P. Durand and G. Trinquier, A new approach for determining low-frequency normal modes in macromolecules, Biopolymers, vol.81, issue.6, pp.759-771, 1994.
DOI : 10.1002/bip.360340608

F. Tama, F. X. Gadea, O. Marques, and Y. Sanejouand, Building-block approach for determining low-frequency normal modes of macromolecules, Proteins: Structure, Function, and Genetics, vol.77, issue.1, pp.1-7, 2000.
DOI : 10.1002/1097-0134(20001001)41:1<1::AID-PROT10>3.0.CO;2-P

E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, Journal of The Electrochemical Society, vol.102, issue.9, 1955.
DOI : 10.1149/1.2430134

I. Bahar, T. R. Lezon, A. Bakan, and I. H. Shrivastava, Normal Mode Analysis of Biomolecular Structures: Functional Mechanisms of Membrane Proteins, Chemical Reviews, vol.110, issue.3, pp.1463-1497, 2010.
DOI : 10.1021/cr900095e

R. J. Williams, THE CONFORMATION PROPERTIES OF PROTEINS IN SOLUTION, Biological Reviews, vol.200, issue.4, pp.389-437, 1979.
DOI : 10.1002/anie.197707661

J. A. Mccammon and M. Karplus, The dynamic picture of protein structure, Accounts of Chemical Research, vol.16, issue.6, pp.187-193, 1983.
DOI : 10.1021/ar00090a001

M. Karplus and J. A. Mccammon, Dynamics of Proteins: Elements and Function, Annual Review of Biochemistry, vol.52, issue.1, pp.263-300, 1983.
DOI : 10.1146/annurev.bi.52.070183.001403

I. Bahar, C. Chennubhotla, and D. Tobi, Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation, Current Opinion in Structural Biology, vol.17, issue.6, pp.633-640, 2007.
DOI : 10.1016/j.sbi.2007.09.011

A. Amadei, A. B. Linssen, and H. J. Berendsen, Essential dynamics of proteins, Proteins: Structure, Function, and Genetics, vol.158, issue.4, pp.412-425, 1993.
DOI : 10.1002/prot.340170408

B. Brooks and M. Karplus, Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor., Proceedings of the National Academy of Sciences, vol.80, issue.21, pp.6571-6575, 1983.
DOI : 10.1073/pnas.80.21.6571

M. Levitt, C. Sander, and P. S. Stern, The normal modes of a protein: Native bovine pancreatic trypsin inhibitor, International Journal of Quantum Chemistry, vol.22, issue.S10, pp.181-199, 1983.
DOI : 10.1002/qua.560240721

A. R. Atilgan, S. R. Durell, R. L. Jernigan, M. C. Demirel, and O. Keskin, Anisotropy of Fluctuation Dynamics of Proteins with an Elastic Network Model, Biophysical Journal, vol.80, issue.1, pp.505-515, 2001.
DOI : 10.1016/S0006-3495(01)76033-X

K. Hinsen, Analysis of domain motions by approximate normal mode calculations, Proteins: Structure, Function, and Genetics, vol.14, issue.3, pp.417-429, 1998.
DOI : 10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO;2-8

F. Tama and Y. Sanejouand, Conformational change of proteins arising from normal mode calculations, Protein Engineering Design and Selection, vol.14, issue.1, pp.1-6, 2001.
DOI : 10.1093/protein/14.1.1

G. S. Chirikjian, Efficient Generation of Feasible Pathways for Protein Conformational Transitions, Biophys. J, vol.83, pp.1620-1630, 2002.

C. Xu, D. Tobi, and I. Bahar, Allosteric Changes in Protein Structure Computed by a Simple Mechanical Model: Hemoglobin T???R2 Transition, Journal of Molecular Biology, vol.333, issue.1, pp.153-168, 2003.
DOI : 10.1016/j.jmb.2003.08.027

W. Zheng, B. R. Brooks, and D. Thirumalai, Low-frequency normal modes that describe allosteric transitions in biological nanomachines are robust to sequence variations, Proceedings of the National Academy of Sciences, vol.30, issue.2, pp.7664-7669, 2006.
DOI : 10.1002/(SICI)1097-0134(19980201)30:2<144::AID-PROT4>3.0.CO;2-N

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472502

S. Kirillova, J. Cortés, A. Stefaniu, and T. Siméon, An NMA-guided path planning approach for computing large-amplitude conformational changes in proteins, Proteins: Structure, Function, and Bioinformatics, vol.33, issue.1, pp.131-143, 2008.
DOI : 10.1002/prot.21570

M. Zacharias, Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: Binding of FK506 to FKBP, Proteins: Structure, Function, and Bioinformatics, vol.1110, issue.4, pp.759-767, 2004.
DOI : 10.1002/prot.10637

