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Abstract: The construction of anisotropic triangulations is desirable for various applications,
such as the numerical solving of partial differential equations and the representation of surfaces in
graphics. To solve this notoriously difficult problem in a practical way, we introduce the discrete
Riemannian Voronoi diagram, a discrete structure that approximates the Riemannian Voronoi
diagram. This structure has been implemented and was shown to lead to good triangulations in
R2 and on surfaces embedded in R3 as detailed in our experimental companion paper.
In this paper, we study theoretical aspects of our structure. Given a finite set of points P in
a domain Ω equipped with a Riemannian metric, we compare the discrete Riemannian Voronoi
diagram of P to its Riemannian Voronoi diagram. Both diagrams have dual structures called the
discrete Riemannian Delaunay and the Riemannian Delaunay complex. We provide conditions that
guarantee that these dual structures are identical. It then follows from previous results that the
discrete Riemannian Delaunay complex can be embedded in Ω under sufficient conditions, leading
to an anisotropic triangulation with curved simplices. Furthermore, we show that, under similar
conditions, the simplices of this triangulation can be straightened.
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Triangulations anisotropiques via diagrammes de Voronoi
riemanniens discrets

Résumé : L’utilisation de triangulations anisotropes est souhaitable dans de nombreux
domaines, tels que la résolution d’équations aux dérivées partielles ou la visualisation de surfaces.
Pour résoudre ce problème notoirement difficile, nous proposons l’utilisation de diagrammes de
Voronoi riemanniens discrets, une structure discrete qui approxime le diagramme de Voronoi
riemannien. Cette structure a été implémentée et nous avons montré dans une publication
empirique associée qu’elle produisait de bonnes triangulations pour des domaines de R2 et des
surfaces plongées dans R3.

Dans ce papier, nous étudions les aspects théoriques de notre structure. Etant donné un
ensemble fini de points P dans un domaine Ω équippé d’une métrique riemannienne, nous com-
parons le diagramme de Voronoi riemannien discret de P Ã sa version exacte. Ces deux di-
agrammes ont chacun une structure dualle, respectivement appelées le complexe de Delaunay
riemannien discret et le complex de Delaunay riemannien. Nous donnons des conditions qui
garantissent que ces deux complexes sont identiques. Il en résulte de résultats précedemment
établis que le complexe de Delaunay riemannien discret peut Ãªtre plongé dans Ω sous certaines
conditions et une triangulation anisotrope faite de simplexes courbes est obtenue. En outre, nous
montrons que, sous des conditions analogues, les simplexes de cette triangulation peuvent Ãªtre
rendus droit.

Mots-clés : Géométrie riemannienne, Diagramme de Voronoi, Triangulation de Delaunay



Anisotropic triangulations via discrete Riemannian Voronoi diagrams 3

1 Introduction
Anisotropic triangulations are triangulations whose elements are elongated along prescribed

directions. Anisotropic triangulations are known to be well suited when solving PDE’s [12, 22, 27].
They can also significantly enhance the accuracy of a surface representation if the anisotropy of
the triangulation conforms to the curvature of the surface [18].

Many methods to generate anisotropic triangulations are based on the notion of Rieman-
nian metric and create triangulations whose elements adapt locally to the size and anisotropy
prescribed by the local geometry. The numerous theoretical and practical results [1] of the
Euclidean Voronoi diagram and its dual structure, the Delaunay triangulation, have pushed au-
thors to try and extend these well-established concepts to the anisotropic setting. Labelle and
Shewchuk [20] and Du and Wang [14] independently introduced two anisotropic Voronoi diagrams
whose anisotropic distances are based on a discrete approximation of the Riemannian metric field.
Contrary to their Euclidean counterpart, the fact that the dual of these anisotropic Voronoi di-
agrams is an embedded triangulation is not immediate, and, despite their strong theoretical
foundations, the anisotropic Voronoi diagrams of Labelle and Shewchuk and Du and Wang have
only been proven to yield, under certain conditions, a good triangulation in a two-dimensional
setting [8, 9, 11, 14, 20].

