
HAL Id: hal-01506684
https://inria.hal.science/hal-01506684

Submitted on 12 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Solving the Discrete Logarithm Problem for Packing
Candidate Preferences

James Heather, Chris Culnane, Steve Schneider, Sriramkrishnan Srinivasan,
Zhe Xia

To cite this version:
James Heather, Chris Culnane, Steve Schneider, Sriramkrishnan Srinivasan, Zhe Xia. Solving the
Discrete Logarithm Problem for Packing Candidate Preferences. 1st Cross-Domain Conference and
Workshop on Availability, Reliability, and Security in Information Systems (CD-ARES), Sep 2013,
Regensburg, Germany. pp.209-221. �hal-01506684�

https://inria.hal.science/hal-01506684
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Solving the Discrete Logarithm Problem for
Packing Candidate Preferences

James Heather1, Chris Culnane1, Steve Schneider1, Sriramkrishnan Srinivasan
and Zhe Xia2*

1 Department of Computing, University of Surrey, Guildford GU2 7XH, U.K.
{j.heather,c.culnane,s.schneider}@surrey.ac.uk

2 Department of Computing, Wuhan University of Technology, 430063, China
xiazhe@whut.edu.cn

Abstract. Ranked elections are used in many places across the world,
and a number of end-to-end verifiable voting systems have been proposed
to handle these elections recently. One example is the vVote system de-
signed for the Victorian State Election, Australia. In this system, many
voters will give a full ranking of up to 38 candidates. The easiest way to
do this is to ask each voter to reorder ciphertexts representing the differ-
ent candidates, so that the ciphertext ordering represents the candidate
ranking. But this requires sending 38 ciphertexts per voter through the
mixnets, which will take a long time. In this paper, we explore how to
“pack” multiple candidate preferences into a single ciphertext, so that
these preferences can be represented in the least number of ciphertexts
possible, while maintaining efficient decryption. Both the packing and
the unpacking procedure are performed publicly: we still provide 38 ci-
phertexts, but they are combined appropriately before they enter the
mixnets, and after decryption, a meet-in-the-middle algorithm can be
used to recover the full candidate preferences despite the discrete loga-
rithm problem.

1 Introduction

Ranked elections are currently used in various elections across the world. For ex-
ample, they can be found in some local government elections in the US, Scotland,
Northern Ireland, New Zealand and Malta. Also, they are used to elect the lower
house of parliament in some territories in Australia. Recently, several end-to-end
verifiable (e2e) voting systems have been proposed to handle ranked elections.
One example is the vVote system [7], [6], which is designed for the Victorian
State Election, Australia. In this election, there are around 10 parties and up to
38 candidates. The ballot form consists of two parts: the Above-The-Line (ATL)
part lists the parties and the Below-The-Line (BTL) part lists the candidates.
The voter can cast her vote using either the ATL part or the BTL part. If a
voter chooses to use the ATL part, she simply selects a single party and her vote
will be interpreted according to this party’s pre-published candidate ranking. If
this voter does not agree on any pre-published candidate ranking, she can cast

2 J. Heather et al.

her vote by expressing a full ranking of the candidates in the BTL part. After
all votes are received, the election result will be tallied using the Single Transfer-
able Vote (STV) method. According to the historical data, among the 430,000
voters in that election, about 95% of them will cast ATL votes and the others
will cast BTL votes. To design an e2e voting solution for the vVote system, both
situations need to be considered. In theory, the ATL votes can be tallied simply
using the homomorphic property [9], [10]. However, since the BTL vote contains
a full ranking of a very large number of candidates, how to tally these votes in
an efficient manner is not so straightforward, and this has been overlooked in
many existing schemes.

1.1 Design decisions in the vVote system

The vVote system [7], [6] is not designed as some theoretical concept, but it aims
to be used in the real elections in the State of Victoria, Australia. Hence not
only security issues but also efficiency and usability issues have been considered.
Here, we review some of the design decisions in the vVote system and briefly
explain why they have been made.

