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Abstract
The construction of anisotropic triangulations is desirable for various applications, such as the
numerical solving of partial di�erential equations and the representation of surfaces in graphics.
To solve this notoriously di�cult problem in a practical way, we introduce the discrete Rieman-
nian Voronoi diagram, a discrete structure that approximates the Riemannian Voronoi diagram.
This structure has been implemented and was shown to lead to good triangulations inR2 and
on surfaces embedded inR3 as detailed in our experimental companion paper.

In this paper, we study theoretical aspects of our structure. Given a �nite set of points P in
a domain 
 equipped with a Riemannian metric, we compare the discrete Riemannian Voronoi
diagram of P to its Riemannian Voronoi diagram. Both diagrams have dual structures called the
discrete Riemannian Delaunay and the Riemannian Delaunay complex. We provide conditions
that guarantee that these dual structures are identical. It then follows from previous results that
the discrete Riemannian Delaunay complex can be embedded in
 under su�cient conditions,
leading to an anisotropic triangulation with curved simplices. Furthermore, we show that, under
similar conditions, the simplices of this triangulation can be straightened.
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1 Introduction

Anisotropic triangulations are triangulations whose elements are elongated along pre-
scribed directions. Anisotropic triangulations are known to be well suited when solving
PDE's [10, 19, 24]. They can also signi�cantly enhance the accuracy of a surface represen-
tation if the anisotropy of the triangulation conforms to the curvature of the surface [15].

Many methods to generate anisotropic triangulations are based on the notion of Rieman-
nian metric and create triangulations whose elements adapt locally to the size and anisotropy
prescribed by the local geometry. The numerous theoretical and practical results [1] of the
Euclidean Voronoi diagram and its dual structure, the Delaunay triangulation, have pushed
authors to try and extend these well-established concepts to the anisotropic setting. La-
belle and Shewchuk [17] and Du and Wang [12] independently introduced two anisotropic
Voronoi diagrams whose anisotropic distances are based on a discrete approximation of the
Riemannian metric �eld. Contrary to their Euclidean counterpart, the fact that the dual
of these anisotropic Voronoi diagrams is an embedded triangulation is not immediate, and,
despite their strong theoretical foundations, the anisotropic Voronoi diagrams of Labelle and
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Shewchuk and Du and Wang have only been proven to yield, under certain conditions, a
good triangulation in a two-dimensional setting [6, 7, 9, 12, 17].

Both these anisotropic Voronoi diagrams can be considered as an approximation of the
exact Riemannian Voronoi diagram, whose cells are de�ned asVg(pi ) = f x 2 
 j dg(pi ; x) �
dg(pj ; x); 8pj 2 Pnpi g, wheredg(p; q) denotes the geodesic distance. Their main advantage is
to ease the computation of the anisotropic diagrams. However, their theoretical and practical
results are rather limited. The exact Riemannian Voronoi diagram comes with the bene�t of
providing a more favorable theoretical framework and recent works have provided su�cient
conditions for a point set to be an embedded Riemannian Delaunay complex [2, 14, 18].
We approach the Riemannian Voronoi diagram and its dual Riemannian Delaunay complex
with a focus on both practicality and theoretical robustness. We introduce the discrete
Riemannian Voronoi diagram, a discrete approximation of the (exact) Riemannian Voronoi
diagram. Experimental results, presented in our companion paper [23], have shown that this
approach leads to good anisotropic triangulations for two-dimensional domains and surfaces,
see Figure 1.

Figure 1 Left, the discrete Riemannian Voronoi diagram (colored cells with bisectors in white)
and its dual complex (in black) realized with straight simplices of a two-dimensional domain endowed
with a hyperbolic shock-based metric �eld. Right, the discrete Riemannian Voronoi diagram and the
dual complex realized with curved simplices of the �chair� surface endowed with a curvature-based
metric �eld [23].

We introduce in this paper the theoretical side of this work, showing that our approach
is theoretically sound in all dimensions. We prove that, under su�cient conditions, the
discrete Riemannian Voronoi diagram has the same combinatorial structure as the (exact)
Riemannian Voronoi diagram and that the dual discrete Riemannian Delaunay complex can
be embedded as a triangulation of the point set, with either curved or straight simplices.
Discrete Voronoi diagrams have been independently studied, although in a two-dimensional
isotropic setting by Cao et al. [8].

2 Riemannian geometry

In the main part of the text we consider an (open) domain 
 in Rn endowed with
a Riemannian metric g, which we shall discuss below. We assume that the metricg is
Lipschitz continuous. The structures of interest will be built from a �nite set of points P,
which we call sites.
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2.1 Riemannian metric

A Riemannian metric �eld g, de�ned over 
 , associates ametric g(p) = Gp to any
point p of the domain. This means that for any v; w 2 Rn we associate an inner product
hv; wi g = vt g(p)w, in a way that smoothly depends onp. Using a Riemannian metric, we
can associate lengths to curves and de�ne the geodesic distancedg as the minimizer of the
lengths of all curves between two points. When the mapg : p 7! G is constant, the metric
�eld is said to be uniform. In this case, the distance between two pointsx and y in 
 is
dG (x; y) = kx � ykG =

p
(x � y)t G(x � y) .