Both these anisotropic Voronoi diagrams can be considered as an approximation of the ex-
act Riemannian Voronoi diagram, whose cells are defined as Vg(pi) = {x ∈ Ω | dg(pi, x) ≤
dg(pj , x),∀pj ∈ P\pi}, where dg(p, q) denotes the geodesic distance. Their main advantage is to
ease the computation of the anisotropic diagrams. However, their theoretical and practical results
are rather limited. The exact Riemannian Voronoi diagram comes with the benefit of providing
a more favorable theoretical framework and recent works have provided sufficient conditions for
a point set to be an embedded Riemannian Delaunay complex [2, 16, 21]. We approach the
Riemannian Voronoi diagram and its dual Riemannian Delaunay complex with a focus on both
practicality and theoretical robustness. We introduce the discrete Riemannian Voronoi diagram,
a discrete approximation of the (exact) Riemannian Voronoi diagram. Experimental results,
presented in our companion paper [26], have shown that this approach leads to good anisotropic
triangulations for two-dimensional domains and surfaces, see Figure 1.

We introduce in this paper the theoretical side of this work, showing that our approach is
theoretically sound in all dimensions. We prove that, under sufficient conditions, the discrete
Riemannian Voronoi diagram has the same combinatorial structure as the (exact) Riemannian
Voronoi diagram and that the dual discrete Riemannian Delaunay complex can be embedded
as a triangulation of the point set, with either curved or straight simplices. Discrete Voronoi
diagrams have been independently studied, although in a two-dimensional isotropic setting by
Cao et al. [10].

2 Riemannian geometry
In the main part of the text we consider an (open) domain Ω in Rn endowed with a Riemannian

metric g, which we shall discuss below. We assume that the metric g is Lipschitz continuous.
The structures of interest will be built from a finite set of points P, which we call sites.

2.1 Riemannian metric
A Riemannian metric field g, defined over Ω, associates a metric g(p) = Gp to any point p of

the domain. This means that for any v, w ∈ Rn we associate an inner product 〈v, w〉g = vtg(p)w,
in a way that smoothly depends on p. Using a Riemannian metric, we can associate lengths to
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4 Boissonnat & Rouxel-Labbé & Wintraecken

Figure 1: Left, the discrete Riemannian Voronoi diagram (colored cells with bisectors in white)
and its dual complex (in black) realized with straight simplices of a two-dimensional domain
endowed with a hyperbolic shock-based metric field. Right, the discrete Riemannian Voronoi
diagram and the dual complex realized with curved simplices of the “chair” surface endowed
with a curvature-based metric field [26].

curves and define the geodesic distance dg as the minimizer of the lengths of all curves between
two points. When the map g : p 7→ G is constant, the metric field is said to be uniform. In this
case, the distance between two points x and y in Ω is dG(x, y) = ‖x− y‖G =

√
(x− y)tG(x− y).

Most traditional geometrical objects can be generalized using the geodesic distance. For
example, the geodesic (closed) ball centered on p ∈ Ω and of radius r is given by Bg(p, r) =
{x ∈ Ω | dg(p, x) ≤ r}. In the following, we assume that Ω ⊂ Rn is endowed with a Lipschitz
continuous metric field g.

We define the metric distortion between two distance functions dg(x, y) and dg′(x, y) to be the
function ψ(g, g′) such that for all x, y in a small-enough neighborhood we have: 1/ψ(g, g′) dg(x, y) ≤
dg′(x, y) ≤ ψ(g, g′) dg(x, y). Observe that ψ(g, g′) ≥ 1 and ψ(g, g′) = 1 when g = g′. Our def-
inition generalizes the concept of distortion between two metrics g(p) and g(q), as defined by
Labelle and Shewchuk [20] (see Appendix B).

