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Abstract. Efficient algorithms for binary field operations are required
in several cryptographic operations such as digital signatures over binary
elliptic curves and encryption. The main performance-critical operation
in these fields is the multiplication, since most processors do not support
instructions to carry out a polynomial multiplication. In this paper we
describe a novel software multiplier for performing a polynomial multi-
plication of two 64-bit binary polynomials based on the VMULL instruction
included in the NEON engine supported in many ARM processors. This
multiplier is then used as a building block to obtain a fast software mul-
tiplication in the binary field F2m , which is up to 45% faster compared to
the best known algorithm. We also illustrate the performance improve-
ment in point multiplication on binary elliptic curves using the new mul-
tiplier, improving the performance of standard NIST curves at the 128-
and 256-bit levels of security. The impact on the GCM authenticated
encryption scheme is also studied, with new speed records. We present
timing results of our software implementation on the ARM Cortex-A8,
A9 and A15 processors.

Keywords: binary field arithmetic, ARM NEON, elliptic curve cryp-
tography, authenticated encryption, software implementation

1 Introduction

Mobile devices such as smartphones and tablets are becoming ubiquitous. While
these devices are relatively powerful, they still are constrained in some aspects
such as power consumption. Due to the wireless nature of their communication,
it is very important to secure all messages in order to prevent eavesdropping and
disclosure of personal information. For this reason, the research of efficient soft-
ware implementation of cryptography in those devices becomes relevant. Both
public key and symmetric cryptography are cornerstones of most cryptographic
solutions; in particular, the public-key elliptic curve schemes and the symmet-
ric authenticated encryption schemes are often used due to their high efficiency.
Elliptic curve schemes include the well known Elliptic Curve Digital Signature
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Algorithm (ECDSA) and the Elliptic Curve Diffie Hellman (ECDH) key agree-
ment scheme; while the Galois/Counter Mode (GCM) is an important example
of authenticated encryption scheme which is included in many standards such
as IPSec and TLS.

A significant portion of mobile devices uses processors based on the 32-bit
RISC ARM architecture, suitable for low-power applications due to its relatively
simple design, making it an appropriate choice of target platform for efficient im-
plementation. Many ARM processors are equipped with a NEON engine, which
is a set of instructions and large registers that supports operations in multiple
data using a single instruction. Thus, our objective is to provide an efficient
software implementation of cryptography for the ARM architecture, taking ad-
vantage of the NEON engine. We have aimed for standard protection against
basic side-channel attacks (timing and cache-leakage). Our main contributions
are: (i) to describe a new technique to carry out polynomial multiplication by
taking advantage of the VMULL NEON instruction, achieving a binary field mul-
tiplication that is up to 45% faster than a state-of-the-art LD [15] multiplication
also using NEON; (ii) using the new multiplier, to achieve speed records of el-
liptic curve schemes on standard NIST curves and of authenticated encryption
with GCM; (iii) to offer, for the first time in the literarure, comprehensive tim-
ings for four binary NIST elliptic curves and one non-standard curve, on three
different ARM Cortex processors. With this contributions, we advance the state
of the art of elliptic curve cryptography using binary fields, offering an improved
comparison with the (already highly optimized) implementations using prime
fields present in the literature. Our code will be available1 to allow reproduction
of results.

Related work. Morozov et al. [20] have implemented ECC for the OMAP
3530 platform, which features a 500 MHz ARM Cortex-A8 core and a DSP core.
Taking advantage of the XORMPY instruction of the DSP core, they achieve
2,106 µs in the B-163 elliptic curve and 7,965 µs in the B-283 curve to compute
a shared key, which should scale to 1,053 and 3,982 Kcycles respectively.

Bernstein and Schwabe [6] have described an efficient implementation of non-
standard cryptographic primitives using the NEON engine on a Cortex-A8 at the
128-bit security level, using Montgomery and Edwards elliptic curves over the
prime field F(2255�19). The primitives offer basic resistance against side-channel
attacks. They obtain 527 Kcycles to compute a shared secret key, 368 Kcycles to
sign a message and 650 Kcycles to verify a signature.

Hamburg [9] has also efficiently implemented non-standard cryptographic
primitives on a Cortex-A9 without NEON support at the 128-bit security level,
using Montgomery and Edwards Curves over the prime field F(2252�2232�1), with
basic resistance against side-channel attacks. He obtains 616 Kcycles to compute
a shared key, 262 Kcycles to sign a message and 605 Kcycles to verify a signature.

Faz-Hernández et al. [7] have targeted the 128-bit security level with a GLV-
GLS curve over the prime field F(2127�5997)2 , which supports a four dimensional
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decomposition of the scalar for speeding up point multiplication. The imple-
mentation also provides basic resistance against side-channel attacks. They have
obtained 417 and 244 Kcycles for random point multiplication on the Cortex-A9
and A15 respectively; 172 and 100 Kcycles for fixed point multiplication and 463
and 266 Kcycles for simultaneous point multiplication.