Most traditional geometrical objects can be generalized using the geodesic distance.
For example, the geodesic (closed) ball centered onp 2 
 and of radius r is given by
Bg(p; r) = f x 2 
 j dg(p; x) � r g. In the following, we assume that
 � Rn is endowed with
a Lipschitz continuous metric �eld g.

We de�ne the metric distortion between two distance functionsdg(x; y) and dg0(x; y)
to be the function  (g; g0) such that for all x; y in a small-enough neighborhood we have:
1= (g; g0) dg(x; y) � dg0(x; y) �  (g; g0) dg(x; y). Observe that  (g; g0) � 1 and  (g; g0) = 1
when g = g0. Our de�nition generalizes the concept of distortion between two metricsg(p)
and g(q), as de�ned by Labelle and Shewchuk [17] (see Appendix B of the full version of
this paper, [4]).

2.2 Geodesy

Let v 2 Rn . From the unique geodesic
 satisfying 
 (0) = p with initial tangent vec-
tor _
 = v, one de�nes theexponential mapthrough exp(v) = 
 (1). The injectivity radius at
a point p of 
 is the largest radius for which the exponential map atp restricted to a ball of
that radius is a di�eomorphism. The injectivity radius � 
 of 
 is de�ned as the in�mum of
the injectivity radii at all points. For any p 2 
 and for a two-dimensional linear subspaceH
of the tangent space atp, we de�ne the sectional curvature K at p for H as the Gaussian
curvature at p of the surfaceexpp(H ).

In the theoretical studies of our algorithm, we will assume that the injectivity radius
of 
 is strictly positive and its sectional curvatures are bounded.

2.3 Power protected nets

Controlling the quality of the Delaunay and Voronoi structures will be essential in our
proofs. For this purpose, we use the notions of net and of power protection.

Power protection of point sets Power protection of simplices is a concept formally
introduced by Boissonnat, Dyer and Ghosh [2]. Let� be a simplex whose vertices belong
to P, and let Bg(� ) = Bg(c; r) denote a circumscribing ball of � where r = dg(c; p) for any
vertex p of � . We call c the circumcenter of � and r its circumradius.

For 0 � � � r , we associate toBg(� ) the dilated ball B + �
g (� ) = B (c;

p
r 2 + � 2). We

say that � is � -power protected if B + �
g (� ) does not contain any point of P n Vert( � ) where

Vert( � ) denotes the vertex set of� . The ball B + �
g is the power protectedball of � . Finally, a

point set P is � -power protected if the Delaunay ball of its simplices are� -power protected.

Nets To ensure that the simplices of the structures that we shall consider are well shaped,
we will need to control the density and the sparsity of the point set. The concept of net
conveys these requirements throughsampling and separation parameters.

SoCG 2017
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The sampling parameter is used to control the density of a point set: if
 is a bounded
domain, P is said to be an"-sample setfor 
 with respect to a metric �eld g if dg(x; P) < " ,
for all x 2 
 . The sparsity of a point set is controlled by the separation parameter: the setP
is said to be � -separatedwith respect to a metric �eld g if dg(p; q) � � for all p, q 2 P .
If P is an "-sample that is � -separated, we say thatP is an ("; � )-net.

3 Riemannian Delaunay triangulations

Given a metric �eld g, the Riemannian Voronoi diagram of a point set P, denoted
by Vorg(P), is the Voronoi diagram built using the geodesic distancedg. Formally, it is a
partition of the domain in Riemannian Voronoi cells f Vg(pi )g, where Vg(pi ) = f x 2 
 j
dg(pi ; x) � dg(pj ; x); 8pj 2 P n pi g.

The Riemannian Delaunay complex of P is an abstract simplicial complex, de�ned
as the nerve of the Riemannian Voronoi diagram, that is the set of simplicesDelg(P) =
f � j Vert( � ) 2 P ; \ p2 � Vg(p) 6= 0g. There is a straightforward duality between the diagram
and the complex, and between their respective elements.

In this paper, we will consider both abstract simplices and complexes, as well as their
geometric realization inRn with vertex set P. We now introduce two realizations of a simplex
that will be useful, one curved and the other one straight.

The straight realization of a n-simplex � with vertices in P is the convex hull of its ver-
tices. We denote it by � . In other words,

�� = f x 2 
 � Rn j x =
X

p2 �

� p(x) p; � p(x) � 0;
X

p2 �

� p(x) = 1 g: (1)

The curved realization, noted ~� is based on the notion of Riemannian center of mass [16,
13]. Let y be a point of �� with barycentric coordinate � p(y); p 2 � . We can associate the
energy functional Ey (x) = 1

2

P
p2 � � p(y)dg(x; p)2. We then de�ne the curved realization of �

as

~� = f ~x 2 
 � Rn j ~x = argmin E�x (x); �x 2 �� g: (2)

The edges of~� are geodesic arcs between the vertices. Such a curved realization is well de-
�ned provided that the vertices of � lie in a su�ciently small ball according to the following
theorem of Karcher [16].