2.2 Geodesy
Let v ∈ Rn. From the unique geodesic γ satisfying γ(0) = p with initial tangent vector γ̇ = v,

one defines the exponential map through exp(v) = γ(1). The injectivity radius at a point p of Ω
is the largest radius for which the exponential map at p restricted to a ball of that radius is a
diffeomorphism. The injectivity radius ιΩ of Ω is defined as the infimum of the injectivity radii
at all points. For any p ∈ Ω and for a two-dimensional linear subspace H of the tangent space at
p, we define the sectional curvature K at p for H as the Gaussian curvature at p of the surface
expp(H).

In the theoretical studies of our algorithm, we will assume that the injectivity radius of Ω is
strictly positive and its sectional curvatures are bounded.

2.3 Power protected nets
Controlling the quality of the Delaunay and Voronoi structures will be essential in our proofs.

For this purpose, we use the notions of net and of power protection.

Inria



Anisotropic triangulations via discrete Riemannian Voronoi diagrams 5

Power protection of point sets Power protection of simplices is a concept formally introduced
by Boissonnat, Dyer and Ghosh [2]. Let σ be a simplex whose vertices belong to P, and let
Bg(σ) = Bg(c, r) denote a circumscribing ball of σ where r = dg(c, p) for any vertex p of σ. We
call c the circumcenter of σ and r its circumradius.

For 0 ≤ δ ≤ r, we associate to Bg(σ) the dilated ball B+δ
g (σ) = B(c,

√
r2 + δ2). We say

that σ is δ-power protected if B+δ
g (σ) does not contain any point of P \Vert(σ) where Vert(σ)

denotes the vertex set of σ. The ball B+δ
g is the power protected ball of σ. Finally, a point set P

is δ-power protected if the Delaunay ball of its simplices are δ-power protected.

Nets To ensure that the simplices of the structures that we shall consider are well shaped, we will
need to control the density and the sparsity of the point set. The concept of net conveys these
requirements through sampling and separation parameters.

The sampling parameter is used to control the density of a point set: if Ω is a bounded
domain, P is said to be an ε-sample set for Ω with respect to a metric field g if dg(x,P) < ε,
for all x ∈ Ω. The sparsity of a point set is controlled by the separation parameter: the set P is
said to be µ-separated with respect to a metric field g if dg(p, q) ≥ µ for all p, q ∈ P. If P is
an ε-sample that is µ-separated, we say that P is an (ε, µ)-net.

3 Riemannian Delaunay triangulations
Given a metric field g, the Riemannian Voronoi diagram of a point set P, denoted by Vorg(P),

is the Voronoi diagram built using the geodesic distance dg. Formally, it is a partition of the do-
main in Riemannian Voronoi cells {Vg(pi)}, where Vg(pi) = {x ∈ Ω | dg(pi, x) ≤ dg(pj , x),∀pj ∈
P \ pi}.

The Riemannian Delaunay complex of P is an abstract simplicial complex, defined as the nerve
of the Riemannian Voronoi diagram, that is the set of simplices Delg(P) = {σ | Vert(σ) ∈
P,∩p∈σ Vg(p) 6= 0}. There is a straightforward duality between the diagram and the complex,
and between their respective elements.

In this paper, we will consider both abstract simplices and complexes, as well as their geo-
metric realization in Rn with vertex set P. We now introduce two realizations of a simplex that
will be useful, one curved and the other one straight.

The straight realization of a n-simplex σ with vertices in P is the convex hull of its vertices.
We denote it by σ. In other words,

σ̄ = {x ∈ Ω ⊂ Rn | x =
∑
p∈σ

λp(x) p, λp(x) ≥ 0,
∑
p∈σ

λp(x) = 1}. (1)

The curved realization, noted σ̃ is based on the notion of Riemannian center of mass [19, 15].
Let y be a point of σ̄ with barycentric coordinate λp(y), p ∈ σ. We can associate the energy
functional Ey(x) = 1

2
∑
p∈σ λp(y)dg(x, p)2. We then define the curved realization of σ as

σ̃ = {x̃ ∈ Ω ⊂ Rn | x̃ = argmin Ex̄(x), x̄ ∈ σ̄}. (2)

The edges of σ̃ are geodesic arcs between the vertices. Such a curved realization is well defined
provided that the vertices of σ lie in a sufficiently small ball according to the following theorem
of Karcher [19].