Krovetz and Rogaway [13] studied the software performance of three au-
thenticated encryption modes (CCM, GCM and OCB3) in many platforms. In
particular, they report 50.8 cycles per byte (cpb) for GCM over AES with large
messages using the Cortex-A8; an overhead of 25.4 cpb over unauthenticated
AES encryption.

Polyakov [22] has contributed a NEON implementation of GHASH, the au-
thentication code used by GCM, to the OpenSSL project. He reports a 15 cpb
performance on the Cortex-A8.

Paper structure. This paper is organized as follows. In Section 2 we describe
the ARM architecture. In Section 3, the binary field arithmetic is explained,
along with our new multiplier based on the the VMULL instruction. Section 4 de-
scribes the high-level algorithms used and Section 5 presents our results. Finally,
concluding remarks are given in Section 6.

2 ARM Architecture

The ARM is a RISC architecture known for enabling the production of low-
power processors and is widely spread in mobile devices. It features a fairly usual
instruction set with some interesting characteristics such as integrated shifts,
conditional execution of most instructions, and optional update of condition
codes by arithmetic instructions. There are sixteen 32-bit registers (R0–R15),
thirteen of which are general-purpose. The version 7 of the ARM architecture has
added an advanced Single Instruction, Multiple Data (SIMD) extension referred
as “NEON engine”, which is composed of a collection of SIMD instructions using
64- or 128-bit operands and a bank of sixteen 128-bit registers. These are named
Q0–Q15 when viewed as 128-bit, and D0–D31 when viewed as 64-bit. There are
many CPU designs based on the ARM architecture such as the ARM7, ARM9,
ARM11 and the ARM Cortex series. In this work, we used three ARM Cortex
devices, which we now describe.

Cortex-A8. The ARM Cortex-A8 processor is a full implementation of the
ARMv7 architecture including the NEON engine. Compared to previous ARM
cores the Cortex-A8 is dual-issue superscalar, achieving up to twice the instruc-
tions executed per clock cycle. Some pairs of NEON instructions can also be
dual-issued, mainly a load/store or permutation instruction together with a data-
processing instruction. Its pipeline has 13 stages followed by 10 NEON stages; its
L2 cache is internal. The Cortex-A8 is used by devices such as the iPad, iPhone
4, Galaxy Tab, and Nexus S.



Cortex-A9. The ARM Cortex-A9 shares the same instruction set with the Cortex-
A8, but it features up to four cores. It no longer supports NEON dual-issue and
its L2 cache is external. However, it supports out-of-order execution of regular
ARM instructions and register renaming, and has a 9–12 stage pipeline (more for
NEON, we were unable to find how many). Devices that feature the Cortex-A9
include the iPad 2, iPhone 4S, Galaxy S II, and Kindle Fire.

Cortex-A15. Implements the ARMv7 architecture, provides dual-issue and out-
of-order execution for most NEON instructions and can feature up to four cores.
Its pipeline is wider, with 15 to 25 stages. The Cortex-A15 is present in devices
such as the Chromebook, Nexus 10, and Galaxy S4.

Instructions. We highlight the NEON instructions which are important in
this work, also illustrated in Figure 1. The VMULL instruction is able to carry out
several multiplications in parallel; the VMULL.P8 version takes as input two 64-bit
input vectors A and B of eight 8-bit binary polynomials and returns a 128-bit
output vector C of eight 16-bit binary polynomials, where the i-th element of C
is the multiplication of the i-th elements from each input.

The VEXT instruction, for two 64-bit registers and an immediate integer i,
outputs a 64-bit value which is the concatenation of lower 8i bits of the first
register and the higher 64�8i bits of the second register. Note that if the inputs
are the same register then the VEXT instruction computes right bit rotation by
multiples of 8 bits. The instruction also supports 128-bit registers, with similar
functionality.

Fig. 1. Main NEON instructions in this work: VMULL.P8 (shortened as VMULL) and
VEXT. Each square is 8 bits; rectangles are 16 bits.

3 Binary Field Arithmetic

Binary field arithmetic is traditionally implemented in software using polynomial
basis representation, where elements of F2m are represented by polynomials of
degree at most m � 1 over F2. Assuming a platform with a W -bit architecture
(W = 32 for ARM), a binary field element a(z) = am�1z

m�1+� � �+a2z
2+a1z+a0



may be represented by a binary vector a = (am�1; : : : ; a2; a1; a0) of length m
using t = dm=W e words. Remaining s = Wt�m bits are left unused.

