R. Aurenhammer and . Klein, Voronoi diagrams, Handbook of Computational Geometry, pp.201-290, 2000.

-. Boissonnat, R. Dyer, and A. Ghosh, Delaunay Triangulation of Manifolds, Foundations of Computational Mathematics, vol.45, issue.2, pp.1-33, 2017.
DOI : 10.1007/s10208-017-9344-1

URL : https://hal.archives-ouvertes.fr/hal-00879133

J. Boissonnat, R. Dyer, A. Ghosh, and S. Y. Oudot, Only distances are required to reconstruct submanifolds, Comp. Geom. Theory and Appl, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01096798

-. Boissonnat, M. Rouxel-labbé, and M. Wintraecken, Anisotropic triangulations via discrete Riemannian Voronoi diagrams
URL : https://hal.archives-ouvertes.fr/hal-01507273

M. Campen, L. Heistermann, and . Kobbelt, Practical Anisotropic Geodesy, Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing, SGP '13, pp.63-71, 2013.
DOI : 10.1111/cgf.12173

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Cañas and S. J. Gortler, Orphan-Free Anisotropic Voronoi Diagrams, Discrete & Computational Geometry, vol.15, issue.3, 2011.
DOI : 10.1007/s00454-011-9372-6

D. Cañas and S. J. Gortler, Duals of orphan-free anisotropic voronoi diagrams are embedded meshes, Proceedings of the 2012 symposuim on Computational Geometry, SoCG '12, pp.219-228, 2012.
DOI : 10.1145/2261250.2261283

H. Cao, T. Edelsbrunner, and . Tan, Proof of correctness of the digital Delaunay triangulation algorithm, Comp. Geo.: Theory and Applications, vol.48, 2015.

-. W. Cheng, T. K. Dey, E. A. Ramos, and R. Wenger, Anisotropic surface meshing, Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm , SODA '06, pp.202-211, 2006.
DOI : 10.1145/1109557.1109581

F. D. Azevedo and R. B. Simpson, On Optimal Interpolation Triangle Incidences, SIAM Journal on Scientific and Statistical Computing, vol.10, issue.6, pp.1063-1075, 1989.
DOI : 10.1137/0910064

K. Dey, F. Fan, and Y. Wang, Graph induced complex on point data, Computational Geometry, vol.48, issue.8, pp.575-588, 2015.
DOI : 10.1016/j.comgeo.2015.04.003

D. Du and . Wang, Anisotropic Centroidal Voronoi Tessellations and Their Applications, SIAM Journal on Scientific Computing, vol.26, issue.3, pp.737-761, 2005.
DOI : 10.1137/S1064827503428527

G. Dyer, M. Vegter, and . Wintraecken, Riemannian simplices and triangulations, Geometriae Dedicata, vol.41, issue.4, 2014.
DOI : 10.1007/s10711-015-0069-5

H. Dyer, T. Zhang, and . Möller, Surface sampling and the intrinsic Voronoi diagram, Computer Graphics Forum, vol.32, issue.3, pp.1393-1402, 2008.
DOI : 10.1111/j.1467-8659.2008.01279.x

P. S. Garland and . Heckbert, Surface simplification using quadric error metrics, Proceedings of the 24th annual conference on Computer graphics and interactive techniques , SIGGRAPH '97, pp.209-216, 1997.
DOI : 10.1145/258734.258849

URL : http://cdserver.icemt.iastate.edu/cd/s97cp/contents/papers/garland/quadrics.pdf

. Karcher, Riemannian center of mass and mollifier smoothing, Communications on Pure and Applied Mathematics, vol.3, issue.5, pp.509-541, 1977.
DOI : 10.1002/cpa.3160300502

J. R. Labelle and . Shewchuk, Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation, Proceedings of the nineteenth conference on Computational geometry , SCG '03, pp.191-200, 2003.
DOI : 10.1145/777792.777822

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

. Leibon, Random Delaunay triangulations, the Thurston-Andreev theorem, and metric uniformization, 1999.

J. Mirebeau, Optimal meshes for finite elements of arbitrary order. Constructive approximation, pp.339-383, 2010.

S. Niyogi, S. Smale, and . Weinberger, Finding the homology of submanifolds with high confidence from random samples, Discrete & Comp. Geom, vol.39, pp.1-3, 2008.

M. Peyré, R. Péchaud, L. D. Keriven, and . Cohen, Geodesic methods in computer vision and graphics. Found. Trends, Comput. Graph. Vis, 2010.

R. and B. Sanderson, Introduction to piecewise-linear topology, 2012.

M. Rouxel-labbé, J. Wintraecken, and . Boissonnat, Discretized Riemannian Delaunay Triangulations, Proc. of the 25th Intern. Mesh. Round, 2016.
DOI : 10.1016/j.proeng.2016.11.026

R. Shewchuk, What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures, 2002.

. Sperner, Fifty years of further development of a combinatorial lemma. Numerical solution of highly nonlinear problems, pp.183-197, 1980.