Theorem 3.1 (Karcher). Let the sectional curvatures K of Ω be bounded, that is Λ− ≤ K ≤ Λ+.
Let us consider the function Ey on Bρ, a geodesic ball of radius ρ that contains the set {pi}.

RR n° 9056



6 Boissonnat & Rouxel-Labbé & Wintraecken

Assume that ρ ∈ R+ is less than half the injectivity radius and less than π/4
√

Λ+ if Λ+ > 0.
Then Ey has a unique minimum point in Bρ, which is called the center of mass.

Given an (abstract) simplicial complex K with vertices in P, we define the straight (resp.,
curved) realization of K as the collection of straight (resp., curved) realizations of its simplices,
and we write K̄ = {σ̄, σ ∈ K} and K̃ = {σ̃, σ ∈ K}.

We will consider the case where K is Delg(P). A simplex of Delg(P) will simply be called
a straight Riemannian Delaunay simplex and a simplex of D̃elg(P) will be called a curved Rie-
mannian Delaunay simplex, omitting “realization of”. In the next two sections, we give sufficient
conditions for Delg(P) and D̃elg(P) to be embedded in Ω, in which case we will call them the
straight and the curved Riemannian triangulations of P.

3.1 Sufficient conditions for D̃elg(P) to be a triangulation of P

It is known that D̃elg(P) is embedded in Ω under sufficient conditions. We give a short
overview of these results. As in Dyer et al. [15], we define the non-degeneracy of a simplex σ̃ of
D̃elg(P).

Definition 3.2. The curved realization σ̃ of a Riemannian Delaunay simplex σ is said to be
non-degenerate if and only if it is homeomorphic to the standard simplex.

Sufficient conditions for the complex D̃elg(P) to be embedded in Ω were given in [15]: a
curved simplex is known to be non-degenerate if the Euclidean simplex obtained by lifting the
vertices to the tangent space at one of the vertices via the exponential map has sufficient quality
compared to the bounds on sectional curvature. Here, good quality means that the simplex is
well shaped, which may be expressed either through its fatness (volume compared to longest
edge length) or its thickness (smallest height compared to longest edge length).

Let us assume that, for each vertex p of Delg(P), all the curved Delaunay simplices in a
neighborhood of p are non-degenerate and patch together well. Under these conditions, D̃elg(P)
is embedded in Ω. We call D̃elg(P) the curved Riemannian Delaunay triangulation of P.

3.2 Sufficient conditions for Delg(P) to be a triangulation of P

Assuming that the conditions for D̃elg(P) to be embedded in Ω are satisfied, we now give
conditions such that Delg(P) is also embedded in Ω. The key ingredient will be a bound on the
distance between a point of a simplex σ̃ and the corresponding point on the associated straight
simplex σ̄ (Lemma 3.3). This bound depends on the properties of the set of sites and on the
local distortion of the metric field. When this bound is sufficiently small, Delg(P) is embedded
in Ω as stated in Theorem 3.4.

Lemma 3.3. Let σ be an n-simplex of Delg(P). Let x̄ be a point of σ̄ and x̃ the associated point
on σ̃ (as defined in Equation 1). If the geodesic distance dg is close to the Euclidean distance
dE, i.e. the distortion ψ(g, gE) is bounded by ψ0, then |x̃− x̄| ≤

√
2 · 43(ψ0 − 1)ε2.

We now apply Lemma 3.3 to the facets of the simplices of D̃elg(P). The altitude of the vertex
p in a simplex τ is noted D(p, τ).

Theorem 3.4. Let P be a δ-power protected (ε, µ)-net with respect to g on Ω. Let σ be any
n-simplex of Delg(P) and p be any vertex of σ. Let τ be a facet of σ opposite of vertex p. If, for
all x̃ ∈ τ̃ , we have |x̃− x̄| ≤ D(pi, σ) (x̄ is defined in Equation 1), then Deld(P) is embedded in
Ω.