Multiplication in F2m (�eld multiplication) is performed modulo f(z) = zm+
r(z), an irreducible binary polynomial of degree m. This multiplication can be
carried out in two steps: first, the polynomial multiplication of the operands;
second, the polynomial reduction modulo f(z). The basic method for computing
the polynomial multiplication of c(z) = a(z)b(z) is to read each i-th bit of b(z)
and, if it is 1, xor a(z)� i into an accumulator. However, since the left-shifting
operations are in general expensive, faster variations of this method have been
developed. One of the fastest known methods for software implementation is
the López-Dahab (LD) algorithm [15], which processes multiple bits in each
iteration. We have implemented it using the NEON engine, taking advantage of
the VEXT instruction and larger number of registers.

While the LD algorithm is often the fastest in many platforms, the presence
of the VMULL.P8 NEON instruction has the potential to change this landscape.
However, it is not obvious how to build a n-bit polynomial multiplier for cryp-
tographic applications (n � 128) using the eight parallel 8-bit multiplications
provided by VMULL.P8. Our solution is a combination of the Karatsuba algo-
rithm and a multiplier based on VMULL.P8 which we have named the Karat-
suba/NEON/VMULL multiplier (KNV), described below.

3.1 New Karatsuba/NEON/VMULL (KNV) Multiplier

Our new approach was to built a 64-bit polynomial multiplier, which computes
the 128-bit product of two 64-bit polynomials. This multiplier was then combined
with the Karatsuba algorithm [11] in order to provide the full multiplication.

The 64-bit multiplier was built using the VMULL.P8 instruction (VMULL for
short) as follows. Consider two 64-bit polynomials a(z) and b(z) over F2 repre-
sented as vectors of eight 8-bit polynomials:

A = (a7; a6; a5; a4; a3; a2; a1; a0); B = (b7; b6; b5; b4; b3; b2; b1; b0):

To compute the polynomial multiplication c(z) = a(z) � b(z) (represented as a
vector C), the schoolbook method would require sixty-four 8-bit multiplications
with every (ai; bj) combination, where each product is xored into an accumulator
in the appropriate position. In our proposal, these multiplications can be done
with eight executions of VMULL by rearranging the inputs. Let o denote a
circular right shift; compute A1 = A o 8, A2 = A o 16, A3 = A o 24,
B1 = B o 8, B2 = B o 16, B3 = B o 24 and B4 = B o 32 using VEXT.
This results in:

A1 = (a0; a7; a6; a5; a4; a3; a2; a1); B1 = (b0; b7; b6; b5; b4; b3; b2; b1);

A2 = (a1; a0; a7; a6; a5; a4; a3; a2); B2 = (b1; b0; b7; b6; b5; b4; b3; b2);

A3 = (a2; a1; a0; a7; a6; a5; a4; a3); B3 = (b2; b1; b0; b7; b6; b5; b4; b3);

B4 = (b3; b2; b1; b0; b7; b6; b5; b4):



Now compute these VMULL products:

D = VMULL(A;B) = (a7b7; a6b6; a5b5; a4b4; a3b3; a2b2; a1b1; a0b0);

E = VMULL(A;B1) = (a7b0; a6b7; a5b6; a4b5; a3b4; a2b3; a1b2; a0b1);

F = VMULL(A1; B) = (a0b7; a7b6; a6b5; a5b4; a4b3; a3b2; a2b1; a1b0);

G = VMULL(A;B2) = (a7b1; a6b0; a5b7; a4b6; a3b5; a2b4; a1b3; a0b2);

H = VMULL(A2; B) = (a1b7; a0b6; a7b5; a6b4; a5b3; a4b2; a3b1; a2b0);

I = VMULL(A;B3) = (a7b2; a6b1; a5b0; a4b7; a3b6; a2b5; a1b4; a0b3);

J = VMULL(A3; B) = (a2b7; a1b6; a0b5; a7b4; a6b3; a5b2; a4b1; a3b0);

K = VMULL(A;B4) = (a7b3; a6b2; a5b1; a4b0; a3b7; a2b6; a1b5; a0b4):

These vectors of eight 16-bit polynomials contain the product of every (ai; bj)
combination, as required. We now need to xor everything into place. Let L =
E + F , M = G+H and N = I + J . Let ki be the i-th element of vector K and
analogously to L, M and N . Now, compute:

P0 = (0; 0; 0; 0; ‘7; 0; 0; 0); P4 = (0; 0; 0; 0; n7; n6; n5; 0);

P1 = (0; ‘6; ‘5; ‘4; ‘3; ‘2; ‘1; ‘0); P5 = (0; 0; 0; n4; n3; n2; n1; n0);

P2 = (0; 0; 0; 0;m7;m6; 0; 0); P6 = (0; 0; 0; 0; k7; k6; k5; k4);

P3 = (0; 0;m5;m4;m3;m2;m1;m0); P7 = (0; 0; 0; 0; k3; k2; k1; k0):

The final result is obtained with:

C = A�B = D+(P0+P1)� 8+(P2+P3)� 16+(P4+P5)� 24+(P6+P7)� 32:

The expansion of the above equation produces the same results of the school-
book method for multiplication, verifying its correctness. The whole process is
illustrated in Figure 2, and Algorithm 6 in the Appendix lists the assembly code
for reference. The partial results (P0+P1)� 8, (P2+P3)� 16 or (P4+P5)� 24
can each be computed from L, M or N with four instructions (two xors, one mask
operation and one shift). The partial result (P6 + P7) � 32 can be computed
from K with three instructions (one xor, one mask operation and one shift). To
clarify our approach, we list the assembly code used in the computation of L
and (P0 + P1)� 8 from A and B in Algorithm 1 and describe it below.

