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Abstract. Piece in Hand method is a security enhancement method
for Multivariate Public Key Cryptosystems (MPKCs). Since 2004, many
types of this method have been proposed. In this paper, we consider
the 2-layer nonlinear Piece in Hand method as proposed by Tsuji et
al. in 2009. The key point of this method is to introduce an invertible
quadratic polynomial map on the plaintext variables to construct per-
turbation of the original MPKC. Through our analysis, we find that the
security of the enhanced scheme is mainly relying on the quadratic poly-
nomials of this auxiliary map. The two examples proposed by Tsuji et
al. for this map can not resist the Linearization Equation attack. Given
a valid ciphertext, we can easily get a public key which is equivalent to
the original MPKC. If there is an algorithm that can recover the plain-
text corresponding to a valid ciphertext of the original MPKC, we can
construct an algorithm that can recover the plaintext corresponding to
a valid ciphertext of the enhanced MPKC.

Keywords: Multivariate Cryptography, Quadratic Polynomial, Alge-
braic Cryptanalysis, Linearization Equation, Piece in Hand

1 Introduction

Multivariate Public Key Cryptosystems (MPKCs) are promising candidates to
resist the quantum computer attack [1]. The security of these schemes is based
on the difficulty of solving systems of multivariate quadratic (MQ) equations
over a finite field, which is an NP-hard problem in general.

Since 1988, many MPKCs have been proposed, such as MI [15], HFE [20], MFE
[26], TTM [16], Rainbow [5], MQQ [13]etc. However, many of these schemes
have shown to be insecure [19,11,6,17,2,14]. In order to enhance the security
of MPKCs, many enhancement methods were proposed. There are plus/minus



[22,21], internal perturbation [3,4], Extended Multivariate public key Cryptosys-
tems (EMC) [27] etc. All of these methods are subjected to different levels of
attacks [12,7,9,8,18].

Piece in Hand (PH) method is another security enhancement method introduced
and studied in a series of papers [23,24,10,25]. In [25], Tsuji et al. proposed the
2-layer nonlinear Piece in Hand method. For this, they introduced two vectors
of polynomials: an auxiliary polynomial vector and a perturbation polynomial
vector. The perturbation polynomial vector is used to add perturbation to the
underlying MPKC, whereas the auxiliary polynomial vector is constructed to be
efficiently invertible which will be used during the decryption process.
Since the information of the auxiliary polynomial vector is part of the public
key, the security of the whole scheme relies on the structure of this vector. In
their paper [25], the authors gave two examples for this vector, calledH1 andH2.

In this paper we show that both H1 and H2 satisfy Linearization Equations
(LEs) of the form

∑
𝑎𝑖𝑗 ⋅ 𝑥𝑖 ⋅ 𝑦𝑗 +

∑
𝑏𝑖 ⋅ 𝑥𝑖 +

∑
𝑐𝑗 ⋅ 𝑦𝑗 + 𝑑 = 0, (1)

where 𝑥𝑖 are the plaintext variables and 𝑦𝑗 are the ciphertext variables.

After finding all the LEs and substituting a valid ciphertext into these equa-
tions, we can get a system of linear equations in the plaintext variables. By
solving this system, we can represent some of the plaintext variables by linear
combinations of the other plaintext variables. Hence, we can do elimination on
the public key. And we can perform a similar analysis on the eliminated public
key to check if there are Linearization Equations satisfied by the simplified pub-
lic key.
In the case of H1, given a valid ciphertext, we can, after two eliminations on
the public key, find a public key equivalent to that of the original MPKC. In
the case of H2, given a valid ciphertext, we can achieve the same goal using
three eliminations on the public key. This means that Piece in Hand method
using these two auxiliary polynomial vectors can not enhance the security of the
underlying MPKC. So, we must be very careful when designing the auxiliary
polynomial vector of PH method.

The rest of this paper is organized as follows. In Section 2 we give a brief
description of MPKCs and Linearization Equations. Section 3 introduces the
2-layer nonlinear Piece in Hand method. In Section 4, we present our cryptanal-
ysis of the enhanced scheme and present the results of our computer experiments.
Finally, in Section 5, we conclude the paper.



2 Preliminaries

2.1 Multivariate Public Key Cryptography

To build a multivariate public key cryptosystem (MPKC), one starts with an
easily invertible map ℱ : 𝔽𝑛 → 𝔽𝑚 (central map). To hide the structure of ℱ in
the public key, one combines it with two invertible affine maps 𝒯 : 𝔽𝑚 → 𝔽𝑚

and 𝒰 : 𝔽𝑛 → 𝔽𝑛. Therefore the public key has the form

ℰ : 𝔽𝑛 → 𝔽𝑚, y = (𝑦1, . . . , 𝑦𝑚) = ℰ(𝑥1, . . . , 𝑥𝑛) = 𝒯 ∘ ℱ ∘ 𝒰(𝑥1, . . . , 𝑥𝑛). (2)

The private key consists out of the three maps 𝒯 ,ℱ and 𝒰 and therefore allows
to invert the public key.