Inria



Anisotropic triangulations via discrete Riemannian Voronoi diagrams 7

The condition |x̃− x̄| ≤ D(pi, σ) is achieved for a sufficiently dense sampling according to
Lemma 3.3 and the fact that the distortion ψ0 = ψ(g, gE) goes to 1 when the density increases.
The complete proofs of Lemma 3.3 and Theorem 3.4 can be found in Appendix F.

4 Discrete Riemannian structures
Although Riemannian Voronoi diagrams and Delaunay triangulations are appealing from a

theoretical point of view, they are very difficult to compute in practice despite many studies [24].
To circumvent this difficulty, we introduce the discrete Riemannian Voronoi diagram. This
discrete structure is easy to compute (see our companion paper [26] for details) and, as will
be shown in the following sections, it is a good approximation of the exact Riemannian Voronoi
diagram. In particular, their dual Delaunay structures are identical under appropriate conditions.

We assume that we are given a dense triangulation of the domain Ω we call the canvas and
denote by C. The canvas will be used to approximate geodesic distances between points of Ω
and to construct the discrete Riemannian Voronoi diagram of P, which we denote by Vord

g(P).
This bears some resemblance to the graph-induced complex of Dey et al. [13]. Notions related to
the canvas will explicitly carry canvas in the name (for example, an edge of C is a canvas edge).
In our analysis, we shall assume that the canvas is a dense triangulation, although weaker and
more efficient structures can be used (see Section 9 and [26]).

4.1 The discrete Riemannian Voronoi Diagram
To define the discrete Riemannian Voronoi diagram of P, we need to give a unique color to

each site of P and to color the vertices of the canvas accordingly. Specifically, each canvas vertex
is colored with the color of its closest site.

Definition 4.1 (Discrete Riemannian Voronoi diagram). Given a metric field g, we associate to
each site pi its discrete cell Vd

g(pi) defined as the union of all canvas simplices with at least one
vertex of the color of pi. We call the set of these cells the discrete Riemannian Voronoi diagram
of P, and denote it by Vord

g(P).

Observe that contrary to typical Voronoi diagrams, our discrete Riemannian Voronoi diagram
is not a partition of the canvas. Indeed, there is a one canvas simplex-thick overlapping since
each canvas simplex σC belongs to all the Voronoi cells whose sites’ colors appear in the vertices
of σC . This is intentional and allows for a straightforward definition of the complex induced by
this diagram, as shown below.

4.2 The discrete Riemannian Delaunay complex
We define the discrete Riemannian Delaunay complex as the set of simplices Deldg(P) = {σ |

Vert(σ) ∈ P,∩p∈σ Vd
g(p) 6= 0}. Using a triangulation as canvas offers a very intuitive way to

construct the discrete complex since each canvas k-simplex σ of C has k+ 1 vertices {v0, . . . , vk}
with respective colors {c0, . . . , ck} corresponding to the sites {pc0 , . . . , pck} ∈ P. Due to the
way discrete Voronoi cells overlap, a canvas simplex σC belongs to each discrete Voronoi cell
whose color appears in the vertices of σ. Therefore, the intersection of the discrete Voronoi cells
{V d

g (pi)} whose colors appear in the vertices of σ is non-empty and the simplex σ with vertices
{pi} thus belongs to the discrete Riemannian Delaunay complex. In that case, we say that the
canvas simplex σC witnesses (or is a witness of) σ. For example, if the vertices of a canvas 3-
simplex τC have colors yellow–blue–blue–yellow, then the intersection of the discrete Voronoi cells

RR n° 9056



8 Boissonnat & Rouxel-Labbé & Wintraecken

of the sites pyellow and pblue is non-empty and the one-simplex σ with vertices pyellow and pblue
belongs to the discrete Riemannian Delaunay complex. The canvas simplex τC thus witnesses
the (abstract, for now) edge between pyellow and pblue.

Figure 2 illustrates a canvas painted with discrete Voronoi cells, and the witnesses of the
discrete Riemannian Delaunay complex.