In Algorithm 1, the 128-bit NEON register tq can be viewed as two 64-
bit registers such that tq = thjjtl where tl is the lower part and th is the
higher part; the same applies to other registers. In line 1, the VEXT instruction
concatenates the lower 8 bits of A with the higher (64 � 8) = 56 bits of A,
resulting in the value A1 being stored in tl. Line 2 computes F = VMULL(A1; B)
in the tq register. Lines 3 and 4 compute B1 and then E = VMULL(A;B1) in the
uq register, while line 5 computes L = E + F in the tq register. Observe that
the result we want, (P0 + P1), can be viewed as (0; ‘6; ‘5; ‘4; ‘3 + ‘7; ‘2; ‘1; ‘0).
The straightforward way to compute (P0 + P1) from L would be to use a mask
operation to isolate ‘7, xor it to tq in the appropriate position and do another
mask operation to clear the highest 16 bits. However, we use another approach



Fig. 2. The 64� 64-bit polynomial multiplier using VMULL

which does not need a temporary register, described as follows. In line 6, we xor
the higher part of tq into the lower part, obtaining (‘7; ‘6; ‘5; ‘4; ‘3 + ‘7; ‘2 +
‘6; ‘1 + ‘5; ‘0 + ‘4). Line 7 uses a mask operation to clear the higher 16 bits of
tq, which now holds (0; ‘6; ‘5; ‘4; ‘3 + ‘7; ‘2 + ‘6; ‘1 + ‘5; ‘0 + ‘4). In line 8, the
higher part of tq is again xored into the lower part, resulting in the expected
(0; ‘6; ‘5; ‘4; ‘3 + ‘7; ‘2; ‘1; ‘0) which is finally shifted 8 bits to the left with the
VEXT instruction in line 9.

3.2 Additional Binary Field Operations

Squaring a binary polynomial corresponds to inserting a 0 bit between every
consecutive bits of the input, which often requires precomputed tables. The
VMULL instruction can improve squaring since, when using the same 64-bit value
as the two operands, it computes the 128-bit polynomial square of that value.

Multiplication and squaring of binary polynomials produce values of degree
at most 2m�2, which must be reduced modulo f(z) = zm+r(z). Since zm � r(z)
(mod f(z)), the usual approach is to multiply the upper part by r(z) using shift
and xors. For small polynomials r(z) it is possible to use the VMULL instruction to
carry out multiplication by r(z) with a special 8�64-bit multiplier; this was done
for F2128 (r(z) = z7 + z2 + z + 1) and F2251 (r(z) = z7 + z4 + z2 + 1). Reduction
in F2283 takes advantage of the factorization of r(z) = z12 + z7 + z5 + 1 =



Algorithm 1 Computation of L and (P0 + P1)� 8 from A and B

Input: 64-bit registers ad (holding A), bd (holding B) and k48 (holding the constant
0x0000FFFFFFFFFFFF)

Output: 128-bit register tq (th|tl) (holding (P0 + P1)� 8)
1: vext.8 tl, ad, ad, $1

2: vmull.p8 tq, tl, bd

3: vext.8 ul, bd, bd, $1

4: vmull.p8 uq, ad, ul

5: veor tq, tq, uq

6: veor tl, tl, th

7: vand th, th, k48

8: veor tl, tl, th

9: vext.8 tq, tq, tq, $15

(z7 + 1)(z5 + 1) as described in [2]. For F2571 , r(z) = z10 + z5 + z2 + 1, and its
reduction is computed with the usual shifts and xors.

Field inversion is commonly carried out with the well-known extended Eu-
clidean algorithm, but it does not take constant time and may be vulnerable
to side channel attacks. For this reason, we have used the Itoh-Tsujii algo-
rithm [10], which is an optimization of inversion through Fermat’s little theorem
(a(x)�1 = a(x)2m�2). The algorithm uses a repeated field squaring operation

a(x)2k

for some values of k; we have implemented a special function where field
squaring is completely done using NEON instruction and registers using the
same techniques described for squaring and reduction, but avoiding reads and
writes to memory.

4 Algorithms

The KNV multiplier was used as the building block for a implementation of El-
liptic Curve Cryptography (ECC) and of authenticated encryption (AE), which
we now describe together with our implementation of side-channel resistance.