2.2 Linearization Equations

For MPKCs, a Linearization Equation (LE) is an equation in the 𝑛 +𝑚 plain-
text/ciphertext variables 𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑦1, 𝑦2, . . . , 𝑦𝑚 of the form

𝑛∑
𝑖=1

𝑡∑
𝑗=1

𝑎𝑖𝑗 ⋅ 𝑥𝑖 ⋅ 𝑔𝑗(𝑦1, 𝑦2, . . . , 𝑦𝑚) +

𝑙∑
𝑗=1

𝑐𝑗 ⋅ 𝑓𝑗(𝑦1, 𝑦2, . . . , 𝑦𝑚) + 𝑑 = 0. (3)

where 𝑓𝑗 (1 ≤ 𝑗 ≤ 𝑙), 𝑔𝑗 (1 ≤ 𝑗 ≤ 𝑙), are polynomial functions in the ciphertext
variables. The highest degree of 𝑔𝑗 , 1 ≤ 𝑗 ≤ 𝑙 is called the order of the LE.
For example, a First Order Linearization Equation (FOLE) looks like

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑎𝑖𝑗 ⋅ 𝑥𝑖 ⋅ 𝑦𝑗 +
𝑛∑

𝑖=1

𝑏𝑖 ⋅ 𝑥𝑖 +
𝑚∑
𝑗=1

𝑐𝑗 ⋅ 𝑦𝑗 + 𝑑 = 0. (4)

Note that, given a valid ciphertext y′ = (𝑦′1, 𝑦
′
2, . . . , 𝑦

′
𝑚), we can substitute it

into equation (3) to get a linear equation in the plaintext variables. By finding
all these equations we get a linear system which can be solved by Gaussian
Elimination. After having found a solution, we can do elimination on the public
key.

3 2-layer Piece In Hand Method

We use the same notation as in [25].
Let ℰ : 𝔽𝑛 → 𝔽𝑚 be the public map of a multivariate public key encryption
scheme with {𝑥1, . . . , 𝑥𝑛} and {𝑦1, . . . , 𝑦𝑚} being the plaintext and ciphertext
variables repectively and 𝑙 be a positive integer.
To enhance the security of the MPKC, the inventors of the 2-layer nonlinear
Piece in Hand method introduced an auxiliary polynomial vector H of 𝑙 com-
ponents and a perturbation polynomial vector J . The elements of the auxiliary
polynomial vector H are products of two random linear polynomials ℎ𝑖 and
ℎ𝑗 , where the functions ℎ𝑖 are given by ℎ𝑖 =

∑𝑛
𝑗=1 𝑠𝑖𝑗 ⋅ 𝑥𝑗 (𝑖 = 1, . . . , 𝑙) with



𝑠𝑖𝑗 ∈𝑅 𝔽. The perturbation polynomial vector J is a vector with 𝑙(𝑙− 1)/2 com-
ponents constructed from the polynomials ℎ𝑖 ⋅ ℎ𝑗 (1 ≤ 𝑖 < 𝑗 ≤ 𝑙). Note that the
polynomial components of the vector H are designed to be easily invertible for
decryption. Therefore, one can use the vector H to compute the values of ℎ𝑖

(𝑖 = 1, . . . , 𝑙) and sequentially calculate the value of the vector J . By the above
construction, one gets an enhanced public key ℰ̃ : 𝔽𝑛 → 𝔽𝑚+𝑙 of the form

ℰ̃(𝑥1, . . . , 𝑥𝑛) = 𝐵

(ℰ(𝑥1, . . . , 𝑥𝑛) +𝐷J
𝐶H

)
(5)

where 𝐵 is an (𝑚 + 𝑙) × (𝑚 + 𝑙) invertible matrix over 𝔽, 𝐷 is an 𝑚 × 𝑙⋅(𝑙−1)
2

matrix over 𝔽, and 𝐶 is an 𝑙 × 𝑙 invertible matrix over 𝔽.

Secret key: The secret key includes

– the secret key of the underlying MPKC
– the matrices 𝐵,𝐶 and 𝐷
– the auxiliary polynomial vector H and
– the perturbation polynomial vector J .

Public key: The 𝑚+ 𝑙 components of the function ℰ̃ .
Encryption: Given a plaintext x′ = (𝑥′

1, . . . , 𝑥
′
𝑛), compute

y ′ = (𝑦′1, . . . , 𝑦
′
𝑚+𝑙) = ℰ̃(𝑥′

1, . . . , 𝑥
′
𝑛).