Figure 2: A canvas (black edges) and a discrete Riemannian Voronoi diagram drawn on it. The
canvas simplices colored in red are witnesses of Voronoi vertices. The canvas simplices colored
in grey are witnesses of Voronoi edges. Canvas simplices whose vertices all have the same color
are colored with that color.

Remark 4.2. If the intersection
⋂
i=0...k Vd

g(pci) is non-empty, then the intersection of any
subset of {Vd

g(pci)}i=0...k is non-empty. In other words, if a canvas simplex σC witnesses a
simplex σ, then for each face τ of σ, there exists a face τC of σC that witnesses τ . As we
assume that there is no boundary, the complex is pure and it is sufficient to only consider canvas
n-simplices whose vertices have all different colors to build Deldg(P).

Similarly to the definition of curved and straight Riemannian Delaunay complexes, we can
define their discrete counterparts we respectively denote by D̃eldg(P) and Deldg(P). We will now
exhibit conditions such that these complexes are well-defined and embedded in Ω.

5 Equivalence between the discrete and the exact struc-
tures

We first give conditions such that Vord
g(P) and Vorg(P) have the same combinatorial struc-

ture, or, equivalently, that the dual Delaunay complexes Delg(P) and Deldg(P) are identical.
Under these conditions, the fact that Deldg(P) is embedded in Ω will immediately follow from the
fact that the exact Riemannian Delaunay complex Delg(P) is embedded (see Sections 3.1 and
3.2). It thus remains to exhibit conditions under which Deldg(P) and Delg(P) are identical.

Requirements will be needed on both the set of sites in terms of density, sparsity and protec-
tion, and on the density of the canvas. The central idea in our analysis is that power protection
of P will imply a lower bound on the distance separating two non-adjacent Voronoi objects (and
in particular two Voronoi vertices). From this lower bound, we will obtain an upper bound on
the size on the cells of the canvas so that the combinatorial structure of the discrete diagram is
the same as that of the exact one. The density of the canvas is expressed by eC , the length of its
longest edge.

Inria



Anisotropic triangulations via discrete Riemannian Voronoi diagrams 9

The main result of this paper is the following theorem.
Theorem 5.1. Assume that P is a δ-power protected (ε, µ)-net in Ω with respect to g. Assume
further that ε is sufficiently small and δ is sufficiently large compared to the distortion between
g(p) and g in an ε-neighborhood of p. Let {λi} be the eigenvalues of g(p) and `0 a value that
depends on ε and δ (Precise bounds for ε, δ and l0 are given in the proof). Then, if eC <

min
p∈P

[
min
i

(√
λi
)

min {µ/3, `0/2}
]
, Deldg(P) = Delg(P).

The rest of the paper will be devoted to the proof of this theorem. Our analysis is divided
into two parts. We first consider in Section 6 the most basic case of a domain of Rn endowed
with the Euclidean metric field. The result is given by Theorem 6.1. The assumptions are then
relaxed and we consider the case of an arbitrary metric field over Ω in Section 7. As we shall
see, the Euclidean case already contains most of the difficulties that arise during the proof and
the extension to more complex settings will be deduced from the Euclidean case by bounding
the distortion.

6 Equality of the Riemannian Delaunay complexes in the
Euclidean setting

In this section, we restrict ourselves to the case where the metric field is the Euclidean metric
gE. To simplify matters, we initially assume that geodesic distances are computed exactly on the
canvas. The following theorem gives sufficient conditions to have equality of the complexes.
Theorem 6.1. Assume that P is a δ-power protected (ε, µ)-net of Ω with respect to the Euclidean
metric field gE. Denote by C the canvas, a triangulation with maximal edge length eC. If eC <
min

{
µ/16, δ2/64ε

}
, then DeldE(P) = DelE(P).