– Prêt à Voter style ballot form: the voters will cast their votes using
the Prêt à Voter [8], [21], [20] style ballot form. The main reason for this
design decision is that in Prêt à Voter, the vote casting and the ballot au-
diting are nicely separated, and the ballots can be audited without the vote
choices being given. Compared with some other e2e schemes, e.g. the Be-
naloh scheme [4], Helios [1] and Wombat [24], in which voters need to fill in
their choices before deciding whether to audit the ballots or to cast them,
the Prêt à Voter approach is more appropriate in this case because the voter
will only need to give a full ranking of 38 candidates once.

– Italian attack: if the election consists of a large number of candidates,
a very large number of possible candidate rankings exist. Adversaries can
force voters to cast their votes using specific orderings, and check whether
ballots with these unique orderings appear among the cast ballots. This
has been referred to as the Italian attack in the literature. Recently, existing
techniques [23], [5] have been introduced to solve the Italian attack. However,
these techniques are computationally expensive and are not practical to be
used in large scale elections. Hence, some compromise needs to be made
between security and efficiency: the vVote system has decided not to address
the Italian attack.

– Mixnets vs. homomorphic encryption in e2e voting schemes, the vote
tally phase is normally designed either using mixnets [22], [17], [13] or homo-
morphic encryption [3], [10], [2]. However, when the election is tallied using
the STV method, votes may need to be transferred during the vote tally
phase. Thus, each vote has to be kept separated from the other ones. To
hide the voter-vote relationships, mixnets are used to shuffle the received
votes.

Solving the Discrete Logarithm Problem for Packing Candidate Preferences 3

– ElGamal encryption vs. Paillier encryption ElGamal [12] has been
selected in the system design. The main reason for this design decision is
that compared with Paillier [18], ElGamal is not only more computation-
ally efficient but also easier to implement. For example, in order to achieve
the 128-bit security level3, 4096-bit p and 256-bit q are normally used in
ElGamal, while in Paillier, the size of n is normally chosen to be 4096 bits.
Therefore, in ElGamal and Paillier, the size of exponentiation is 256 bits
and 4096 bits respectively, and the size of modulus is 4096 bits and 8192
bits respectively. Therefore, when using ElGamal, the re-encryption compu-
tation in the shuffle will be several dozen times quicker than using Paillier.
Moreover, the implementation of distributed key generation and threshold
decryption in ElGamal is much more straightforward than those in Paillier.

1.2 Our contribution

Based on the above design decisions, the BTL vote will be handled using the
Prêt à Voter style ballot form. The “onions” in the ballot form are encrypted
using ElGamal encryption. The received votes are shuffled using mixnets in the
vote tally phase. However, if the Prêt à Voter scheme is used in ranked elections,
the candidate ordering on the ballot form needs to be randomly permuted rather
than just be cyclicly shifted. Otherwise, if the adversaries know who is the voter’s
most/least preferred candidate, they can find out the rest of this voter’s ranking
just by accessing her receipt. A simple method to design the randomly permuted
candidate ordering is to assign a ciphertext next to each candidate. The voter’s
ranking will be used to reorder these ciphertexts (this is demonstrated in Figure
1). But this means that for each ballot, a 38-ciphertext tuple will be inserted into
the mixnets, and after the shuffle, each of the ciphertext needs to be decrypted.
Obviously, this will take a long time.

Fig. 1. The ciphertext ranking represents the candidate ordering

3 Considering that the encrypted votes will be published on the web bulletin board.
Some people argue that 128-bit security level is not enough since the votes may need
to be protected far into the future. Here, the 128-bit security level is only used as
an example.

4 J. Heather et al.

If multiple candidate references can be packed into one ciphertext before the
shuffle, fewer ciphertexts will be sent to the mixnets, and fewer ciphertexts need
to be decrypted after the shuffle. To make this idea work, we need to use the
additive homomorphic property when packing the ciphertexts. This requires us
to use the exponential ElGamal encryption. However, because of the discrete
logarithm problem, there does not exist an efficient algorithm to retrieve the
voter’s rankings after the ciphertext is decrypted.