4.1 Side-Channel Resistance

Side-channel attacks [12] are a serious threat for cryptographic implementations;
different attacks require different levels of protection. Here we consider the basic
level of resistance which avoids: branching on secret data, algorithms with tim-
ings dependent on secret data, and accessing table indexes with secret indices.

The building block of a side-channel resistant (SCR) implementation can
be considered the “select” operation t  Select(a; b; v), which copies a into
t if the bit v is 0 or copies b if v is 1. This operation can be implemented
without branching as described in [14] and listed for reference in Algorithm 3
in the Appendix. In ARM assembly, Select can be implemented easily since
most instructions can be made conditional to a previous register comparison.



However, a faster approach is to use the NEON instruction VBIT Qd, Qn, Qm

(bitwise insert if false) — it inserts each bit in Qn into Qd if the corresponding
bit in Qm is 1, otherwise it leaves the corresponding bit in Qd unchanged. If the
m value from Algorithm 3 is stored in Qm, then VBIT is precisely the Select
operation restricted to the case where t and a refer to the same location (which
is often the case).

Some of the algorithms we will describe use precomputed tables to improve
performance. However, looking up a table entry may leak its index through side-
channels, since it affects the contents of the processor cache. For this reason,
we employ a side-channel resistant table lookup. We follow the strategy found
in the source code of [6], listed for reference in Algorithm 4 in the Appendix,
where s can be computed without branches by copying the sign bit of r (e.g. in
the C language, convert r to unsigned and right shift the result in order to get
the highest bit). We have implemented the SCR table lookup for elliptic curve
points entirely in assembly with the VBIT instruction. It is possible to hold the
entire t value (a point) in NEON registers, without any memory writes except
for the final result.

4.2 Elliptic Curve Cryptography

Elliptic Curve Cryptography is composed of public key cryptographic schemes
using the arithmetic of points on elliptic curves over finite fields, and it uses
shorter keys at the same security level in comparison to alternative public-key
systems such as RSA and DSA. Two types of fields are mainly used: prime fields
(with p elements, where p is prime) and binary fields (with 2m elements for
some m). While prime fields are used more often (and most literature on ECC
for ARM uses them), we decided to study the efficiency of ECC using binary
fields with our KNV multiplier.

Four standardized curves for Elliptic Curve Cryptography (ECC) [21] were
implemented: the random curves B-283 and B-571 which provide 128 and 256
bits of security respectively; and the Koblitz curves K-283 and K-571 which
provide the same bits of security respectively. A non-standard curve over F2251 [5]
(“B-251”, roughly 128 bits of security) was also implemented, due to its high
efficiency.

The main algorithm in ECC is the point multiplication, which often appears
in three different cases: the random point multiplication kP (k terms of the el-
liptic point P are summed), where the point P is not known in advance; the
fixed point multiplication kG, where G is fixed; and the simultaneous point mul-
tiplication kP + ‘G where P is random and G is fixed. In the random point
case, we chose the Montgomery-LD multiplication [16] which offers high effi-
ciency and basic side-channel resistance (SCR) without precomputed tables. In
the fixed point case, the signed multi-table Comb method is employed [9], with
side-channel resistant table lookups. It uses t tables with 2w�1 points. For si-
multaneous point multiplication, we have used the interleaving method [8,18]
of w-(T)NAF. It employs two window sizes: d for the fixed point (requiring a
precomputed table with 2d�2 elements) and w for the random point (requiring



a on-the-fly table with 2w�2 elements). SCR is not required in this case since
the algorithm is only used for signature verification, whose inputs are public.

The main advantage of Koblitz curves is the existence of specialized algo-
rithms for point multiplication which take advantage of the efficient endomor-
phism � present in those curves [24]. However, we have not used these algorithms
since we are not aware of any SCR methods for recoding the scalar k into the
representation required by them. Therefore, the only performance gain in those
curves were obtained using a special doubling formula with two field multiplica-
tions; see Algorithm 2. Montgomery-LD also requires one less multiplication per
iteration in Koblitz curves.

Algorithm 2 Our proposed point doubling on the Koblitz curve Ea : y2 +xy =
x3 + ax2 + 1, a 2 f0; 1g over F2m using LD projective coordinates

Input: Point P = (X1; Y1; Z1) 2 Ea(F2m )
Output: Point Q = (X3; Y3; Z3) = 2P
1: S  X1Z1

2: T  (X1 + Z1)2

3: X3  T 2

4: Z3  S2

5: if a = 0 then
6: Y3  ((Y1 + T )(Y1 + S) + Z3)2

7: else
8: Y3  (Y1(Y1 + S + T ))2

9: return (X3; Y3; Z3)

We have selected the three following well known ECC protocols. The Elliptic
Curve Digital Signature Algorithm (ECDSA) requires a fixed point multiplica-
tion for signing and a simultaneous point multiplication for verification. The
Elliptic Curve Diffie-Hellman (ECDH) [4] is a key agreement scheme which re-
quires a random point multiplication, and the Elliptic Curve Schnorr Signature
(ECSS) [23] is similar to ECDSA but does not require an inversion modulo the
elliptic curve order.