Decryption: Given a valid ciphertext y ′ = (𝑦′1, . . . , 𝑦
′
𝑚+𝑙), decryption includes

the following steps:

1. Compute v ′ = (𝑣′1, . . . , 𝑣
′
𝑚+𝑙) = 𝐵−1(𝑦′1, . . . , 𝑦

′
𝑚+𝑙)

𝑇 ;

2. Compute H = 𝐶−1(𝑣′𝑚+1, . . . , 𝑣
′
𝑚+𝑙)

𝑇 and get the values of ℎ𝑖 (𝑖 = 1, . . . , 𝑙);
3. Compute the value of J by substituting the values of ℎ𝑖 (𝑖 = 1, . . . , 𝑙) into

its components;
4. Compute x′ = (𝑥′

1, . . . , 𝑥
′
𝑛) = ℰ−1(𝑣′1−𝑑𝑗1, . . . , 𝑣

′
𝑚−𝑑𝑗𝑚), where (𝑑𝑗1, . . . , 𝑑𝑗𝑚)𝑇 =

𝐷J.

Examples for the auxiliary vector H and the perturbation vector J

In [25], the authors gave two examples for the choice of the auxiliary vector
H, denoted by H1 and H2, respectively.
For arbitrary 𝑙, the vector H1 is given by

H1 = (𝑢1, . . . , 𝑢𝑙)
𝑇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℎ1ℎ2 + 𝛼1

ℎ2ℎ3 + 𝛼2

ℎ3ℎ1 + 𝛼3

ℎ1ℎ4 + 𝛼4

ℎ1ℎ5 + 𝛼5

...
ℎ1ℎ𝑙−1 + 𝛼𝑙−1

ℎ1ℎ𝑙 + 𝛼𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)



with 𝛼1, . . . , 𝛼𝑙 ∈𝑅 𝔽. For our experiments (see Subsection 4.3) we use the value
𝑙 = 8.
Apparently, given the value of the vector (𝑢1, . . . , 𝑢𝑙), we can get from the first
three equations of (6)

ℎ1 =

(
(𝑢1 − 𝛼1)(𝑢3 − 𝛼3)

(𝑢2 − 𝛼2)

) 1
2

(7)

and then get the values of ℎ2, ℎ3, . . . , ℎ𝑙 in turn.
For the auxiliary map H2, the value 𝑙 is fixed to 15. We have

H2 = (𝑢1, . . . , 𝑢15)
𝑇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℎ1ℎ2 + 𝛼1

ℎ2ℎ3 + 𝛼2

ℎ3ℎ4 + 𝛼3

ℎ4ℎ5 + 𝛼4

ℎ5ℎ1 + 𝛼5

ℎ2
6 + ℎ1ℎ3 + 𝛼6

ℎ2
7 + ℎ3ℎ5 + 𝛼7

ℎ2
8 + ℎ5ℎ2 + 𝛼8

ℎ2
9 + ℎ2ℎ4 + 𝛼9

ℎ2
10 + ℎ4ℎ1 + 𝛼10

ℎ1ℎ10 + ℎ6ℎ11 + 𝛼11

ℎ2ℎ9 + ℎ7ℎ12 + 𝛼12

ℎ3ℎ8 + ℎ8ℎ13 + 𝛼13

ℎ4ℎ7 + ℎ9ℎ14 + 𝛼14

ℎ5ℎ6 + ℎ10ℎ15 + 𝛼15

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

where 𝛼𝑖∈𝑅𝔽 (𝑖 = 1, . . . , 𝑙). Similarly to H1, H2 can be easily inverted.
The perturbation vector J used in [25] is given as follows:

J = (𝑗1, 𝑗2, . . . , 𝑗𝑙(𝑙−1)/2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℎ1ℎ2 + 𝛽1

ℎ1ℎ3 + 𝛽2

...
ℎ1ℎ𝑙 + 𝛽𝑙−1

ℎ2ℎ3 + 𝛽𝑙

...
ℎ2ℎ𝑙 + 𝛽2𝑙−3

ℎ3ℎ4 + 𝛽2𝑙−2

...
ℎ𝑙−1ℎ𝑙 + 𝛽𝑙(𝑙−1)/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

where 𝛽𝑖∈𝑅𝔽 (𝑖 = 1, . . . , 𝑙(𝑙 − 1)/2).



4 Cryptanalysis of the 2-layer PH Method

Although the perturbation map J can hide the weak point of the underlying
MPKC scheme, the security of the enhanced scheme depends mainly on the
design of the auxiliary map H. Bad design of the vector H will bring some
new security problems to the scheme. Both vectors H1 and H2 of [25] are not
properly chosen to enhance the security of the underlying scheme, since they
satisfy Linearization Equations.
In this section, we present our cryptanalysis of the 2-layer PH method with
auxiliary polynomial vector H1 and H2, respectively. Given a valid ciphertext
y ′ = (𝑦′1, . . . , 𝑦

′
𝑚+𝑙)

𝑇 , our goal is to find the corresponding plaintext. Namely,
we have to solve the system⎧⎨⎩

𝑦′1 = ℰ̃1(𝑥1, . . . , 𝑥𝑛)
...