In this paper, we investigate how to pack the sequence of 38 ciphertexts
into the least number of ciphertexts possible, so that they can be mixed and
decrypted more efficiently. We also introduce a meet-in-the-middle algorithm
that enables the full candidate preferences to be recovered despite the discrete
logarithm problem. Note that although our technique is developed using the
vVote system as an example, it is applicable to many other ranked elections
with a large number of candidates.

1.3 Structure of the paper

In Section 2, we briefly review the meet-in-the-middle techniques, especially
the Baby-Step-Giant-Step algorithm. This is followed by describing the system
parameters in Section 3. Our method to recover the candidate preferences despite
the discrete logarithm problem will be introduced in Section 4. We then provide
some discussions in Section 5 before concluding in Section 6.

2 Meet-in-the-middle Review

In the literature, many meet-in-the-middle methods have been introduced. A
common property of these methods is that trade-off can be made between time
and memory. The benefit is that the search time can be dramatically reduced at
the cost of extra storage. For example, because of the meet-in-the-middle attack,
double DES is not more secure than the standard DES although its keysize is
doubled [11]. Triple DES with two keys is also unable to improve security over
the standard DES when considering the chosen plaintext attack [16].

Another famous example of the meet-in-the-middle method is Shank’s Baby-
Step-Giant-Step (BSGS) algorithm, which is used to solve the discrete logarithm
problem. Since it shares some similarities with our proposed technique, we briefly
review this algorithm here. In BSGS, the discrete logarithm x = loggy is repre-
sented as follows:

x = xα · γ + xβ where 0 ≤ xα, xβ < γ

The value γ is chosen to be the size of the square root of the group order ⌈
√
|G|⌉.

This ensures that the value x will span across the entire group. Now, if we denote
T = gx = gxα·γ+xβ , the above equation can be re-written as follows:

T · (g−γ)xα = gxβ

Solving the Discrete Logarithm Problem for Packing Candidate Preferences 5

Thus, in order to find x ∈ G, we need to find a pair (xα, xβ) that satisfies the
above equation. To achieve this, we first build a lookup table that stores all
possible mappings from gxβ to xβ , where 0 ≤ xβ < γ. Note that the size of this

table is
√
|G|. Then, we can try all possible xα values in the range 0 ≤ xα < γ,

until we find a hit in the lookup table that satisfies T · (g−γ)xα = gxβ . If we find
such a pair, x can be calculated as x = xα · γ + xβ .

When using the brute force search to solve the discrete logarithm problem,
the computational cost is |G|. By using the Baby-Step-Giant-Step algorithm,
the cost can be reduced to

√
|G|, and the extra cost is to build a lookup table

of size
√
|G|.

3 System Parameters

All these parameters are selected publicly before the election.

Crypto parameters: Let p, q be two large primes such that q|p−1. We denote
Gq as the subgroup of Z∗

p of order q. Let g be a generator of Gq. The public
key pk is (p, q, g, y), where y = gx (mod p) and the secret key x is threshold
shared among a number of parties [19], [14]. In order to achieve the 128-bit
security level, p and q are suggested to be chosen as 4096 and 256 bits
respectively4.

Candidate parameters: Following the idea in [9], [2], we choose a value M
which is larger than the number of candidates. Hence in our case, if there
are n = 38 candidates, M can be chosen as n+ 1 = 39. After the candidates
are sorted into the canonical order, the first candidate will be assigned value
M0 (mod q), the second candidateM1 (mod q), and so on. If we generalise
this, the i-th candidate will be assigned the value Mi−1 (mod q).

Encryption The exponential ElGamal cipher [12] will be used for encryption
thanks to its additive homomorphic property, i.e. for two messages m1,m2 ∈
Zq, their ciphertexts can be denoted as Epk(m1) = (gm1yr1 , gr1),Epk(m2) =
(gm2yr2 , gr2) respectively5, and we have the property that Epk(m1)·Epk(m2) =
Epk(m1 +m2 (mod q)). For the candidates in the canonical order, the ci-
phertext assigned to the first candidate is C1 = Epk(M

0), the ciphertext
assigned to the second candidate is C2 = Epk(M

1), and so on. If we gener-
alise this, the ciphertext assigned for the i-th candidate is Ci = Epk(M

i−1).