We shall now prove Theorem 6.1 by enforcing the two following conditions which, combined,
give the equality between the discrete Riemannian Delaunay complex and the Riemannian De-
launay complex:
(1) for every Voronoi vertex in the Riemannian Voronoi diagram v = ∩{pi}Vg(pi), there exists

at least one canvas simplex with the corresponding colors {cpi};

(2) no canvas simplex witnesses a simplex that does not belong to the Riemannian Delaunay
complex (equivalently, no canvas simplex has vertices whose colors are those of non-adjacent
Riemannian Voronoi cells).

Condition (2) is a consequence of the separation of Voronoi objects, which in turn follows from
power protection. The separation of Voronoi objects has previously been studied, for example
by Boissonnat et al. [2]. Although the philosophy is the same, our setting is slightly more
difficult and the results using power protection are new and use a more geometrical approach
(see Appendix C).

6.1 Sperner’s lemma
Rephrasing Condition (1), we seek requirements on the density of the canvas C and on the

nature of the point set P such that there exists at least one canvas n-simplex of C that has exactly
the colors c0, . . . , cd of the vertices p0, . . . , pd of a simplex σ, for all σ ∈ Delg(P). To prove the
existence of such a canvas simplex, we employ Sperner’s lemma [28], which is a discrete analog
of Brouwer’s fixed point theorem. We recall this result in Theorem 6.2 and illustrate it in a two-
dimensional setting (inset).

RR n° 9056



10 Boissonnat & Rouxel-Labbé & Wintraecken

Theorem 6.2 (Sperner’s lemma).
Let σ = (p0, . . . , pn) be an n-simplex and let Tσ denote a trian-
gulation of the simplex. Let each vertex v′ ∈ Tσ be colored such
that the following conditions are satisfied:

• The vertices pi of σ all have different colors.

• If a vertex p′ lies on a k-face (pi0 , . . . pik) of σ, then p′ has
the same color as one of the vertices of the face, that is pij .

Then, there exists an odd number of simplices in Tσ whose vertices are colored with all n + 1
colors. In particular, there must be at least one.

We shall apply Sperner’s lemma to the canvas C and show that for every Voronoi vertex v
in the Riemannian Voronoi diagram, we can find a subset Cv of the canvas that fulfills the
assumptions of Sperner’s lemma, hence obtaining the existence of a canvas simplex in Cv (and
therefore in C) that witnesses σv. Concretely, the subset Cv is obtained in two steps:

– We first apply a barycentric subdivision of the Riemannian Voronoi cells incident to v.
From the resulting set of simplices, we extract a triangulation Tv composed of the simplices
incident to v (Section 6.2).

– We then construct the subset Cv by overlaying the border of Tv and the canvas (Section 6.3).

We then show that if the canvas simplices are small enough – in terms of edge length – then Cv
is the triangulation of a simplex that satisfies the assumptions of Sperner’s lemma.

The construction of Cv is detailed in the following sections and illustrated in Figure 3: starting
from a colored canvas (left), we subdivide the incident Voronoi cells of v to obtain Tv (middle),
and deduce the set of canvas simplices Cv which forms a triangulation that satisfies the hypotheses
of Sperner’s lemma, thus giving the existence of a canvas simplex (in green, right) that witnesses
the Voronoi vertex within the union of the simplices, and therefore in the canvas.

v v
v

Tv
Cv

Figure 3: Illustration of the construction of Cv. The Riemannian Voronoi diagram is drawn with
thick orange edges and the sites are colored squares. The canvas is drawn with thin gray edges
and colored circular vertices. The middle frame shows the subdivision of the incident Voronoi
cells with think black edges and the triangulation Tv is drawn in yellow. On the right frame, the
set of simplices Cv is colored in purple (simplices that do not belong to C) and in dark yellow
(simplices that belong to C).