𝑦′𝑚+𝑙 = ℰ̃𝑚+𝑙(𝑥1, . . . , 𝑥𝑛)

. (10)

4.1 Case of H1

Through theoretical analysis, we find that the system ℰ̃ satisfies Linearization
Equations, which are brought in by the vector H1. Given a valid ciphertext we
can, after finding all FOLEs, recover the corresponding plaintext easily.

Linearization Equations

In the expression of the polynomial vector H1 (see (6)), we have

𝑢1 = ℎ1ℎ2 + 𝛼1 and 𝑢2 = ℎ2ℎ3 + 𝛼2.

Hence we get
ℎ3(𝑢1 − 𝛼1) = ℎ1(𝑢2 − 𝛼2). (11)

Since the matrices 𝐵 and 𝐶 are invertible, the elements 𝑢𝑖 (𝑖 = 1, . . . , 𝑙) can be

expressed by linear equations in the ciphertext variables, namely 𝑢𝑖 =
∑𝑚+𝑙

𝑗=1 𝑡𝑖𝑗 ⋅
𝑦𝑗 (𝑖 = 1, . . . , 𝑙). Analogously we get ℎ𝑖 =

∑𝑛
𝑗=1 𝑠𝑖𝑗 ⋅ 𝑥𝑗 (𝑖 = 1, . . . , 𝑙). Hence

equation (11) implies that the plaintext variables {𝑥1, . . . , 𝑥𝑛} and ciphertext
variables {𝑦1, . . . , 𝑦𝑚+𝑙} satisfy an equation of the form:

𝑛∑
𝑖=1

𝑚+𝑙∑
𝑗=1

𝑎𝑖𝑗 ⋅ 𝑥𝑖 ⋅ 𝑦𝑗 +
𝑛∑

𝑖=1

𝑏𝑖 ⋅ 𝑥𝑖 +
𝑚+𝑙∑
𝑗=1

𝑐𝑗 ⋅ 𝑦𝑗 + 𝑑 = 0. (12)

This equation is exactly a FOLE. Similarly, from each of the pairs ℎ𝑗(𝑢𝑖−𝛼𝑖) =
ℎ𝑖(𝑢𝑗 − 𝛼𝑗) (1 ≤ 𝑖 < 𝑗 ≤ 𝑙, 𝑖 ∕= 2) and the pair ℎ1(𝑢2 − 𝛼2) = ℎ2(𝑢3 − 𝛼3), we
can get an additional FOLE. Hence there exist at least (𝑙− 2)(𝑙− 1)/2+1 linear
independent Linearization Equations of type (12).



To find these FOLEs, we randomly generate 𝐷1 ≥ 𝑛(𝑚 + 𝑙) + 𝑛 + 𝑚 + 𝑙 + 1
plaintext/ciphertext pairs and substitute them into equation (12). By doing so,
we get a system of 𝐷1 linear equations in the 𝑛(𝑚+ 𝑙)+𝑛+𝑚+ 𝑙+1 unknowns
𝑎𝑖𝑗 , 𝑏𝑖, 𝑐𝑗 and 𝑑 which can be solved by Gaussian Elimination. We denote the
solution space by 𝑉 and its dimension by 𝐷. Hence, we derive 𝐷 linearly inde-
pendent equations of type (12) in the plaintext and ciphertext variables.

The work above depends only on the public key and can be done once for a
given public key.

By substituting the given ciphertext y′ = (𝑦′1, . . . , 𝑦
′
𝑚+𝑙) into the Lineariza-

tion Equations found above we get 𝐷 linear equations in the plaintext variables.
Let’s assume that 𝑡1 of these equations are linearly independent.

First Elimination

By substituting the 𝑡1 equations found above into the public key ℰ̃ of the 2-layer
nonlinear PH scheme, we can eliminate 𝑡1 equations from ℰ̃ . By doing so, we get
a simplified public key ℰ̃ ′ of the form{

𝑦′𝑗 = ℰ̃ ′
𝑗(𝑤1, . . . , 𝑤𝑛−𝑡1)

1 ≤ 𝑗 ≤ 𝑚+ 𝑙
. (13)

Second Elimination

In the practical setting of [25], the characteristic of the underlying field 𝔽 was
chosen to be 2. Using this property, we can find another type of Linearization
Equations satisfied by the simplified public key ℰ̃ ′.