E. Lindahl and M. Delarue, Refinement of docked protein-ligand and protein-DNA structures using low frequency normal mode amplitude optimization, Nucleic Acids Research, vol.33, issue.14, pp.4496-4506, 2005.
DOI : 10.1093/nar/gki730

URL : http://doi.org/10.1093/nar/gki730

A. May and M. Zacharias, Accounting for global protein deformability during protein???protein and protein???ligand docking, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1754, issue.1-2, pp.225-231, 2005.
DOI : 10.1016/j.bbapap.2005.07.045

A. May and M. Zacharias, Energy minimization in low-frequency normal modes to efficiently allow for global flexibility during systematic protein-protein docking, Proteins: Structure, Function, and Bioinformatics, vol.15, issue.3, pp.794-809, 2007.
DOI : 10.1002/prot.21579

S. E. Dobbins, V. I. Lesk, and M. J. Sternberg, Insights into protein flexibility: The relationship between normal modes and conformational change upon protein-protein docking, Proceedings of the National Academy of Sciences, vol.24, issue.9, pp.10390-10395, 2008.
DOI : 10.1093/bioinformatics/btn093

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2475499

I. H. Moal and P. A. Bates, SwarmDock and the Use of Normal Modes in Protein-Protein Docking, International Journal of Molecular Sciences, vol.102, issue.10, pp.3623-3648, 2010.
DOI : 10.1002/prot.22770

A. V. Tuzikov, I. A. Vakser, and G. Li, Structure Fluctuations and Conformational Changes in Protein Binding Cui, Q. a Coarse-Grained Normal Mode Approach for Macromolecules: An Efficient Implementation and Application Ca 2+ -ATPase, J. Bioinform . Comput. Biol. Biophys. J, vol.2012, issue.83, pp.1241002-1241028, 2002.

K. Bastard, A. Saladin, and C. Prévost, Accounting for Large Amplitude Protein Deformation during in Silico Macromolecular Docking, International Journal of Molecular Sciences, vol.38, issue.12, pp.1316-1333, 2011.
DOI : 10.3390/ijms12021316

URL : http://doi.org/10.3390/ijms12021316

M. F. Lensink, Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment, Proteins: Structure, Function, and Bioinformatics, vol.78, issue.9, pp.323-348, 2016.
DOI : 10.1002/prot.25007

S. R. Idelsohn and . Cardona, A load-dependent basis for reduced nonlinear structural dynamics, Computers & Structures, vol.20, issue.1-3, pp.203-210, 1985.
DOI : 10.1016/0045-7949(85)90069-0

S. W. Shaw and C. Pierre, Normal Modes for Non-Linear Vibratory Systems, Journal of Sound and Vibration, vol.164, issue.1, pp.85-124, 1993.
DOI : 10.1006/jsvi.1993.1198

URL : https://deepblue.lib.umich.edu/bitstream/2027.42/30744/1/0000394.pdf

E. Pesheck, C. Pierre, and S. W. Shaw, A NEW GALERKIN-BASED APPROACH FOR ACCURATE NON-LINEAR NORMAL MODES THROUGH INVARIANT MANIFOLDS, Journal of Sound and Vibration, vol.249, issue.5, pp.971-993, 2002.
DOI : 10.1006/jsvi.2001.3914

M. Levitt, C. Sander, and P. S. Stern, Protein normal-mode dynamics: Trypsin inhibitor, crambin, ribonuclease and lysozyme, Journal of Molecular Biology, vol.181, issue.3, pp.423-447, 1985.
DOI : 10.1016/0022-2836(85)90230-X

K. Kamiya, Y. Sugawara, and H. Umeyama, Algorithm for normal mode analysis with general internal coordinates, Journal of Computational Chemistry, vol.107, issue.7, pp.826-841, 2003.
DOI : 10.1002/jcc.10247

M. Lu, B. Poon, and J. Ma, A New Method for Coarse-Grained Elastic Normal-Mode Analysis, Journal of Chemical Theory and Computation, vol.2, issue.3, pp.464-471, 2006.
DOI : 10.1021/ct050307u

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133770

J. R. Lopéz-blanco, J. I. Garzón, and P. Chacón, iMod: multipurpose normal mode analysis in internal coordinates, Bioinformatics, vol.27, issue.20, pp.2843-2850, 2011.
DOI : 10.1093/bioinformatics/btr497

D. Avraham, M. Lorenz, and K. Holmes, Normal Modes As Refinement Parameters for the F-Actin Model, Biophys . J, vol.68, pp.5-12, 1995.