4 Ciphertext Packing

To make the explanation clear, we describe the “ciphertext packing” technique
step by step, where each step improves its previous step.

4 For more information about the recommended key length by NIST and ECRYPT
II, please refer to http://www.keylength.com/

5 In this document, we assume all arithmetic to be modulo p where applicable, unless
otherwise stated.

6 J. Heather et al.

4.1 Packing all 38 ciphertexts into 1 ciphertext

Theoretically, it is possible to pack all the 38 ciphertexts as well as the voter’s
rankings into a single ciphertext. For example, we first sort the ciphertexts of
a received vote based on its rankings, and the result can be represented as
{Cπ(1), Cπ(2), . . . , Cπ(38)}, where π(i) denotes the i-th candidate in the voter’s
rankings. Then the set of ciphertexts can be packed as

Ĉ =
n∏

i=1

Cπ(i)
i

When the above ciphertext is decrypted, we will get the plaintext as g
∑n

i=1 i·Mπ(i)−1

.
However, because of the discrete logarithm problem, there is no efficient method
to retrieve

∑n
i=1 i ·Mπ(i)−1 (mod q) from the decrypted plaintext. One method

is to build a lookup table to store all the possible mappings from gρ to ρ. In
our case, the 38 candidates can be ranked in any order. Thus, there will be
n! = 38! ≈ 2148 possible ρ values. Obviously, it is not feasible to build such a
lookup table in practice.

Example 1. Suppose there are 5 candidates, and the voter’s ranking is ⟨4, 5, 2, 1, 3⟩
(so that π(1) = 4, π(2) = 5 and so on). Then the packing becomes

Epk(M
3)1 · Epk(M

4)2 · Epk(M
1)3 · Epk(M

0)4 · Epk(M
2)5

= Epk(1 ·M3 + 2 ·M4 + 3 ·M1 + 4 ·M0 + 5 ·M2)

4.2 Packing every α ciphertexts into 1 ciphertext

Alternatively, once we have the ciphertext list {Cπ(1), Cπ(2), . . . , Cπ(38)} sorted
according to the voter’s ranking, starting from the first ciphertext, we can make
every α ciphertexts as a group

{(Cπ(1), Cπ(2), . . . , Cπ(α)), (Cπ(α+1), Cπ(α+2), . . . , Cπ(2α)), . . .}

For each group of α ciphertexts, we treat their rankings as values from 1 to
α, and we pack these α ciphertexts into one as

Ĉj =
α∏

i=1

Cπ(jα+i)
i

where j = 0, 1, . . . , ⌈nα⌉ - 1. When the ciphertext Ĉj is decrypted, the plain-

text is g
∑α

i=1 i·Mπ(jα+i)−1

. Similarly, we need to build a lookup table to retrieve∑α
i=1 i ·Mπ(jα+i)−1 (mod q) from the decrypted plaintext. In this case, the size

of the lookup table is n!/(n − α)! which is smaller than n!. Hence by selecting
different value α, we can adjust not only the packing ratio (how many cipher-
texts to be packed into one) but also the size of the lookup table: to increase the
value α, both the packing ratio and the size of the lookup table increase, and

Solving the Discrete Logarithm Problem for Packing Candidate Preferences 7

the reverse is true as well. For example, if there are 38 candidates and α = 6,
all 38 ciphertexts in a ballot can be packed into ⌈ 386 ⌉ = 7 ciphertexts, and the
size of the lookup table will be 38!/(38 − 6)! ≈ 231. Since the lookup table can
be generated in advance (e.g. before the election) and it only needs to be gener-
ated once, the construction of such a lookup table is within the computational
capacity of modern computers.