We denote by 𝑢′
𝑖 (𝑖 = 1, . . . , 𝑙) the value of 𝑢𝑖 corresponding to the given ci-

phertext y′ = (𝑦′1, . . . , 𝑦
′
𝑚+𝑙). Such we get⎧⎨⎩

𝑢′
1 = ℎ1ℎ2 + 𝛼1

𝑢′
2 = ℎ2ℎ3 + 𝛼2

𝑢′
3 = ℎ3ℎ1 + 𝛼3

𝑢′
4 = ℎ1ℎ4 + 𝛼4

𝑢′
5 = ℎ1ℎ5 + 𝛼5

...
𝑢′
𝑙−1 = ℎ1ℎ𝑙−1 + 𝛼𝑙−1

𝑢′
𝑙 = ℎ1ℎ𝑙 + 𝛼𝑙

. (14)



According to FOLEs similar to equation (11), we find⎧⎨⎩

ℎ2 =
𝑢′
2−𝛼2

𝑢′
3−𝛼3

ℎ1

ℎ3 =
𝑢′
2−𝛼2

𝑢′
1−𝛼1

ℎ1

ℎ4 =
𝑢′
4−𝛼4

𝑢′
1−𝛼1

⋅ 𝑢′
2−𝛼2

𝑢′
3−𝛼3

ℎ1

ℎ5 =
𝑢′
5−𝛼5

𝑢′
1−𝛼1

⋅ 𝑢′
2−𝛼2

𝑢′
3−𝛼3

ℎ1

...

ℎ𝑙 =
𝑢′
𝑙−𝛼𝑙

𝑢′
1−𝛼1

⋅ 𝑢′
2−𝛼2

𝑢′
3−𝛼3

ℎ1

. (15)

By substituting (15) into (6), we get⎧⎨⎩

𝑢1 =
𝑢′
2−𝛼2

𝑢′
3−𝛼3

ℎ2
1 + 𝛼1

𝑢2 =
𝑢′
2−𝛼2

𝑢′
1−𝛼1

⋅ 𝑢′
2−𝛼2

𝑢′
3−𝛼3

ℎ2
1 + 𝛼2

𝑢3 =
𝑢′
2−𝛼2

𝑢′
1−𝛼1

ℎ2
1 + 𝛼3

𝑢4 =
𝑢′
4−𝛼4

𝑢′
1−𝛼1

⋅ 𝑢′
2−𝛼2

𝑢′
3−𝛼3

ℎ2
1 + 𝛼4

𝑢5 =
𝑢′
5−𝛼5

𝑢′
1−𝛼1

⋅ 𝑢′
2−𝛼2

𝑢′
3−𝛼3

ℎ2
1 + 𝛼5

...

𝑢𝑙 =
𝑢′
𝑙−𝛼𝑙

𝑢′
1−𝛼1

⋅ 𝑢′
2−𝛼2

𝑢′
3−𝛼3

ℎ2
1 + 𝛼𝑙

. (16)

Due to 𝑢𝑖 =
∑𝑚+𝑙

𝑗=1 𝑡𝑖𝑗 ⋅ 𝑦𝑗 (𝑖 = 1, . . . , 𝑙) and ℎ𝑖 =
∑𝑛

𝑗=1 𝑠𝑖𝑗 ⋅ 𝑥𝑗 (𝑖 = 1, . . . , 𝑙) and
using the fact that squaring is a linear operation on a field of characteristic 2,
we have at least one equation satisfied by ciphertext variables and the remaining
plaintext variables of the form{∑𝑚+𝑙

𝑗=1 �̃�𝑗 ⋅ 𝑦′𝑗 +
∑𝑛−𝑡1

𝑖=1 �̃�𝑖 ⋅ 𝑤2
𝑖 + 𝑐 = 0

∀𝑤1, . . . , 𝑤𝑛−𝑡1 ∈ 𝔽
. (17)

It is easy to solve the above linear system for the �̃�𝑖, �̃�𝑗 and 𝑐. Let {�̃�(𝜌)1 , ⋅ ⋅ ⋅ , �̃�(𝜌)𝑚+𝑙,

�̃�
(𝜌)
1 , ⋅ ⋅ ⋅ , �̃�(𝜌)𝑛−𝑡1 , 𝑐

(𝜌), 1 ≤ 𝜌 ≤ 𝑟} be a basis of the solution space of the system
(17). Set ⎧⎨⎩

𝑛−𝑡1∑
𝑗=1

(�̃�
(𝜌)
𝑗 )1/2 ⋅ 𝑤𝑗 + (

𝑚+𝑙∑
𝑖=1

𝑎𝑖
(𝜌) ⋅ 𝑦′𝑖 + 𝑐(𝜌))1/2 = 0

1 ≤ 𝜌 ≤ 𝑟

. (18)

