I. A. Ahmad and M. Amezziane, A general and fast convergent bandwidth selection method of kernel estimator, Journal of Nonparametric Statistics, vol.53, issue.4-5, pp.165-187, 2007.
DOI : 10.1016/S0167-7152(01)00072-4

L. Andrieu, G. Cohen, and F. J. Vásquez-abad, Stochastic programming with probability constraints, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00166149

D. Berstimas, The price of robustness, Operations Research, vol.52, issue.1, pp.35-53, 2004.

P. K. Bhattacharya, Estimation of a probability density function and its derivatives. Sankhy¯ a: The Indian, Journal of Statistics, vol.29, issue.4, pp.373-382, 1967.

J. F. Bonnans, P. Martinon, and E. Trélat, Singular Arcs in the Generalized Goddard???s Problem, Journal of Optimization Theory and Applications, vol.106, issue.2, pp.439-461, 2008.
DOI : 10.1007/s10957-008-9387-1

G. C. Calafiore and M. C. Campi, The Scenario Approach to Robust Control Design, IEEE Transactions on Automatic Control, vol.51, issue.5, pp.742-753, 2006.
DOI : 10.1109/TAC.2006.875041

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. A. Calfa, I. E. Grossmann, A. Agarwal, S. J. Bury, and J. M. Wassick, Data-driven individual and joint chance-constrained optimization via kernel smoothing, Computers & Chemical Engineering, vol.78, pp.51-69, 2015.
DOI : 10.1016/j.compchemeng.2015.04.012

A. Charnes, W. W. Cooper, and G. H. Symonds, Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil, Management Science, vol.4, issue.3, pp.235-263, 1958.
DOI : 10.1287/mnsc.4.3.235

D. Dentcheva, Optimization models with probabilistic constraints, Probabilistic and Randomized Methods for Design under Uncertainty, 2003.
DOI : 10.1007/1-84628-095-8_2

L. Devroye and L. Györfi, Nonparametric Density Estimation: the L 1 view, 1985.

G. P. Gerdan and R. E. Deakin, Transforming cartesian coordinates x, y, z to geographical coordinates ?, ?, h. The Australian Surveyor, pp.55-63, 1999.
DOI : 10.1080/00050351.1999.10558773

E. Giné and A. Guillou, Rates of strong uniform consistency for multivariate kernel density estimators. Annales de l'Institut Henri Poincare: Probability and Statistics, pp.907-921, 2002.

R. H. Goddard, A method of reaching extreme altitudes, Smithsonian Miscellaneous Collections, vol.71, issue.2, pp.2-69, 1921.

E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 1993.
DOI : 10.1007/978-3-662-12607-3

R. Henrion and W. Römisch, Hölder and lipschitz stability of solution sets in programs with probabilistic constraints, Mathematical Programming, pp.589-611, 2004.

J. L. Hodges and E. L. Lehmann, The efficiency of some nonparametric competitors of the t-test. The Annals of Mathematical Statistics, pp.324-335, 1956.

K. Marti, Differentiation formulas for probability functions: The transformation method, Mathematical Programming, pp.201-220, 1996.
DOI : 10.1007/BF02592152

M. C. Minnotte, Achieving Higher-Order Convergence Rates for Density Estimation with Binned Data, Journal of the American Statistical Association, vol.97, issue.442, pp.663-672, 1998.
DOI : 10.1080/01621459.1998.10473719

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

É. A. Nadaraya, On non-parametric estimates of density functions and regression curves. Theory of Probability & Its Applications, pp.186-190, 1965.

A. Nemirovski and A. Shapiro, Convex Approximations of Chance Constrained Programs, SIAM Journal on Optimization, vol.17, issue.4, pp.969-996, 2006.
DOI : 10.1137/050622328

E. Parzen, On Estimation of a Probability Density Function and Mode, The Annals of Mathematical Statistics, vol.33, issue.3, pp.1065-1076, 1962.
DOI : 10.1214/aoms/1177704472

B. L. Rao, Non-Parametric Functional Estimation, 1983.

A. Prékopa, ON PROBABILISTIC CONSTRAINED PROGRAMMING, Proceedings of the Princeton Symposium on Mathematical Programming, pp.113-138, 1970.
DOI : 10.1515/9781400869930-009

A. Prékopa, Contributions to the theory of stochastic programming, Mathematical Programming, pp.202-221, 1973.
DOI : 10.1007/BF01584661

A. Prékopa, Stochastic programming, 1995.
DOI : 10.1007/978-94-017-3087-7

A. Prékopa, Probabilistic Programming, Stochastic programming, 2003.
DOI : 10.1016/S0927-0507(03)10005-9

E. Raik, Qualitative research into the stochastic nonlinear programming problems, pp.8-14, 1971.

M. Rosenblatt, Remarks on Some Nonparametric Estimates of a Density Function, The Annals of Mathematical Statistics, vol.27, issue.3, pp.832-837, 1956.
DOI : 10.1214/aoms/1177728190

K. H. Sahin and U. M. Diwekar, Better Optimization of Nonlinear Uncertain Systems (BONUS): A New Algorithm for Stochastic Programming Using Reweighting through Kernel Density Estimation, Annals of Operations Research, vol.132, issue.1-4, pp.47-68, 2004.
DOI : 10.1023/B:ANOR.0000045276.18995.c8

R. Serra, Opérations de proximité en orbite : évaluation du risque de collision et calcul de manoeuvres optimales pour l'évitement et le rendezvous, 2015.

R. Serra, D. Arzelier, M. Joldes, and A. Rondepierre, Probabilistic Collision Avoidance for Long-term Space Encounters via Risk Selection, Advances in Aerospace Guidance, Navigation and Control, 2015.
DOI : 10.1007/978-3-319-17518-8_39

S. J. Sheather, Density Estimation, Statistical Science, vol.19, issue.4, pp.588-597, 2004.
DOI : 10.1214/088342304000000297

B. W. Silverman, Weak and Strong Uniform Consistency of the Kernel Estimate of a Density and its Derivatives, The Annals of Statistics, vol.6, issue.1, pp.177-184, 1978.
DOI : 10.1214/aos/1176344076

B. W. Silverman, Density Estimation for Statistics and Data Analysis, 1986.
DOI : 10.1007/978-1-4899-3324-9

G. R. Terrell and D. W. Scott, Variable kernel density estimation. The Annals of Statistics, pp.1236-1265, 1991.
DOI : 10.1214/aos/1176348768

S. Uryasev, Derivatives of probability functions and some applications, Annals of Operations Research, vol.10, issue.1, pp.287-311, 1995.
DOI : 10.1007/BF02031712

W. Van-ackooij and R. Henrion, Gradient Formulae for Nonlinear Probabilistic Constraints with Gaussian and Gaussian-Like Distributions, SIAM Journal on Optimization, vol.24, issue.4, pp.1864-1889, 2014.
DOI : 10.1137/130922689

R. B. Vinter, Optimal Control, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00629428

A. Wald, Contributions to the Theory of Statistical Estimation and Testing Hypotheses, The Annals of Mathematical Statistics, vol.10, issue.4, pp.299-326, 1939.
DOI : 10.1214/aoms/1177732144

D. M. Young and R. T. Gregory, A survey of numerical mathematics, 1972.

Y. Zhang, Y. Feng, and G. Rong, Data-Driven Chance Constrained and Robust Optimization under Matrix Uncertainty, Industrial & Engineering Chemistry Research, vol.55, issue.21, pp.6145-6160, 2016.
DOI : 10.1021/acs.iecr.5b04973