Example 2. Suppose there are 6 candidates and α = 3. The voter’s ranking is
⟨4, 5, 2, 1, 3, 6⟩. The packing becomes

⟨(Epk(M
3)1 · Epk(M

4)2 · Epk(M
1)3), (Epk(M

0)1 · Epk(M
2)2 · Epk(M

5)3)⟩
= ⟨Epk(1 ·M3 + 2 ·M4 + 3 ·M1), Epk(1 ·M0 + 2 ·M2 + 3 ·M5)⟩

4.3 Packing every α + β ciphertexts into 1 ciphertext

Now, we improve the above packing method a step further: we show how the
packing ratio can be increased without increasing the size of the lookup table.
Similar to the existing meet-in-the-middle methods, our search method is also a
trade-off between time and memory. Suppose the ciphertext list {Cπ(1), Cπ(2), . . . , Cπ(38)}
has been sorted according to the voter’s ranking. Starting from the first cipher-
text, we make every α+ β ciphertexts as a group

{(Cπ(1), . . . , Cπ(α), Cπ(α+1), . . . , Cπ(α+β)), (Cπ(α+β+1), . . . , Cπ(2α+β), Cπ(2α+β+1), . . . , Cπ(2α+2β)) . . .}

For each group of α+ β ciphertexts, we treat their rankings as values from 1 to
α+ β, and we can pack these α+ β ciphertexts into one ciphertext as

Ĉj =

α+β∏
i=1

Cπ(j(α+β)+i)
i =

α∏
s=1

Cπ(j(α+β)+s)
s ·

α+β∏
t=α+1

Cπ(j(α+β)+t)
t

where j = 0, 1, . . . , ⌈ n
α+β ⌉−1. When the ciphertext Ĉj is decrypted, the plaintext

is

g
∑α+β

i=1 i·Mπ(j(α+β)+i)−1

= g
∑α

s=1 s·Mπ(j(α+β)+s)−1

· g
∑α+β

t=α+1 t·Mπ(j(α+β)+t)−1

where we have

α∑
s=1

s·Mπ(j(α+β)+s)−1 =

α+β∑
i=1

i·Mπ(j(α+β)+i)−1−
α+β∑

t=α+1

t·Mπ(j(α+β)+t)−1 (mod q)

Now we build up two lookup tables: the α-table stores all the possible mappings
from gρ to ρ, where ρ is in the form:

ρ =
α∑

i=1

i ·Mπ(i)−1 (mod q)

8 J. Heather et al.

and the β-table stores all the possible mappings from gδ to δ, where δ is in the
form:

δ = −
α+β∑

j=α+1

j ·Mπ(j)−1 (mod q)

Hence to retrieve the exponent value from the decrypted plaintext

m = g
∑α+β

i=1 i·Mπ(j(α+β)+i)−1

we can try m · gδ for all the possible δ values in the β-table until the result is in
the α-table. In this case, suppose the particular values in the α-table and β-table
are ρ′ and δ′ respectively, we will have m = gρ

′−δ′ . Hence, ρ′ − δ′ (mod q) is
the desired exponent value of the decrypted plaintext m.

For an election with n = 38 candidates, if we use α = 6 and β = 4, we can
pack every 10 ciphertexts into one ciphertext. The size of the α-table is n!/(n−
α)! = 38!/(38−6)! ≈ 231 and the size of the β-table is n!/(n−β)! = 38!/(38−4)! ≈
221. And both tables can be generated in advance before the election. After the
shuffle, when decrypting a ciphertext and extracting its exponent, we need to
try m · gδ roughly for half of the possible values in the β-table until the result is
in the α-table. Hence we need to repeat the test roughly 220 times.

5 Discussion

5.1 Shrink the α-table

When p and q are chosen as 4096 bit and 256 bit respectively, for both the
α-table and β-table, each row consists of a 256-bit value and a 4096-bit value.
Hence the data size for a row is 544 bytes, which is roughly 0.5 KB. If α = 6
and β = 4, the α-table contains 231 rows and its total size is roughly 1 TB. The
β-table contains 221 rows where its total size is roughly 1 GB.