I Theorem 1 (Karcher). Let the sectional curvaturesK of 
 be bounded, that is� � � K �
� + . Let us consider the function Ey on B � , a geodesic ball of radius� that contains the
set f pi g. Assume that � 2 R+ is less than half the injectivity radius and less than�= 4

p
� +

if � + > 0. Then Ey has a unique minimum point in B � , which is called thecenter of mass.

Given an (abstract) simplicial complex K with vertices in P, we de�ne the straight (resp.,
curved) realization of K as the collection of straight (resp., curved) realizations of its sim-
plices, and we write �K = f ��; � 2 Kg and ~K = f ~�; � 2 Kg .

We will consider the case whereK is Delg(P). A simplex of Delg(P) will simply be called
a straight Riemannian Delaunay simplex and a simplex ofgDelg(P) will be called a curved
Riemannian Delaunay simplex, omitting �realization of�. In the next two sections, we give
su�cient conditions for Delg(P) and gDelg(P) to be embedded in
 , in which case we will
call them the straight and the curved Riemannian triangulations of P.
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3.1 Su�cient conditions for gDel g(P ) to be a triangulation of P

It is known that gDelg(P) is embedded in
 under su�cient conditions. We give a short
overview of these results. As in Dyer et al. [13], we de�ne the non-degeneracy of a simplex~�
of gDelg(P).

I De�nition 2. The curved realization e� of a Riemannian Delaunay simplex� is said to be
non-degenerate if and only if it is homeomorphic to the standard simplex.

Su�cient conditions for the complex gDelg(P) to be embedded in
 were given in [13]: a
curved simplex is known to be non-degenerate if the Euclidean simplex obtained by lifting
the vertices to the tangent space at one of the vertices via the exponential map has su�cient
quality compared to the bounds on sectional curvature. Here, good quality means that the
simplex is well shaped, which may be expressed either through its fatness (volume compared
to longest edge length) or its thickness (smallest height compared to longest edge length).

Let us assume that, for each vertexp of Delg(P), all the curved Delaunay simplices in
a neighborhood ofp are non-degenerate and patch together well. Under these conditions,
gDelg(P) is embedded in
 . We call gDelg(P) the curved Riemannian Delaunay triangulation
of P.

3.2 Su�cient conditions for Del g(P ) to be a triangulation of P

Assuming that the conditions for gDelg(P) to be embedded in
 are satis�ed, we now give
conditions such that Delg(P) is also embedded in
 . The key ingredient will be a bound on
the distance between a point of a simplex~� and the corresponding point on the associated
straight simplex �� (Lemma 3). This bound depends on the properties of the set of sites and
on the local distortion of the metric �eld. When this bound is su�ciently small, Delg(P) is
embedded in
 as stated in Theorem 4.

I Lemma 3. Let � be ann-simplex of Delg(P). Let �x be a point of �� and ex the associated
point on e� (as de�ned in Equation 1). If the geodesic distancedg is close to the Euclidean
distance dE, i.e. the distortion  (g; gE) is bounded by 0, then jex � �xj �

p
2 � 43( 0 � 1)"2.

We now apply Lemma 3 to the facets of the simplices ofgDelg(P). The altitude of the
vertex p in a simplex � is noted D(p; � ).

I Theorem 4. Let P be a� -power protected("; � )-net with respect to g on 
 . Let � be any
n-simplex of Delg(P) and p be any vertex of� . Let � be a facet of� opposite of vertexp.
If, for all ex 2 e� , we havejex � �xj � D (pi ; � ) ( �x is de�ned in Equation 1), then Deld(P) is
embedded in
 .

The condition jex � �xj � D (pi ; � ) is achieved for a su�ciently dense sampling according to
Lemma 3 and the fact that the distortion  0 =  (g; gE) goes to1 when the density increases.
The complete proofs of Lemma 3 and Theorem 4 can be found in[4, Appendix F].

4 Discrete Riemannian structures

Although Riemannian Voronoi diagrams and Delaunay triangulations are appealing from
a theoretical point of view, they are very di�cult to compute in practice despite many
studies [21]. To circumvent this di�culty, we introduce the discrete Riemannian Voronoi
diagram. This discrete structure is easy to compute (see our companion paper [23] for
details) and, as will be shown in the following sections, it is a good approximation of the exact
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Riemannian Voronoi diagram. In particular, their dual Delaunay structures are identical
under appropriate conditions.

We assume that we are given a dense triangulation of the domain
 we call the canvas
and denote byC. The canvas will be used to approximate geodesic distances between points
of 
 and to construct the discrete Riemannian Voronoi diagram ofP. This bears some
resemblance to the graph-induced complex of Dey et al. [11]. Notions related to the canvas
will explicitly carry canvas in the name (for example, an edge ofC is a canvas edge). In
our analysis, we shall assume that the canvas is a dense triangulation, although weaker and
more e�cient structures can be used (see Section 9 and [23]).