For any vector w = (𝑤1, . . . 𝑤𝑛−𝑡1), w and the corresponding ciphertext (𝑦1, . . . ,
𝑦𝑚+𝑙) = ℰ̃ ′(w) satisfy equation (18). Therefore we can represent at least one
variable of the set {𝑤1, . . . , 𝑤𝑛−𝑡1} as a linear equation in the remaining vari-
ables. Denote the remaining variables by 𝑣1, . . . , 𝑣𝑛−𝑡1−1.
Substituting this linear expression into the system (13), we can get a new public
key with (𝑛− 𝑡1 − 1) unknowns, denoted as{

𝑦′𝑗 = ℰ̃ ′′
𝑗 (𝑣1, . . . , 𝑣𝑛−𝑡1−1)

1 ≤ 𝑗 ≤ 𝑚+ 𝑙
. (19)



Eliminating Perturbation

Furthermore, after two eliminations, the vector J becomes a constant vector,
namely, the perturbation of Piece in Hand method is eliminated. The reason for
this is shown as follows. From (16), we get

ℎ1 =

(
(𝑢′

1 − 𝛼1)(𝑢
′
3 − 𝛼3)

𝑢′
2 − 𝛼2

)1/2

. (20)

Substituting (20) and (15) into (9), the vector J becomes a constant vector on
𝔽. For example,

𝑗1 = ℎ1ℎ2 + 𝛽1 = 𝑢′
1 − 𝛼1 + 𝛽1,

𝑗𝑙+1 = ℎ2ℎ4 + 𝛽𝑙+1 =

(
(𝑢′

2 − 𝛼2)(𝑢
′
4 − 𝛼4)

𝑢′
3 − 𝛼3

)
+ 𝛽𝑙+1.

Hence, the public key ℰ̃ ′′ of equation (19) is equivalent to the public key of the
underlying MPKC scheme.

If there exists an algorithm which recovers the plaintext corresponding to a valid
ciphertext for the underlying MPKC scheme, we can therefore find the values
of the variables 𝑣1, . . . , 𝑣𝑛−𝑡1−1 corresponding to the valid ciphertext y′. Using
the linear equations found during the two eliminations above, we can recover the
values of the remaining plaintexts variables.

4.2 Case of H2

Let 𝑦′ = (𝑦′1, . . . , 𝑦
′
𝑚+15) be a valid ciphertext of the Piece in Hand MPKC

with auxiliary map H2. Again we want to find the corresponding plaintext
𝑥′ = (𝑥′

1, . . . , 𝑥
′
𝑛) by solving the system (10).

Similarly to the case of H1, from the first five equations in (8), we can get
five FOLEs between 𝑢𝑖 and ℎ𝑖 (1 ≤ 𝑖 ≤ 5) by⎧⎨⎩

ℎ3(𝑢1 − 𝛼1) = ℎ1(𝑢2 − 𝛼2)
ℎ4(𝑢2 − 𝛼2) = ℎ2(𝑢3 − 𝛼3)
ℎ5(𝑢3 − 𝛼3) = ℎ3(𝑢4 − 𝛼4)
ℎ1(𝑢4 − 𝛼4) = ℎ4(𝑢5 − 𝛼5)
ℎ2(𝑢5 − 𝛼5) = ℎ5(𝑢1 − 𝛼1)

.

Apparently, these five equations are linearly independent. Hence, we can get at
least five Linearization Equations satisfied by plain- and ciphertext variables of
the form (12).
Using the same method as in Subsection 4.1, we do the first elimination on the
system (10). Suppose we eliminated 𝑡1 ≥ 4 variables in the system. Denote the
remaining plaintext variables by 𝑤1, . . . , 𝑤𝑛−𝑡1 and let{

𝑦′𝑗 = ℰ̃ ′
𝑗(𝑤1, . . . , 𝑤𝑛−𝑡1)

1 ≤ 𝑗 ≤ 𝑚+ 15
(21)



be the simplified public key.
Using a similar method as in Subsection 4.1, we can perform two additional
eliminations on the system (21). Due to the limitation of paper size, we omit the
details of this part here. We will present them in the full version of this paper.
But we should point out the following facts.
For the public key ℰ̃ ′

𝑗(𝑤1, . . . , 𝑤𝑛−𝑡1), plain- and ciphertext variables satisfy equa-
tions of the form

𝑚+𝑙∑
𝑗=1

�̃�𝑗 ⋅ 𝑦𝑗 +
𝑛−𝑡1∑
𝑖=1

�̃�𝑖 ⋅ 𝑤2
𝑖 + 𝑐 = 0. (22)

By substituting the ciphertext y′ into these equations and using the fact that
squaring is a linear function over fields of characteristic 2, we can find 𝑡2 ≥ 6
linear equations in the plaintext variables. We can therefore eliminate 𝑡2 variables
from the public key. After this elimination, the simplified public key has the form{

𝑦′𝑗 = ℰ̃ ′′
𝑗 (𝑣1, . . . , 𝑣𝑛−𝑡1−𝑡2)