Note that in the β-table, we will use the gδ value in the calculation m · gδ.
Thus we have to keep this value intact. However, we can shrink the gρ value in
the α-table by keeping its last κ bits. The only requirement is that the remaining
κ bits of each value is still unique. To check whether m · gδ is in the α-table, we
only need to check whether its last κ bits are in the α-table. In practice, we can
shrink the gρ value in the α-table by keeping removing its leading bit when its
remaining bits are still unique across the table. Since the size of the α-table is
231, according to the birthday paradox, if κ = 62, there is a 50% chance that
every remaining value is unique. In this case, the data size for a row is 40 bytes,
and the data size for the entire α-table can shrunk to 80 GB.

5.2 Shrink the β-table

Although we mentioned earlier that each value in the β-table has to be kept
intact, we can shrink the β-table by reducing the number of rows rather than

Solving the Discrete Logarithm Problem for Packing Candidate Preferences 9

reducing the size of each row. This can be achieved by applying the Steinhaus-

Johnson-Trotter (SJT) algorithm [15] as follows: denote ∆i,j,l = gi∗M
l+j∗Ml+1

for i, j = −β, . . . , 0, . . . , β and l = 0, 1, . . . , n− 1. The mappings between (i, j, l)
and ∆i,j,l are stored in the β-table. By multiplying with a single element ∆i,j,l

of this table, we can execute an adjacent transposition in the exponent. Thus,
starting from any gδ, we can generate the next possible sequence using a single
multiplication. Hence the running time of this approach remains the same, but
the number of rows in the β-table has been reduced from n!/(n−β!) to (2β)2 ∗n.
In case where there are 38 candidates and β = 4, the number of rows have been
reduced from 221 to 2432 which is negligible.

5.3 What if (α + β) ̸ | n?

Previously, we deliberately ignored the case that (α + β) ̸ | n. However, this is
an issue we should consider in practice. There are two methods to address this
issue: one with padding and one without padding.

Method with padding We can simply append the ciphertext list by repeating
the list from the left side until it exactly divides α + β. For example, suppose
the sorted ciphertext list is {Cπ(1), Cπ(2), . . . , Cπ(38)}, where α = 6 and β = 4.
In this case, we treat every 10 ciphertexts as a group and pack them into one
ciphertext. If we copy the first two ciphertexts and append them to the end of
the list, all the groups will have exactly 10 ciphertexts. After decryption, the
repeated candidate preferences can be removed. This method is very simple,
and it always works if the number of candidates is larger than α + β. Next, we
introduce another method without using padding.

Method without padding Denote the number of candidates n = k(α+β)+r
for some integer k. We now discuss the following various situations:

– When r = α: after every (α + β) ciphertexts have been packed, there will
be exactly α ciphertexts remaining, and they will be packed into a single
ciphertext. After this packed ciphertext is decrypted, we can use the α-table
to retrieve the exponent part of its plaintext.

– When 0 < r < α: after every (α+β) ciphertexts have been packed, there will
be less than α ciphertexts remaining, and they will be packed into a single
ciphertext. After this packed ciphertext is decrypted, neither the α-table nor
the β-table can be used to retrieve the exponent part of the plaintext. To
solve this problem, we need to build another lookup table, called α′-table,
which stores all the possible mappings from gρ

′
to ρ′. And there will be∑α−1

i=1 n!/(n−i)! number of possible ρ′ values. In case there are 38 candidates
and α = 6, the α′-table will contain roughly 226 rows, and the size of the α′-
table is roughly 2.5 GB. Note that the technique introduced in the previous
section can be used to shrink the α′-table.

10 J. Heather et al.

– When α < r < α + β: after every (α + β) ciphertexts have been packed,
there will be more than α ciphertexts remaining, and they will be packed
into a single ciphertext. After this packed ciphertext is decrypted, we need
to build another lookup table, called β′-table, and use this table along with
the α-table to retrieve the exponent part of the plaintext. The β′-table stores
all the possible mappings from gδ

′
to δ′, and there will be

∑β−1
i=1 n!/(n− i)!

number of possible δ′ values. To retrieve the exponent part of the plaintext
m, we test m · gδ′ for all the possible δ′ values in the β′-table until the result
is in the α-table. In case there are 38 candidates and β = 4, the β′-table
contains roughly 216 rows, and the size of the β′-table is roughly 32 MB.
Note that the SJT algorithm introduced above also can be applied here to
further reduce the β′-table.