4.1 The discrete Riemannian Voronoi Diagram

To de�ne the discrete Riemannian Voronoi diagram ofP, we need to give a unique color
to each site ofP and to color the vertices of the canvas accordingly. Speci�cally, each canvas
vertex is colored with the color of its closest site.

I De�nition 5 (Discrete Riemannian Voronoi diagram). Given a metric �eld g, we associate
to each site pi its discrete cell Vd

g (pi ) de�ned as the union of all canvas simplices with at
least one vertex of the color ofpi . We call the set of these cells thediscrete Riemannian
Voronoi diagram of P, and denote it by Vord

g (P).

Observe that contrary to typical Voronoi diagrams, our discrete Riemannian Voronoi
diagram is not a partition of the canvas. Indeed, there is a one canvas simplex-thick over-
lapping since each canvas simplex� C belongs to all the Voronoi cells whose sites' colors
appear in the vertices of� C. This is intentional and allows for a straightforward de�nition
of the complex induced by this diagram, as shown below.

4.2 The discrete Riemannian Delaunay complex

We de�ne the discrete Riemannian Delaunay complexas the set of simplicesDeldg (P) =
f � j Vert( � ) 2 P ; \ p2 � Vd

g (p) 6= 0g. Using a triangulation as canvas o�ers a very intuitive
way to construct the discrete complex since each canvask-simplex � of C has k + 1 vertices
f v0; : : : ; vk g with respective colors f c0; : : : ; ck g corresponding to the sitesf pc0 ; : : : ; pck g 2
P. Due to the way discrete Voronoi cells overlap, a canvas simplex� C belongs to each
discrete Voronoi cell whose color appears in the vertices of� . Therefore, the intersection of
the discrete Voronoi cells f V d

g (pi )g whose colors appear in the vertices of� is non-empty
and the simplex � with vertices f pi g thus belongs to the discrete Riemannian Delaunay
complex. In that case, we say that the canvas simplex� C witnesses(or is a witness of) � .
For example, if the vertices of a canvas3-simplex � C have colors yellow�blue�blue�yellow,
then the intersection of the discrete Voronoi cells of the sitespyellow and pblue is non-empty
and the one-simplex� with vertices pyellow and pblue belongs to the discrete Riemannian
Delaunay complex. The canvas simplex� C thus witnesses the (abstract, for now) edge
betweenpyellow and pblue .

Figure 2 illustrates a canvas painted with discrete Voronoi cells, and the witnesses of the
discrete Riemannian Delaunay complex.

I Remark. If the intersection
T

i =0 :::k Vd
g (pci ) is non-empty, then the intersection of any

subset of f Vd
g (pci )gi =0 :::k is non-empty. In other words, if a canvas simplex� C witnesses a

simplex � , then for each face� of � , there exists a face� C of � C that witnesses � . As we
assume that there is no boundary, the complex is pure and it is su�cient to only consider
canvasn-simplices whose vertices have all di�erent colors to buildDeldg (P).
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Figure 2 A canvas (black edges) and a discrete Riemannian Voronoi diagram drawn on it. The
canvas simplices colored in red are witnesses of Voronoi vertices. The canvas simplices colored in
grey are witnesses of Voronoi edges. Canvas simplices whose vertices all have the same color are
colored with that color.

Similarly to the de�nition of curved and straight Riemannian Delaunay complexes, we

can de�ne their discrete counterparts we respectively denote bygDeldg (P) and Deldg (P). We
will now exhibit conditions such that these complexes are well-de�ned and embedded in
 .

5 Equivalence between the discrete and the exact structures

We �rst give conditions such that Vord
g (P) and Vorg(P) have the same combinatorial

structure, or, equivalently, that the dual Delaunay complexes Delg(P) and Deldg (P) are
identical. Under these conditions, the fact that Deldg (P) is embedded in
 will immediately
follow from the fact that the exact Riemannian Delaunay complex Delg(P) is embedded
(see Sections 3.1 and 3.2). It thus remains to exhibit conditions under whichDeldg (P) and
Delg(P) are identical.

Requirements will be needed on both the set of sites in terms of density, sparsity and
protection, and on the density of the canvas. The central idea in our analysis is that power
protection of P will imply a lower bound on the distance separating two non-adjacent Voronoi
objects (and in particular two Voronoi vertices). From this lower bound, we will obtain an
upper bound on the size on the cells of the canvas so that the combinatorial structure of the
discrete diagram is the same as that of the exact one. The density of the canvas is expressed
by eC, the length of its longest edge.

The main result of this paper is the following theorem.

I Theorem 6. Assume that P is a � -power protected("; � )-net in 
 with respect to g. As-
sume further that " is su�ciently small and � is su�ciently large compared to the distortion
betweeng(p) and g in an "-neighborhood ofp. Let f � i g be the eigenvalues ofg(p) and `0 a
value that depends on" and � (Precise bounds for"; � and l0 are given in the proof). Then,

if eC < min
p2P

h
min

i

� p
� i

�
min f �= 3; `0=2g

i
, Deldg(P) = Del g(P).

