On Constructions of MDS Matrices from Companion Matrices for Lightweight Cryptography

Abstract : Maximum distance separable (MDS) matrices have applications not only in coding theory but also are of great importance in the design of block ciphers and hash functions. It is highly nontrivial to find MDS matrices which could be used in lightweight cryptography. In a crypto 2011 paper, Guo et. al. proposed a new MDS matrix Serial(1,2,1,4)4 over $\mathbb{F}_{2^8}$. This representation has a compact hardware implementation of the AES MixColumn operation. No general study of MDS properties of this newly introduced construction of the form Serial(z0,…,zd − 1)d over $\mathbb{F}_{2^n}$ for arbitrary d and n is available in the literature. In this paper we study some properties of MDS matrices and provide an insight of why Serial(z0,…,zd − 1)d leads to an MDS matrix. For efficient hardware implementation, we aim to restrict the values of zi’s in {1,α,α2,α + 1}, such that Serial(z0,…,zd − 1)d is MDS for d = 4 and 5, where α is the root of the constructing polynomial of $\mathbb{F}_{2^n}$. We also propose more generic constructions of MDS matrices e.g. we construct lightweight 4 ×4 and 5 ×5 MDS matrices over $\mathbb{F}_{2^n}$ for all n ≥ 4. An algorithm is presented to check if a given matrix is MDS. The algorithm follows from the basic properties of MDS matrix and is easy to implement.
Type de document :
Communication dans un congrès
Alfredo Cuzzocrea; Christian Kittl; Dimitris E. Simos; Edgar Weippl; Lida Xu. 1st Cross-Domain Conference and Workshop on Availability, Reliability, and Security in Information Systems (CD-ARES), Sep 2013, Regensburg, Germany. Springer, Lecture Notes in Computer Science, LNCS-8128, pp.29-43, 2013, Security Engineering and Intelligence Informatics
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01506562
Contributeur : Hal Ifip <>
Soumis le : mercredi 12 avril 2017 - 10:24:58
Dernière modification le : samedi 28 juillet 2018 - 14:50:01
Document(s) archivé(s) le : jeudi 13 juillet 2017 - 12:37:47

Fichier

978-3-642-40588-4_3_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : hal-01506562, version 1

Citation

Kishan Gupta, Indranil Ray. On Constructions of MDS Matrices from Companion Matrices for Lightweight Cryptography. Alfredo Cuzzocrea; Christian Kittl; Dimitris E. Simos; Edgar Weippl; Lida Xu. 1st Cross-Domain Conference and Workshop on Availability, Reliability, and Security in Information Systems (CD-ARES), Sep 2013, Regensburg, Germany. Springer, Lecture Notes in Computer Science, LNCS-8128, pp.29-43, 2013, Security Engineering and Intelligence Informatics. 〈hal-01506562〉

Partager

Métriques

Consultations de la notice

105

Téléchargements de fichiers

119