5.4 Constructing the tables

It is possible to construct the tables without requiring a large number of ex-
ponentiations. Here, we only informally describe how to build the α-table. The
other tables can be built similarly.

Firstly, we build a temporary table of values of the form gj·M
i

where 0 ≤ i <
n and 1 ≤ j ≤ α. Then, building the α-table requires α−1 group multiplications
from these values. This removes the need for many unnecessary exponentiations.
By using a recursive algorithm to build the table, the computational cost can be
reduced even further:

1. Set r = 1 (the group identity element) and s = α (the packing ratio), the
candidate set C = {1, 2, . . . , n}, and the preference set P = {1, 2, . . . , α}.

2. For each candidate i ∈ C:

(a) Remove i from C and compute s = s− 1.

(b) For each preference j ∈ P:

i. Remove j from P.
ii. Set r ← r · gj·Mi−1

.
iii. If s > 0, recursively run from step 2; otherwise:

A. Output r.
B. Restore r and s to values at previous recursive step.
C. Add j back to P.
D. Add i back to C.

We have written a program to build the α-table in Java using a standard
laptop (Intel i7 processor with 4 cores at 2.7GHz, 8 GB memory, and 64-bit
Windows 7). Our assumption is that there are 38 candidates and α = 6. Our
test shows that the time spent to build the table is just under 10 hours, and it
costs slightly more than 3 hours to sort the table (this is a necessary step for
binary search). The total size of the table is 100.8GB, and an average search in
the table takes 49ms.

Solving the Discrete Logarithm Problem for Packing Candidate Preferences 11

5.5 Related work

As described in Section 2, the BSGS algorithm is an important technique to solve
the discrete logarithm problem. Our introduced method shares some similarities
with BSGS. However, there are also some differences between them. Firstly,
BSGS searches the entire group, while our method makes use of the structure of
the plaintext and only searches a much smaller subgroup. Thus our method will
be quicker when used in unpacking candidate preferences. Secondly, compared
with BSGS, our method is more flexible since the sizes of the two lookup tables
can be easily adjusted according to different cases.

Packing different votes in the homomorphic fashion was first introduced in [9],
and our method follows this approach. Later, it was briefly mentioned in [10] that
the meet-in-the-middle trick can be used to solve the discrete logarithm problem
if votes are packed homomorphicly using the exponential ElGamal encryption.
However, no technical detail was given about how this can be done. Moreover,
in both these works, the ciphertext packing technique was only designed for the
First-Past-The-Post (FPTP) elections, while ranked elections were not consid-
ered. Our work in this paper can be considered as some extension to these two
existing works.

6 Conclusion

In this paper, we have explored the details to “pack” multiple candidate prefer-
ences into the least number of ciphertext. The benefit is that fewer ciphertexts
need to be shuffled and decrypted. After decryption, the full candidate prefer-
ences can be retrieved using a meet-in-the-middle algorithm despite the discrete
logarithm problem. The vVote system was used as an example, and the param-
eters were carefully chosen accordingly. But the method present here is generic
in nature and it has the potential to be applied in many other ranked elections
with a large number of candidates.

7 Acknowledgement

Dr. Sriramkrishnan Srinivasan was at the University of Surrey when this work
was carried out. This work was funded by the UK Engineering and Physical
Sciences Research Council (EPSRC) under grant EP/G025797/1, and we are
grateful to the anonymous reviewers for their valuable comments on the paper.

References

1. Ben Adida. Helios: web-based open-audit voting. Proceedings of the 17th conference
on Security Symposium (SS’08), pages 335–348, 2008. Berkeley, CA.

2. Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern, and Guil-
laume Poupard. Practical multi-candidate election system. Proceedings of the 20th
ACM Symposium on Principles of Distributed Computing (PODC’01), pages 274–
283, 2001. New York, NY, USA.

12 J. Heather et al.

3. Josh Benaloh. Secret sharing homomorphisms: keeping shares of a secret secret.
Advances in CRYPTO’86, pages 251–260, 1986. LNCS 263.