J. A. Kovacs, C. N. Cavasotto, and R. Abagyan, Conformational Sampling of Protein Flexibility in Generalized Coordinates: Application to Ligand Docking, Journal of Computational and Theoretical Nanoscience, vol.2, issue.3, pp.354-361, 2005.
DOI : 10.1166/jctn.2005.204

J. K. Bray, D. R. Weiss, and M. Levitt, Optimized Torsion-Angle Normal Modes Reproduce Conformational Changes More Accurately Than Cartesian Modes, Biophysical Journal, vol.101, issue.12, pp.2966-2969, 2011.
DOI : 10.1016/j.bpj.2011.10.054

URL : http://doi.org/10.1016/j.bpj.2011.10.054

T. Noguti and N. Gõ, Dynamics of Native Globular Proteins in Terms of Dihedral Angles, Journal of the Physical Society of Japan, vol.52, issue.9, pp.3283-3288, 1983.
DOI : 10.1143/JPSJ.52.3283

A. D. Schuyler and G. S. Chirikjian, Efficient determination of low-frequency normal modes of large protein structures by cluster-NMA, Journal of Molecular Graphics and Modelling, vol.24, issue.1, pp.46-58, 2005.
DOI : 10.1016/j.jmgm.2005.05.002

A. Ahmed and H. Gohlke, Multiscale modeling of macromolecular conformational changes combining concepts from rigidity and elastic network theory, Proteins: Structure, Function, and Bioinformatics, vol.84, issue.4, pp.1038-1051, 2006.
DOI : 10.1002/prot.20907

O. N. Demerdash and J. C. Mitchell, Density-cluster NMA: A new protein decomposition technique for coarse-grained normal mode analysis, Proteins: Structure, Function, and Bioinformatics, vol.100, pp.1766-1779, 2012.
DOI : 10.1002/prot.24072

A. D. Schuyler and G. S. Chirikjian, Normal mode analysis of proteins: a comparison of rigid cluster modes with C?? coarse graining, Journal of Molecular Graphics and Modelling, vol.22, issue.3, pp.183-193, 2004.
DOI : 10.1016/S1093-3263(03)00158-X

I. Bahar and A. J. Rader, Coarse-grained normal mode analysis in structural biology, Current Opinion in Structural Biology, vol.15, issue.5, pp.586-592, 2005.
DOI : 10.1016/j.sbi.2005.08.007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482533

P. Doruker, A. R. Atilgan, and I. Bahar, Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: Application to ?-amylase inhibitor, Proteins: Structure, Function, and Genetics, vol.7, issue.3, pp.512-524, 2000.
DOI : 10.1002/1097-0134(20000815)40:3<512::AID-PROT180>3.0.CO;2-M

E. Fuglebakk, N. Reuter, and K. Hinsen, Evaluation of Protein Elastic Network Models Based on an Analysis of Collective Motions, Journal of Chemical Theory and Computation, vol.9, issue.12, pp.5618-5628
DOI : 10.1021/ct400399x

E. Fuglebakk, S. P. Tiwari, and N. Reuter, Comparing the intrinsic dynamics of multiple protein structures using elastic network models, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1850, issue.5, pp.911-922, 2015.
DOI : 10.1016/j.bbagen.2014.09.021

S. Artemova and S. Grudinin, A comparison of neighbor search algorithms for large rigid molecules, Journal of Computational Chemistry, vol.250, issue.13, pp.2865-2877, 2011.
DOI : 10.1002/jcc.21868

URL : https://hal.archives-ouvertes.fr/hal-00748053

H. M. Berman, G. J. Kleywegt, and W. Chiu, EMDataBank Unified Data Resource for 3DEM, Nucleic Acids Res, vol.44, pp.396-403, 2016.

C. M. Schroeder, M. I. Dauden, J. Martin-benito, J. C. Sanchez-ferrero, M. Pulido-cid et al., Direct Observation of TALE Protein Dynamics Reveals a Two-State Search Mechanism Large Terminase Conformational Change Induced by Connector Binding in Bacteriophage T7, Nat. Commun. 2015 J. Biol. Chem, vol.288, pp.6-55, 2013.

N. Foloppe, Development and Current Status of the CHARMM Force Field for Nucleic Acids, Biopolymers, vol.56, pp.257-265, 2000.

J. Wang, P. Cieplak, and P. A. Kollman, How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?, Journal of Computational Chemistry, vol.18, issue.12, pp.1049-1074, 2000.
DOI : 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F

D. C. Richardson, MolProbity: All-Atom Structure Validation for Macromolecular Crystallography, Acta Crystallogr., Sect. D: Biol. Crystallogr, vol.66, pp.12-21, 2010.

A. Bakan, L. M. Meireles, I. Bahar, and . Prody, ProDy: Protein Dynamics Inferred from Theory and Experiments, Bioinformatics, vol.27, issue.11, pp.1575-1577, 2011.
DOI : 10.1093/bioinformatics/btr168

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102222

J. I. Aliaga, R. M. Badia, P. Chacón, and E. S. Quintana-ortí, Exploring Large Macromolecular Functional Motions on Clusters of Multicore Processors, J. Comput. Phys, vol.246, pp.275-288, 2013.