Active Learning Enhanced Document Annotation for Sentiment Analysis

Abstract : Sentiment analysis is a popular research area devoted to methods allowing automatic analysis of the subjectivity in textual content. Many of these methods are based on the using of machine learning and they usually depend on manually annotated training corpora. However, the creation of corpora is a time-consuming task, which leads to necessity of methods facilitating this process. Methods of active learning, aimed at the selection of the most informative examples according to the given classification task, can be utilized in order to increase the effectiveness of the annotation. Currently it is a lack of systematical research devoted to the application of active learning in the creation of corpora for sentiment analysis. Hence, the aim of this work is to survey some of the active learning strategies applicable in annotation tools used in the context of sentiment analysis. We evaluated compared strategies on the domain of product reviews. The results of experiments confirmed the increase of the corpus quality in terms of higher classification accuracy achieved on the test set for most of the evaluated strategies (more than 20% higher accuracy in comparison to the random strategy).
Type de document :
Communication dans un congrès
Alfredo Cuzzocrea; Christian Kittl; Dimitris E. Simos; Edgar Weippl; Lida Xu. 1st Cross-Domain Conference and Workshop on Availability, Reliability, and Security in Information Systems (CD-ARES), Sep 2013, Regensburg, Germany. Springer, Lecture Notes in Computer Science, LNCS-8127, pp.345-353, 2013, Availability, Reliability, and Security in Information Systems and HCI
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01506776
Contributeur : Hal Ifip <>
Soumis le : mercredi 12 avril 2017 - 11:19:08
Dernière modification le : jeudi 13 avril 2017 - 01:06:48
Document(s) archivé(s) le : jeudi 13 juillet 2017 - 12:44:13

Fichier

978-3-642-40511-2_24_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : hal-01506776, version 1

Citation

Peter Koncz, Ján Paralič. Active Learning Enhanced Document Annotation for Sentiment Analysis. Alfredo Cuzzocrea; Christian Kittl; Dimitris E. Simos; Edgar Weippl; Lida Xu. 1st Cross-Domain Conference and Workshop on Availability, Reliability, and Security in Information Systems (CD-ARES), Sep 2013, Regensburg, Germany. Springer, Lecture Notes in Computer Science, LNCS-8127, pp.345-353, 2013, Availability, Reliability, and Security in Information Systems and HCI. 〈hal-01506776〉

Partager

Métriques

Consultations de la notice

117

Téléchargements de fichiers

89