4. Josh Benaloh. Towards simple verifiable elections. Proceedings of IAVoSS Work-
shop on Trustworthy Election (WOTE’06), pages 61–68, 2006. Cambridge, UK.

5. Josh Benaloh, Tal Moran, Lee Naish, Kim Ramchen, and Vanessa Teague. Shuffle-
sum: coercion-resistant verifiable tallying for STV voting. IEEE Transactions on
Information Forensics and Security, 4(4):685–698, 2009.

6. Craig Burton, Chris Culnane, James Heather, Thea Peacock, Peter Y. A. Ryan,
Steve Schneider, Sriramkrishnan Srinivasan, Vanessa Teague, Roland Wen, and
Zhe Xia. A supervised verifiable voting protocol for the Victorian Electoral Com-
mission. In the 5th International Conference on Electronic Voting (EVOTE 2012),
2012.

7. Craig Burton, Chris Culnane, James Heather, Thea Peacock, Peter Y. A. Ryan,
Steve Schneider, Sriramkrishnan Srinivasan, Vanessa Teague, Roland Wen, and
Zhe Xia. Using Prêt à Voter in the Victorian State elections. In the 2012
USENIX/ACCURATE Electronic Voting Technology Workshop (EVT 2012), 2012.

8. David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical voter-
verifiable election scheme. Proceedings of the 10th European Symposium on Re-
search in Computer Science (ESORICS’05), pages 118–139, 2005. LNCS 3679.

9. Ronald Cramer, Matthew Franklin, Berry Schoenmakers, and Moti Yung. Multi-
authority secret-ballot elections with linear work. Advances in EUROCRYPT’96,
pages 72–82, 1996. LNCS 1070.

10. Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and op-
timally efficient multi-authority election scheme. Advances in EUROCRYPT’97,
pages 103–118, 1997. LNCS 1233.

11. Whitfield Diffie and Martin Hellman. Exhaustive cryptanalysis of the nbs data
encryption standard. Journal of Computer, 10(6):74–84, 1977.

12. Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on IT, 31(4):467–472, 1985.

13. Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle. Advances
in CRYPTO’01, pages 368–387, 2001. LNCS 2139.

14. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure dis-
tributed key generation for discrete-log based cryptosystems. Advances in EURO-
CRYPT’99, pages 295–310, 1999. LNCS 1592.

15. Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical
Algorithms, 2nd Edition. Addison-Wesley, 1981.

16. Ralph Merkle and Martin Hellman. On the security of multiple encryption. Com-
munications of the ACM, 24(7), 1981.

17. C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. Pro-
ceedings of the 8th ACM Conference on Computer and Communications Security
(CSS’01), pages 116–125, 2001.

18. Pascal Paillier. Public-key cryptosystems based on discrete logarithms residues.
Advances in EUROCRYPT’99, pages 223–238, 1999. LNCS 1592.

19. Torben P. Pedersen. A threshold cryptosystem without a trusted party. Advances
in EUROCRYPT’91, pages 522–526, 1991. LNCS 547.

20. Peter Y. A. Ryan, David Bismark, James Heather, Steve Schneider, and Zhe Xia.
Prêt à Voter: a Voter-Verifiable Voting System. In IEEE Transactions on Infor-
mation Forensics and Security (Special Issue on Electronic Voting), 4(4):662–673,
2009.

Solving the Discrete Logarithm Problem for Packing Candidate Preferences 13

21. Peter Y. A. Ryan and Steve A. Schneider. Prêt à Voter with re-encryption mixes.
Proceedings of the 11th European Symposium on Research in Computer Science
(ESORICS’06), pages 313–326, 2006. LNCS 4189.

22. Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme. Advances in
EUROCRYPT’95, pages 393–403, 1995. LNCS 921.

23. Vanessa Teague, Kim Ramchen, and Lee Naish. Coercion-resistant tallying for
STV voting. 2008 USENIX/ACCURATE Electronic Voting Workshop (EVT’08),
2008. San Jose, CA, US.

24. Wombat. http://www.wombat-voting.com.