The rest of the paper will be devoted to the proof of this theorem. Our analysis is divided
into two parts. We �rst consider in Section 6 the most basic case of a domain ofRn endowed
with the Euclidean metric �eld. The result is given by Theorem 7. The assumptions are
then relaxed and we consider the case of an arbitrary metric �eld over
 in Section 7. As
we shall see, the Euclidean case already contains most of the di�culties that arise during
the proof and the extension to more complex settings will be deduced from the Euclidean
case by bounding the distortion.
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6 Equality of the Riemannian Delaunay complexes in the Euclidean
setting

In this section, we restrict ourselves to the case where the metric �eld is the Euclidean
metric gE. To simplify matters, we initially assume that geodesic distances are computed
exactly on the canvas. The following theorem gives su�cient conditions to have equality of
the complexes.

I Theorem 7. Assume that P is a � -power protected ("; � )-net of 
 with respect to the
Euclidean metric �eld gE. Denote byC the canvas, a triangulation with maximal edge length
eC. If eC < min

�
�= 16; � 2=64"

	
, then DeldE(P) = Del E(P).

We shall now prove Theorem 7 by enforcing the two following conditions which, com-
bined, give the equality between the discrete Riemannian Delaunay complex and the Rie-
mannian Delaunay complex:

(1) for every Voronoi vertex in the Riemannian Voronoi diagram v = \ f pi gVg(pi ), there
exists at least one canvas simplex with the corresponding colorsf cpi g;

(2) no canvas simplex witnesses a simplex that does not belong to the Riemannian Delaunay
complex (equivalently, no canvas simplex has vertices whose colors are those of non-
adjacent Riemannian Voronoi cells).

Condition (2) is a consequence of the separation of Voronoi objects, which in turn follows
from power protection. The separation of Voronoi objects has previously been studied, for
example by Boissonnat et al. [2]. Although the philosophy is the same, our setting is slightly
more di�cult and the results using power protection are new and use a more geometrical
approach (see [4, Appendix C]).

6.1 Sperner's lemma

Rephrasing Condition (1), we seek requirements on the density of the canvasC and
on the nature of the point set P such that there exists at least one canvasn-simplex
of C that has exactly the colors c0; : : : ; cd of the vertices p0; : : : ; pd of a simplex � , for
all � 2 Delg(P). To prove the existence of such a canvas simplex, we employ Sperner's
lemma [25], which is a discrete analog of Brouwer's �xed point theorem. We recall this
result in Theorem 8 and illustrate it in a two-dimensional setting (inset).

I Theorem 8 (Sperner's lemma).
Let � = ( p0; : : : ; pn ) be an n-simplex and let T� denote a tri-
angulation of the simplex. Let each vertexv0 2 T� be colored
such that the following conditions are satis�ed:

The vertices pi of � all have di�erent colors.
If a vertex p0 lies on a k-face (pi 0 ; : : : pi k ) of � , then p0 has
the same color as one of the vertices of the face, that ispi j .

Then, there exists an odd number of simplices inT� whose vertices are colored with alln +1
colors. In particular, there must be at least one.

We shall apply Sperner's lemma to the canvasCand show that for every Voronoi vertex v
in the Riemannian Voronoi diagram, we can �nd a subsetCv of the canvas that ful�lls the
assumptions of Sperner's lemma, hence obtaining the existence of a canvas simplex inCv

(and therefore in C) that witnesses � v . Concretely, the subsetCv is obtained in two steps:
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� We �rst apply a barycentric subdivision of the Riemannian Voronoi cells incident to v.
From the resulting set of simplices, we extract a triangulation Tv composed of the sim-
plices incident to v (Section 6.2).

� We then construct the subset Cv by overlaying the border of Tv and the canvas (Sec-
tion 6.3).

We then show that if the canvas simplices are small enough � in terms of edge length �
then Cv is the triangulation of a simplex that satis�es the assumptions of Sperner's lemma.

The construction of Cv is detailed in the following sections and illustrated in Figure 3:
starting from a colored canvas (left), we subdivide the incident Voronoi cells ofv to obtain
Tv (middle), and deduce the set of canvas simplicesCv which forms a triangulation that
satis�es the hypotheses of Sperner's lemma, thus giving the existence of a canvas simplex
(in green, right) that witnesses the Voronoi vertex within the union of the simplices, and
therefore in the canvas.

Figure 3 Illustration of the construction of Cv . The Riemannian Voronoi diagram is drawn with
thick orange edges and the sites are colored squares. The canvas is drawn with thin gray edges
and colored circular vertices. The middle frame shows the subdivision of the incident Voronoi cells
with think black edges and the triangulation Tv is drawn in yellow. On the right frame, the set of
simplices Cv is colored in purple (simplices that do not belong to C) and in dark yellow (simplices
that belong to C).