1 ≤ 𝑗 ≤ 𝑚+ 15
. (23)

The public key ℰ̃ ′′ satisfies equations of the form

𝑚+15∑
𝑗=1

˜̃𝑎𝑗 ⋅ 𝑦𝑗 +
𝑛−𝑡1−𝑡2∑

𝑖=1

˜̃
𝑏𝑖 ⋅ 𝑣𝑖 + ˜̃𝑐 = 0. (24)

By substituting the ciphertext y′ into these equations, we can find 𝑡3 ≥ 5 lin-
ear equations in the variables 𝑣1, . . . , 𝑣𝑛−𝑡1−𝑡2 . Therefore, we can eliminate 𝑡3
variables from the system (23) and get a new public key ℰ̃ ′′′ of the form{

𝑦′𝑗 = ℰ̃ ′′′
𝑗 (𝑢1, . . . , 𝑢𝑛−𝑡1−𝑡2−𝑡3)

1 ≤ 𝑗 ≤ 𝑚+ 15
. (25)

For the public key ℰ̃ ′′′, the perturbation vector J becomes a constant vector.
Hence, ℰ̃ ′′′ is equivalent to the public key of the underlying MPKC.
Analogously to Subsection 4.1 we can therefore, under the assumption that there
exists an algorithm which, for the underlying MPKC, finds for a given ciphertext
the corresponding plaintext, construct an algorithm which, for any given cipher-
text y′ = (𝑦′1, . . . , 𝑦

′
𝑚+15), recovers the corresponding plaintext x

′ = (𝑥′
1, . . . , 𝑥

′
𝑛).

4.3 Complexity and Experimental Verification

In our concrete attack scenario we set 𝔽 = 𝐺𝐹 (256) and 𝑚 = 𝑛 = 25. As
the underlying MPKC we used the 𝐶★ scheme of Matsumoto and Imai. We
implemented the Piece in Hand cryptosystem in two different ways using H1

(with 𝑙 = 8) and H2 as auxiliary matrix respectively. For our attack we chose
randomly a valid ciphertext y′ = (𝑦′1, . . . , 𝑦

′
𝑚+𝑙) ∈ 𝔽𝑚+𝑙. Our goal was to find

the corresponding plaintext x′ = (𝑥′
1, . . . , 𝑥

′
𝑛) ∈ 𝔽𝑛.



Case of 𝑯1 In the first step we computed 900 (> 𝑛(𝑚+𝑙)+𝑛+𝑚+𝑙+1 = 884)
plaintext/ciphertext pairs and substituted them into the Linearization Equation
of type (12). We did Gaussian Elimination on this linear system and found a
basis of all FOLEs. The complexity of the Gaussian Elimination is equal to
(𝑛(𝑚+ 𝑙) + 𝑛+𝑚+ 𝑙+ 1)3 operations on the finite field 𝔽. In our experiments,

(𝑛(𝑚+ 𝑙) + 𝑛+𝑚+ 𝑙 + 1)3 = 8843 ≤ 230.

We found that the dimension of the space spanned by all FOLEs is 𝐷 =
(𝑙 − 2)(𝑙 − 1)/2 = 22.
Computing the plaintext/ciphertext pairs and solving this large linear system
proved to be the most time-consuming step of our attack. In our experiments, it
took about 70 seconds, where it took about 68 seconds on generating the plain-
text/ciphertext pairs and about 2 seconds on the Gaussian Elimination. This
step is independent of the given ciphertext y′ and has to be done for a given
public key only once.
After substituting the ciphertext y′ into these equations we obtained 7 linear
equations in the plaintext variables.

In the second step we computed 100 plaintext/ciphertext pairs and substituted
them into the Linearization Equation of type (17). By doing so, we got 15 lin-
early independent equations of the form (17). By evaluating equation (18), we
got 1 linear equation in the plaintext variables.

We substituted the 8 linear equations found in the previous steps into the pub-
lic key and obtained a new public key ℰ̃ ′′ of 33 equations in 17 variables, which
proved to be of the form of a 𝐶★ public key (i.e. the perturbation was eliminated).

In the last step of the attack, we attacked the new public key ℰ̃ ′′ with the Lin-
earization Equation attack of Patarin [19]. We computed 500 plaintext/ciphertext
pairs and substituted them into the Linearization Equation of type (12). By do-
ing so, we got 25 linear independent equations of type (12). After substituting
the ciphertext 𝑦′ we obtained 17 linear equations in the plaintext variables which
enabled us to reconstruct the plaintext x′.
The running time of the whole attack was about 90 seconds.