4.3 Inversion modulo the elliptic curve order

When signing, the ECDSA generates a random secret value k which is multiplied
by the generator point; this requires side-channel resistance since if k leaks then
it is possible to compute the signer’s private key. However, an often overlooked
point is that ECDSA also requires the inversion of k modulo the elliptic curve
order n. This is usually carried out with the extended Euclidean algorithm, whose
number of steps are input-dependent and therefore theoretically susceptible to
side-channel attacks. While we are not aware of any concrete attacks exploiting
this issue, we are also not aware of any arguments for the impossibility of such
an attack. Therefore, we believe it is safer to use a SCR inversion.



The obvious approach for SCR inversion would be to use Fermat’s little the-
orem (a�1 � an�2 (mod n)), which would require a very fast multiplier modulo
n to be efficient. However, we have found a simple variant of the binary extended
Euclidean algorithm by Niels Möller [19] which takes a fixed number of steps.
For reference, it is described in Algorithm 5 in the Appendix, where branches are
used for clarity and can be avoided with Select. The algorithm is built entirely
upon four operations over integers with the same size as n: addition, subtrac-
tion, negation and right shift by one bit. These can be implemented in assembly
for speed; alternatively the whole algorithm can be implemented in assembly in
order to avoid reads and writes by keeping operands (a, b, u and v) in NEON
registers. We have followed the latter approach for fields at the 128-bit level of
security, and the former approach for the 256-bit level, since the operands are
then too big to fit in registers.

Interestingly, implementing this algorithm raised a few issues with NEON.
The right shift and Select can be implemented efficiently using NEON; how-
ever, we had to resort to regular ARM instructions for addition and subtraction,
since it is difficult to handle carries with NEON. This requires moving data back
and forth from NEON to ARM registers; which can be costly. In the Cortex A8,
since the NEON pipeline starts after the ARM pipeline, a move from NEON to
ARM causes a 15+ cycles stall. The obvious approach to mitigate this would be
to move from NEON to ARM beforehand, but this is difficult due to the limited
number of ARM registers. Our approach was then to partially revert to storing
operands in memory since it becomes faster to read from cached memory than
to move data between NEON and ARM. In the Cortex A9 we followed the same
approach, but with smaller gains, since the ARM and NEON pipelines are partly
parallel and moving from NEON to ARM is not that costly (around 4 cycles of
latency). However, the Cortex A15 is much more optimized in this sense and our
original approach of keeping operands in registers was faster.

4.4 Authenticated Encryption

An authenticated encryption (AE) symmetric scheme provides both encryption
and authentication using a single key, and is often more efficient and easy to em-
ploy than using two separate encryption and authentication schemes (e.g. AES-
CTR with HMAC). The Galois/Counter Mode (GCM) [17] is an AE scheme
which is built upon a block cipher, usually AES. It was standardized by NIST
and is used in IPSec, SSH and TLS. For each message block, GCM encrypts it
using the underlying block cipher in CTR mode and xors the ciphertext into
an accumulator, which is then multiplied in F2128 by a key-dependent constant.
After processing the last block, this accumulator is used to generate the authen-
tication tag.

We have implemented the F2128 multiplication using the same techniques
described above; modular reduction took advantage of the VMULL instruction
since r(z) in this field is small. We remark that our implementation does not
uses precomputed tables (as it is often required for GCM) and is side-channel
resistant (if the underlying block cipher also is). For benchmarking, we have used



Table 1. Our timings in cycles for binary field arithmetic

Algorithm/Processor F2251 F2283 F2571

Multiplication (LD) A8 671 1,032 3,071
A9 774 1,208 3,140
A15 412 595 1,424

Multiplication (KNV) A8 385 558 1,506
A9 491 701 1,889
A15 317 446 1,103

Squaring (Table) A8 155 179 349
A9 168 197 394
A15 128 151 282

Squaring (VMULL) A8 57 53 126
A9 63 59 146
A15 43 42 99

Inversion (Itoh-Tsujii) A8 18,190 20,777 90,936
A9 19,565 22,356 97,913
A15 13,709 16,803 71,220

an assembly implementation of AES from OpenSSL without SCR; however this
is not an issue since we are more interested in the overhead added by GCM to
the plain AES encryption.