6.2 The triangulation Tv

For a given Voronoi vertex v in the Euclidean Voronoi diagram VorE(P) of the domain 
 ,
the initial triangulation Tv is obtained by applying a combinatorial barycentric subdivision
of the Voronoi cells ofVorE(P) that are incident to v: to each Voronoi cellV incident to v, we
associate to each faceF of V a point cF in F which is not necessarily the geometric barycen-
ter. We randomly associate tocF the color of any of the sites whose Voronoi cells intersect
to give F . For example, in a two-dimensional setting, if the faceF is a Voronoi edge that is
the intersection of Vred and Vblue , then cF is colored either red or blue. Then, the subdivi-
sion of V is computed by associating to all possible sequences of facesf F0; F1; : : : Fn � 1; Fn g
such that F0 � F1 � � � � Fn = V and dim(Fi +1 ) = dim( Fi ) + 1 the simplex with vertices
f cF0 ; cF1 ; : : : ; cFn � 1 ; cFn g. These barycentric subdivisions are allowed since Voronoi cells are
convex polytopes.

Denote by � V the set of simplices obtained by barycentric subdivision ofV and � v =
f[ � V j v 2 Vg. The triangulation Tv is de�ned as the star of v in � v , that is the set of
simplices in � v that are incident to v. Tv is illustrated in Figure 4 in dimension 3. As shall
be proven in Lemma 9,Tv can be used to de�ne a combinatorial simplex that satis�es the
assumptions of Sperner's lemma.
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Tv as a triangulation of an n -simplex

Figure 4 The triangulation Tv in 3D. A face
(in green) and an edge (in red) of � S .

By construction, the triangulation Tv is
a triangulation of the (Euclidean) Delau-
nay simplex � v dual of v as follows. We
�rst perform the standard barycentric sub-
division on this Delaunay simplex � v . We
then map the barycenter of a k-face � of
� v to the point cF i on the Voronoi face
Fi , where Fi is the Voronoi dual of the k-
face� . This gives a piecewise linear homeo-
morphism from the Delaunay simplex� v to
the triangulation Tv . We call the image of
this map the simplex � S and refer to the im-
ages of the faces of the Delaunay simplex as
the faces of� S . We can now apply Sperner's
lemma.

I Lemma 9. Let P be a � -power protected ("; � )-net. Let v be a Voronoi vertex in the
Euclidean Voronoi diagram, VorE(P), and let � v be de�ned as above. The simplex� S and
the triangulation Tv satisfy the assumptions of Sperner's lemma in dimensionn.

Proof. By the piecewise linear map that we have described above,Tv is a triangulation of
the simplex � S . Because by construction the verticescF i lie on the Voronoi duals Fi of the
corresponding Delaunay face� , cF i has the one of the colors of of the Delaunay vertices of� .
Therefore, � S satis�es the assumptions of Sperner's lemma and there exists ann-simplex
in Tv that witnessesv and its corresponding simplex� v in Delg(P). J

6.3 Building the triangulation Cv

Let pi be the vertices of thek-face � S of � S . In this section we shall assume not only
that � S is contained in the union of the Voronoi cells of V (pi ), but in fact that � S is a
distance 8eC removed from the boundary of [ V (pi ), where eC is the longest edge length of
a simplex in the canvas. We will now construct a triangulation Cv of � S such that:

� S and its triangulation Cv satisfy the conditions of Sperner's lemma,
the simplices ofCv that have no vertex that lies on the boundary @�S are simplices of
the canvasC.

The construction goes as follows. We �rst intersect the canvasC with � S and consider
the canvas simplices� C;i such that the intersection of � S and � C;i is non-empty. These
simplices � C;i can be subdivided into two sets, namely those that lie entirely in the interior
of � S , which we denote by� int

C;i , and those that intersect the boundary, denoted by� @
C;i .

The simplices � int
C;i are added to the setCv . We intersect the simplices � @

C;i with � S

and triangulate the intersection. Note that � @
C;i \ � S is a convex polyhedron and thus

triangulating it is not a di�cult task. The vertices of the simplices in the triangulation of
� @

C;i \ � S are colored according to which Voronoi cell they belong to. Finally, the simplices
in the triangulation of � @

C;i \ � S are added to the setCv .
SinceTv is a triangulation of � S , the set Cv is by construction also a triangulation of � S .

This triangulation trivially gives a triangulation of the faces � S . Because we assume that� S

is contained in the union of its Voronoi cells, with a margin of 8eC we now can draw two
important conclusions:
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The vertices of the triangulation of each face� S have the colors of the verticespi of � S .
None of the simplices in the triangulation of � @

C;i \ � S can have n + 1 colors, because
every such simplex must be close to one face� S , which means that it must be contained
in the union of the Voronoi cells V (pi ) of the vertices of � S .

We can now invoke Sperner's lemma;Cv is a triangulation of the simplex � S whose every
face has been colored with the appropriate colors (since� S triangulated by Tv satis�es the
assumptions of Sperner's lemma, see Lemma 9). This means that there is a simplexCv that
is colored with n + 1 colors. Because of our second observation above, the simplex with
thesen + 1 colors must lie in the interior of � S and is thus a canvas simplex.

We summarize by the following lemma:

I Lemma 10. If every face � S of � S with vertices pi is at distance 8eC from the boundary
of the union of its Voronoi cells @([ V (pi )) , then there exists a canvas simplex inCv such
that it is colored with the same vertices as the vertices of� S .