Case of 𝑯2 In the first step we computed 1100 (> (𝑛(𝑚+15)+𝑛+𝑚+15+1) =
1066) plaintext/ciphertext pairs and substituted them into the Linearization
Equation of type (12). We solved the resulting linear system for the variables
𝑎𝑖𝑗 , 𝑏𝑖, 𝑐𝑗 and 𝑑 to find a basis of all FOLEs. By doing so, we found 5 linear
independent Linearization Equations. After substituting the ciphertext y′ into
these equations we obtained 4 linear equations in the plaintext variables. The
complexity of this step is equal to 10663 ≤ 231. It took about 104 seconds
in our experiments, where it took about 102 seconds on generating the plain-
text/ciphertext pairs and about 2 second on the Gaussian Elimination. This step
has to be performed for each public key only once.



In the second step we computed 100 plaintext/ciphertext pairs and substituted
them into the Linearization Equation of type (22). By doing so, we got 14 linear
independent equations of form (22). After substituting the ciphertext y′, we got
6 linear equations in the plaintext variables.
In the third step we computed again 100 plaintext/ciphertext pairs and substi-
tuted them into the Linearization Equation of type (24). We obtained 25 linear
independent equations. By substituting the ciphertext y′ into these equations,
we got 5 linear equations in the plaintext variables.
We substituted the 15 linear equations found in the previous steps into the pub-
lic key and obtained a new public key ℰ̃ ′′′ of 40 equations in 10 variables, which
proved to be of the form of a 𝐶★ public key (i.e. the perturbation was elimi-
nated).
In the last step of the attack, we attacked the new key ℰ̃ ′′′ with the Linearization
Equation attack of Patarin [19]. We computed 500 plaintext/ciphertext pairs and
substituted them into the Linearization Equation of type (12). By doing so, we
obtained 25 linear independent equations. After substituting the ciphertext y′

we got 10 linear equations in the plaintext variables which enabled us to recon-
struct the plaintext x′.
The running time of the whole attack was about 127 seconds.

All experiments were performed on a server with 24 AMD Opteron processors
and 128 GB RAM. However, for our experiments we used only a single core. The
attack was programmed in Magma code and required about 120 MB of memory.

5 Conclusion

In this paper, we presented the cryptanalysis of two examples of the 2-layer
nonlinear Piece in Hand method. As we showed, both examples do not enhance
the security of the underlying MPKC because they can not resist Linearization
Equation attacks. From this paper, we find that the security of the 2-layer non-
linear Piece in Hand method depends mainly on the construction of the auxiliary
polynomial vectorH. We should therefore design the auxiliary polynomial vector
H in such a way that it resists existing attacks.
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Horst Görtz Foundation for financial support.



References

[1] D. Bernstein, J. Buchmann and E. Dahmen (Eds.). Post-Quantum Cryptog-
raphy. Springer, 2009.

[2] O. Billet and H. Gilbert. Cryptanalysis of Rainbow. Security and Cryptogra-
phy for Networks - SCN 2006, LNCS, volume 4116, pages 336-347. Springer,
2006.

[3] J. Ding. A new variant of the Matsumoto-Imai cryptosystem through per-
turbation. Public key Cryptography - PKC’04, LNCS, volume 2947, pages
305-318. Springer, 2004.

[4] J. Ding and D. Schmidt. Cryptanalysis of HFEV and the internal perturbation
of HFE. Public key Cryptography - PKC’05, LNCS, volume 3386, pages 288-
301. Springer, 2005.

[5] J. Ding and D. Schmidt. Rainbow, a new multivariate public key signature
scheme. The Third International Conference of Applied Cryptography and
Network Security - ACNS 2005, LNCS volume 3531, pages 164-175. Springer,
2005.

[6] J. Ding, L. Hu, X. Nie, J. Li and J. Wagner. High Order Linearization Equa-
tion (HOLE) Attack on Multivariate Public Key Cryptosystems. Public Key
Cryptography - PKC 2007, LNCS volume 4450, pages 233-248. Springer, 2007.

[7] V. Dubois, P. Fouque, A. Shamir and J. Stern. Practical Cryptanalysis of
SFLASH. Advance in Cryptology - CRYPTO 2007, LNCS volume 4622, pages
1-12. Springer, 2007.

[8] V. Dubois, L. Granboulan and J. Stern. Cryptanalysis of HFE with Internal
Perturbation. Public Key Cryptography - PKC 2007, LNCS volume 4450,
pages 249-265. Springer, 2007.

[9] P.-A. Fouque, L. Granboulan and J. Stern. Differential Cryptanalysis for
Multivariate Schemes Advances in Cryptology - EUROCRYPT 2005, LNCS
volume 3494, pages 341-353, Springer 2005, .

[10] R. Fujita, K. Tadaki and S. Tsujii. Nonlinear piece in hand perturbation vector
method for enhancing security of multivariate public key cryptosystems. Proc.
PQCrypto 2008, LNCS volume 5299, pages 148-164. Springer, 2008.

[11] J. Faug𝑒re and A. Joux. Algebraic Cryptanalysis of Hidden Field Equa-
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