5 Results

To evaluate our software implementation, we have used a DevKit8000 board with
an 600 MHz ARM Cortex-A8 processor, a PandaBoard board with a 1 GHz ARM
Cortex-A9 processor and an Arndale board with a 1.7 GHz ARM Cortex-A15
processor. We have used the GCC 4.5.1 compiler. Our optimized code is written
in the C and assembly languages using the RELIC library [1]. Each function is
benchmarked with two nested loops with n iterations each; inside the outer loop,
an input is randomly generated; and the given operation is executed n times in
the inner loop using this input. The total time taken by this procedure, given
by the clock gettime function in nanoseconds, is divided by n2 in order to give
the final result for the given operation. We chose n = 1024 for measuring fast
operations such as finite field arithmetic, and n = 64 for the slower operations
such as point multiplication.

Table 1 presents the timings of field operations used in ECC. Our new Karat-
suba/NEON/VMULL (KNV) multiplication gives a up to 45% improvement com-
pared to the LD/NEON implementation. For field squaring, we have obtained a
significant improvement of up to 70% compared to the conventional table lookup
approach. The very fast squaring made the Itoh-Tsujii inversion feasible.



Table 2. Our timings in 103 cycles for elliptic curve protocols

Algorithm/Processor B-251 B-283 K-283 B-571 K-571

ECDH Agreement A8 657 1,097 934 5,731 4,870
A9 789 1,350 1,148 7,094 6,018
A15 511 866 736 4,242 3,603

ECDSA Sign A8 458 624 606 2,770 2,673
A9 442 612 602 2,880 2,816
A15 233 337 330 1,740 1,688

ECSS Sign A8 270 389 371 1,944 1,846
A9 285 414 404 2,137 2,073
A15 186 270 263 1,264 1,212

ECDSA Verify A8 943 1,397 791 6,673 3,069
A9 1,100 1,644 887 8,171 3,581
A15 715 1,064 583 4,882 2,237

ECSS Verify A8 933 1,337 735 6,338 3,064
A9 1,086 1,572 827 7,776 3,602
A15 715 1,022 546 4,623 2,228

Timings for ECC protocols are listed in Table 2, while Figure 3 plots the
128-bit level timings to aid visualization. Compared to the LD/NEON multiplier
with table-based squaring, the KNV multiplication with VMULL-based squaring
improved the point multiplication by up to 50%. ECDSA is 25–70% slower than
ECSS due to the SCR modular inversion required.

When limited to standard NIST elliptic curves, our ECDH over K-283 is
70% faster than the results of Morozov et al. [20]. Considering non-standard
curves, we now compare our binary B-251 to the prime curves in the state of
the art; this is also shown in Table 3. On the A8, compared to Bernstein and
Schwabe’s [6], our key agreement is 25% slower; our signing is 26% faster; and our
verification is 43% slower. On the A9, compared to Faz-Hernández et al. [7], our
random point multiplication is 88% slower, our fixed point multiplication is 53%
slower; and our simultaneous point multiplication is 132% slower. On the A15,
also compared to Faz-Hernández et al. [7], our random point multiplication is
108% slower, our fixed point multiplication is 72% slower; and our simultaneous
point multiplication is 162% slower. We remark that this is a comparison of our
implementation of binary elliptic curves with the state-of-the-art prime elliptic
curve implementations, which are very different. In particular, note that the
arithmetic of prime curves can take advantage of native 32� 32-bit and 64� 64-
bit multiply instructions.

For the GCM authenticated encryption scheme, we have obtained 38.6, 41.9
and 31.1 cycles per byte for large messages, for the A8, A9 and A15 respectively; a
13.7, 13.6 and 9.2 cpb overhead to AES-CTR. Our A8 overhead is 46% faster than
the timing reported by Krovetz and Rogaway’s [13] and 8.6% faster than [22].



Fig. 3. Our timings for ECC algorithms at the 128-bit level of security

It is interesting to compare the timings across Cortex processors. The A9
results are often slower than the A8 results: while the A9 improved performance
of regular ARM code, the lack of partial dual issue in NEON caused a visible
drop in performance in NEON-based code, which is our case. (The exception is
ECDSA signing where the A8 currently does not have much advantage in the
modular inversion, which dilutes any savings in the point multiplication.) On
the other hand, the return and expansion of NEON dual issue in A15 caused
great performance gains (up to 40%).

6 Conclusions and Future Work

In this paper we have introduced a new multiplier for 64-bit binary polynomial
multiplication using the VMULL instruction, part of the NEON engine present
in many ARM processors in the Cortex-A series. We then explain how to use
the new multiplier to improve the performance of finite field multiplication in
F2m . We have also shown the performance gains by the new multiplier in elliptic
curve cryptography and authenticated encryption with GCM. We were unable
to break speed records for non-standard elliptic curves, but we believe this work
offers a useful insight in how binary curves compare to prime curves in ARM
processors. For standard curves we were able to improve the state of the art, as
well for the GCM authenticated encryption scheme.