The key task that we now face is to guarantee that faces� S indeed lie well inside of the
union of the appropriate Voronoi regions. This requires �rst and foremost power protection.
Indeed, if a point set is power protected, the distance between a Voronoi vertexc and the
Voronoi faces that are not incident to c, which we will refer to from now on as foreign
Voronoi faces, can be bounded, as shown in the following Lemma:

I Lemma 11. Suppose thatc is the circumcenter of a � -power protected simplex� of a
Delaunay triangulation built from an "-sample, then all foreign Voronoi faces are at least
� 2=8" far from c.

The proof of this Lemma is given in the full version of this paper (see [4, Section C.2]).
In almost all cases, this result gives us the distance bound we require: we can assume

that vertices f cF0 ; cF1 ; : : : ; cFn � 1 ; cFn g which we used to constructTv , are well placed, mean-
ing that there is a minimum distance between these vertices and foreign Voronoi objects.
However it can still occur that foreign Voronoi objects are close to a face� S of � S . This
occurs even in two dimensions, where a Voronoi vertexv0 can be very close to a face� S

because of obtuse angles, as illustrated in Figure 5.

Figure 5 The point v0 can be arbitrarily close to Tv , as shown by the red segments (left and
center). After piecewise linear deformation, this issue is resolved, as seen by the green segments
(right).

Thanks to power protection, we know that v0 is removed from foreign Voronoi objects.
This means that we can deform� S (in a piecewise linear manner) in a neighborhood ofv0

such that the distance betweenv0 and all the faces of the deformed� S is lower bounded.
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In general the deformation of� S is performed by �radially pushing� simplices away from
the foreign Voronoi faces ofv with a ball of radius r = min

�
�= 16; � 2=64"

	
. The value �= 16 is

chosen so that we do not move any vertex of� v (the dual of v): indeed, P is � -separated and
thus dE(pi ; pj ) > � . The value � 2=64" is chosen so that� S and its deformation stay isotopic
(no �pinching� can happen), using Lemma 11. In fact it is advisable to use a piecewise
linear version of �radial pushing�, to ensure that the deformation of � S is a polyhedron.
This guarantees that we can triangulate the intersection, see Chapter2 of Rourke and
Sanderson [22]. After this deformation we can follow the steps we have given above to arrive
at a well-colored simplex.

I Lemma 12. Let P be a � -power protected ("; � )-net. Let v be a Voronoi vertex of the
Euclidean Voronoi diagram VorE(P), and Tv as de�ned above. If the lengtheC of the longest
canvas edge is bounded as follows:eC < r = min

�
�= 16; � 2=64"

	
, then there exists a canvas

simplex that witnessesv and the corresponding simplex� v in DelE(P).

Conclusion

So far, we have only proven thatDelg(P) � Deldg (P). The other inclusion, which corre-
sponds to Condition (2) mentioned above, is much simpler: as long as a canvas edge is shorter
than the smallest distance between a Voronoi vertex and a foreign face of the Riemannian
Voronoi diagram, then no canvas simplex can witness a simplex that is not inDelg(P). Such
a bound is already given by Lemma 11 and thus, ifeC < � 2=8" then Deldg (P) � Delg(P).
Observe that this requirement is weaker than the condition imposed in Lemma 12 and it
was thus already satis�ed. It follows that Deldg (P) = Del g(P) if eC < min

�
�= 16; � 2=64"

	
,

which concludes the proof of Theorem 7.

I Remark. Assuming that the point set is a � -power protected ("; � )-net might seem like a
strong assumption. However, it should be observed that any non-degenerate point set can be
seen as a� -power protected("; � )-net, for a su�ciently large value of " and su�ciently small
values of � and � . Our results are therefore always applicable but the necessary canvas
density increases as the quality of the point set worsens (Lemma 12). In our practical
companion paper [23, Section7], we showed how to generate� -power protected ("; � )-nets
for given values of" , � and � .

7 Extension to more complex settings

In the previous section, we have placed ourselves in the setting of an (open) domain en-
dowed with the Euclidean metric �eld. To prove Theorem 6, we need to generalize Theorem 7
to more general metrics, which will be done in the two following subsections.

The common path to prove Deldg (P) = Del g(P) in all settings is to assume that P is a
power protected net with respect to the metric �eld. We then use the stability of entities
under small metric perturbations to take us back to the now solved case of the domain

endowed with an Euclidean metric �eld. Separation and stability of Delaunay and Voronoi
objects has previously been studied by Boissonnat et al. [2, 3], but our work lives in a
slightly more complicated setting. Moreover, our proofs are generally more geometrical and
sometimes simpler. For completeness, the extensions of these results to our context are
detailed in the full version of this paper [4, Appendices C and E].

