn-
chronous automaton as explained in 3.3. Then we implement directly this equation system, transforming
it into a Boolean equation system thanks to the encoding defined in section 3.1 and to theorem 1. The
latter system provides an effective implementation of the initial ADeL program.

Since the equations may not be independent, we need to find a valid order (compatible with their inter-
dependencies) to be able to generate code for execution, simulation, and verification. Thus we defined
an efficient sorting algorithm [7], using a critical path scheduling approach, which computes all the valid
partial orders instead of one unique total order. This facilitates merging several equation systems, hence,
we can perform a hierarchical compilation: we can include an already compiled and sorted code for a sub
scenario into a main one, without recompiling the latter.

The internal representation as Boolean equation systems also makes it possible to verify and vali-
date ADeL programs, by generating a format suitable for a dedicated model checker such as our own
BLIF_CHECK7. The same internal representation also allows us to generate code for the off-the-shelf
NuSMV model-checker8.

4 Conclusion and Future work
In this report, we presented an efficient synchronous approach to describe (human) activities to be rec-
ognized by a computer system. The Synchronous Paradigm offers several advantages: generation of de-
terministic programs, concurrency management, well-established formal foundation, verification through
model checking facilities, etc. We proposed a new simple user friendly synchronous language, ADeL,
adapted to this model. We endowed this language with two equivalent formal semantics, one to describe

7http://www.unice.fr/dgaffe/recherche/outils_blif.html
8http://nusmv.fbk.eu/
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the abstract behavior of a program, the second to compile the program into an automaton described as an
equation system.

In the near future, our first objective is to simplify the use of ADeL for non computer scientists (e.g.,
physicians or security managers) We plan to provide more natural and easier to learn graphic interface.
This is an ongoing project in collaboration with ergonomists.

Describing activities and generating the corresponding automata is just a part of a broader recognition
system. This system aims at recognizing simultaneously several activities from various sensors, video
analysis being one of the most important. The system is configured with the description of the different
activities to recognized as produced by the ADeL compiler. At run time, it collects the objects and
events detected by sensors; it determines the input environments of the automata; it dispatches these
environments to the corresponding automata and triggers their reactions; finally, it reports the recognized
activities based on automata output environments.

Our first tests show that the current code that ADeLs generates, basically composed of Boolean equa-
tions, is easy to integrate in the recognition system, produces compact code, and is efficient at run time.
There remains a fundamental issue, common to all synchronous approaches: at the sensor level, the
events are asynchronous and they must be sampled to constitute input environments and to define the
synchronous “instants”. No exact solution is available; we already tested several strategies and heuristics
but large scale experiments are still necessary.
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