An interesting venue for future research is on the implementation of stan-
dard prime curves for ARM, which seems to be lacking in the literature. In



Table 3. Our best ECC timings (on the non-standard
elliptic curve B-251 over binary field) compared to state-
of-the-art timings using non-standard elliptic curves over
prime fields, at the 128-bit level of security, in 103 cycles

Algorithm/Processor Ours [6] [9] [7]

Key Agreement A8 657 527
A9 789 616 417
A15 511 244

Sign A8 270 368
A9 285 262 172
A15 186 100

Verify A8 933 650
A9 1,086 605 463
A15 715 266

addition, the arrival of ARMv8 processors in the future (including the Cortex
A53 and A57) may provide great speed up to binary ECC, since the architecture
will provide two instructions for the full 64-bit binary multiplier (PMULL and
PMULL2) and will double the number of NEON registers [3].
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Algorithm 3 Branchless select, described by Emilia Käsper in [14]

Input: W -bit words a, b, v, with v 2 f0; 1g
Output: b if v, else a
1: function Select(a; b; v)
2: m TwosComplement(�v; W ) . convert �v to W -bit two’s complement
3: t (m & (a� b))� a
4: return t

Algorithm 4 SCR table lookup, contained in the source code of Bernstein and
Schwabe’s [6]

Input: array a with n elements of any fixed type, desired index k, 0 � k < n
Output: a[k]
1: function Choose(a; n; k)
2: t a[0]
3: for i 1 to n� 1 do
4: r  (i� k)� 1
5: s (r < 0) . s holds whether i is equal to k
6: t Select(t; a[i]; s)

7: return t

Algorithm 5 SCR modular inversion algorithm by Niels Möller in the Nettle
library [19]

Input: integer x, odd integer n, x < n
Output: x�1 (mod n)
1: function ModInv(x; n)
2: (a; b; u; v) (x; n; 1; 1)
3: ‘ blog2 nc+ 1 . number of bits in n
4: for i 0 to 2‘� 1 do
5: odd a & 1
6: if odd and a � b then
7: a a� b
8: else if odd and a < b then
9: (a; b; u; v) (b� a; a; v; u)

10: a a� 1
11: if odd then u u� v
12: if u < 0 then u u + n
13: if u & 1 then u u + n
14: u u� 1

15: return v



Algorithm 6 Our proposed ARM NEON 64-bit binary multiplication C = A�B
with 128-bit result
Input: 64-bit registers ad (holding A), bd (holding B), k16 (holding the constant

0xFFFF), k32 (holding 0xFFFFFFFF), k48 (holding the constant 0xFFFFFFFFFFFF).
Output: 128-bit register rq (rh|rl) (holding A).

Uses temporary 128-bit registers t0q (t0h|t0l), t1q (t1h|t1l), t2q (t2h|t2l),
t3q (t3h|t3l).

1: vext.8 t0l, ad, ad, $1 . A1

2: vmull.p8 t0q, t0l, bd . F = A1*B

3: vext.8 rl, bd, bd, $1 . B1

4: vmull.p8 rq, ad, rl . E = A*B1

5: vext.8 t1l, ad, ad, $2 . A2

6: vmull.p8 t1q, t1l, bd . H = A2*B

7: vext.8 t3l, bd, bd, $2 . B2

8: vmull.p8 t3q, ad, t3l . G = A*B2

9: vext.8 t2l, ad, ad, $3 . A3

10: vmull.p8 t2q, t2l, bd . J = A3*B

11: veor t0q, t0q, rq . L = E + F

12: vext.8 rl, bd, bd, $3 . B3

13: vmull.p8 rq, ad, rl . I = A*B3

14: veor t1q, t1q, t3q . M = G + H

15: vext.8 t3l, bd, bd, $4 . B4

16: vmull.p8 t3q, ad, t3l . K = A*B4

17: veor t0l, t0l, t0h . t0 = (L) (P0 + P1) << 8

18: vand t0h, t0h, k48

19: veor t1l, t1l, t1h . t1 = (M) (P2 + P3) << 16

20: vand t1h, t1h, k32

21: veor t2q, t2q, rq . N = I + J

22: veor t0l, t0l, t0h

23: veor t1l, t1l, t1h

24: veor t2l, t2l, t2h . t2 = (N) (P4 + P5) << 24

25: vand t2h, t2h, k16

26: veor t3l, t3l, t3h . t3 = (K) (P6 + P7) << 32

27: vmov.i64 t3h, $0

28: vext.8 t0q, t0q, t0q, $15

29: veor t2l, t2l, t2h

30: vext.8 t1q, t1q, t1q, $14

31: vmull.p8 rq, ad, bd . D = A*B

32: vext.8 t2q, t2q, t2q, $13

33: vext.8 t3q, t3q, t3q, $12

34: veor t0q, t0q, t1q

35: veor t2q, t2q, t3q

36: veor rq, rq, t0q

37: veor rq, rq, t2q
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