We now detail the di�erent intermediary settings. For completeness, the full proofs are
included in the appendices.
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7.1 Uniform metric �eld

We �rst consider the rather easy case of a non-Euclidean but uniform (constant) metric
�eld over an (open) domain. The square root of a metric gives a linear transformation
between the base space where distances are considered in the metric and ametric space
where the Euclidean distance is used (see [4, Appendix B.1]). Additionally, we show that
a � -power protected ("; � )-net with respect to the uniform metric is, after transformation,
still a � -power protected ("; � )-net but with respect to the Euclidean setting [4, Lemma
26], bringing us back to the setting we have solved in Section 6. Bounds on the power
protection, sampling and separation coe�cients, and on the canvas edge length can then be
obtained from the result for the Euclidean setting, using Theorem 12. These bounds can be
transported back to the case of uniform metric �elds by scaling these values according to
the smallest eigenvalue of the metric [4, Theorem 40].

7.2 Arbitrary metric �eld

The case of an arbitrary metric �eld over 
 is handled by observing that an arbitrary
metric �eld is locally well-approximated by a uniform metric �eld. It is then a matter of
controlling the distortion.

We �rst show that, for any point p 2 
 , density separation and power protection are
locally preserved in a neighborhoodUp around p when the metric �eld g is approximated
by the constant metric �eld g0 = g(p) [4, Lemmas 27 and 39]: ifP is a � -power protected
("; � )-net with respect to g, then P is a � 0-power protected ("0; � 0)-net with respect to g0.
Previous results can now be applied to obtain conditions on� 0, "0, � 0 and on the (local)
maximal length of the canvas such thatDeldg (P) = Del g(P) (see [4, Lemma 41]).

These local triangulations can then be stitched together to form a triangulation embedded
in 
 . The (global) bound on the maximal canvas edge length is given by the minimum of
the local bounds, each computed through the results of the previous sections. This ends the
proof of Theorem 6.

Once the equality between the complexes is obtained, conditions giving the embed-
dability of the discrete Karcher Delaunay triangulation and the discrete straight Delaunay
triangulation are given by previous results that we have established in Sections 3.1 and 3.2
respectively.

8 Extensions of the main result

Approximate geodesic computations Approximate geodesic distance computations
can be incorporated in the analysis of the previous section by observing that computing
inaccurately geodesic distances in a domain
 endowed with a metric �eld g can be seen
as computing exactly geodesic distances in
 with respect to a metric �eld g0 that is close
to g [4, Section H.3].

General manifolds The previous section may also be generalized to an arbitrary smooth
n-manifold M embedded inRm . We shall assume that, apart from the metric induced by
the embedding of the domain in Euclidean space, there is a second metricg de�ned on M .
Let � p : M ! TpM be the orthogonal projection of points ofM on the tangent spaceTpM
at p. For a su�ciently small neighborhood Up � TpM , � p is a local di�eomorphism (see
Niyogi [20]).
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Denote by PTp the point set f � p(pi ); pi 2 Pg and PUp the restriction of PTp to Up.
Assuming that the conditions of Niyogi et al. [20] are satis�ed (which are simple density
constraints on " compared to the reach of the manifold), the pullback of the metric with the
inverse projection (� � 1

p ) � g de�nes a metric gp on Up such that for all q; r 2 Up, dgp (q; r) =
dg(� � 1

p (q); � � 1
p (r )) . This implies immediately that if P is a � -power protected ("; � )-net on

M with respect to g then PUp is a � -power protected("; � )-net on Up. We have thus a metric
on a subset of an-dimensional space, in this case the tangent space, giving us a setting that
we have already solved. It is left to translate the sizing �eld requirement from the tangent
plane to the manifold M itself. Note that the transformation � p is completely independent
of g. Boissonnat et al. [2, Lemma 3.7] give bounds on the metric distortion of the projection
on the tangent space. This result allows to carry the canvas sizing �eld requirement from
the tangent space toM .

9 Implementation

The construction of the discrete Riemannian Voronoi diagram and of the discrete Rie-
mannian Delaunay complex has been implemented forn = 2 ; 3 and for surfaces ofR3. An
in-depth description of our structure and its construction as well as an empirical study can
be found in our practical paper [23]. We simply make a few observations here.

The theoretical bounds on the canvas edge length provided by Theorems 6 and 7 are
far from tight and thankfully do not need to be honored in practice. A canvas whose edge
length are about a tenth of the distance between two seeds su�ces. This creates nevertheless
unnecessarily dense canvasses since the density does not in fact need to be equal everywhere
at all points and even in all directions. This issue is resolved by the use of anisotropic
canvasses.

Our analysis was based on the assumption that all canvas vertices are painted with the
color of the closest site. In our implementation, we color the canvas using a multiple-front
vector Dijkstra algorithm [5], which empirically does not su�er from the same convergence
issues as the traditional Dijkstra algorithm, starting from all the sites. It should be noted
that any geodesic distance computation method can be used, as long as it converges to the
exact geodesic distance when the canvas becomes denser. The Riemannian Delaunay com-
plex is built on the �y during the construction of the discrete Riemannian Voronoi diagram:
when a canvas simplex is �rst fully colored, its combinatorial information is extracted and
the corresponding simplex is added toDelg(P).
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