Inria



Anisotropic triangulations via discrete Riemannian Voronoi diagrams 11

6.2 The triangulation Tv

For a given Voronoi vertex v in the Euclidean Voronoi diagram VorE(P) of the domain Ω,
the initial triangulation Tv is obtained by applying a combinatorial barycentric subdivision of
the Voronoi cells of VorE(P) that are incident to v: to each Voronoi cell V incident to v, we
associate to each face F of V a point cF in F which is not necessarily the geometric barycenter.
We randomly associate to cF the color of any of the sites whose Voronoi cells intersect to give F .
For example, in a two-dimensional setting, if the face F is a Voronoi edge that is the intersection
of Vred and Vblue, then cF is colored either red or blue. Then, the subdivision of V is computed
by associating to all possible sequences of faces {F0, F1, . . . Fn−1, Fn} such that F0 ⊂ F1 · · · ⊂
Fn = V and dim(Fi+1) = dim(Fi) + 1 the simplex with vertices {cF0 , cF1 , . . . , cFn−1 , cFn}. These
barycentric subdivisions are allowed since Voronoi cells are convex polytopes.

Denote by ΣV the set of simplices obtained by barycentric subdivision of V and Σv = {∪ΣV |
v ∈ V }. The triangulation Tv is defined as the star of v in Σv, that is the set of simplices in
Σv that are incident to v. Tv is illustrated in Figure 4 in dimension 3. As shall be proven in
Lemma 6.3, Tv can be used to define a combinatorial simplex that satisfies the assumptions of
Sperner’s lemma.

B

B

B B

B
B

v

Figure 4: The triangulation Tv in 3D. A face (in
green) and an edge (in red) of σS .

Tv as a triangulation of an n-simplex
By construction, the triangulation Tv is a tri-
angulation of the (Euclidean) Delaunay sim-
plex σv dual of v as follows. We first per-
form the standard barycentric subdivision on
this Delaunay simplex σv. We then map the
barycenter of a k-face τ of σv to the point cFi
on the Voronoi face Fi, where Fi is the Voronoi
dual of the k-face τ . This gives a piecewise lin-
ear homeomorphism from the Delaunay sim-
plex σv to the triangulation Tv. We call the
image of this map the simplex σS and refer to
the images of the faces of the Delaunay sim-
plex as the faces of σS . We can now apply
Sperner’s lemma.

Lemma 6.3. Let P be a δ-power protected (ε, µ)-net. Let v be a Voronoi vertex in the Eu-
clidean Voronoi diagram, VorE(P), and let Σv be defined as above. The simplex σS and the
triangulation Tv satisfy the assumptions of Sperner’s lemma in dimension n.

Proof. By the piecewise linear map that we have described above, Tv is a triangulation of the sim-
plex σS . Because by construction the vertices cFi lie on the Voronoi duals Fi of the corresponding
Delaunay face τ , cFi has the one of the colors of of the Delaunay vertices of τ . Therefore, σS
satisfies the assumptions of Sperner’s lemma and there exists an n-simplex in Tv that witnesses
v and its corresponding simplex σv in Delg(P).

6.3 Building the triangulation Cv

Let pi be the vertices of the k-face τS of σS . In this section we shall assume not only that τS
is contained in the union of the Voronoi cells of V (pi), but in fact that τS is a distance 8eC
removed from the boundary of ∪V (pi), where eC is the longest edge length of a simplex in the
canvas. We will now construct a triangulation Cv of σS such that:
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12 Boissonnat & Rouxel-Labbé & Wintraecken

• σS and its triangulation Cv satisfy the conditions of Sperner’s lemma,

• the simplices of Cv that have no vertex that lies on the boundary ∂σS are simplices of the
canvas C.

The construction goes as follows. We first intersect the canvas C with σS and consider the
canvas simplices σC,i such that the intersection of σS and σC,i is non-empty. These simplices σC,i
can be subdivided into two sets, namely those that lie entirely in the interior of σS , which we
denote by σint

C,i, and those that intersect the boundary, denoted by σ∂C,i.
The simplices σint

C,i are added to the set Cv. We intersect the simplices σ∂C,i with σS and
triangulate the intersection. Note that σ∂C,i ∩ σS is a convex polyhedron and thus triangulating
it is not a difficult task. The vertices of the simplices in the triangulation of σ∂C,i∩σS are colored
according to which Voronoi cell they belong to. Finally, the simplices in the triangulation of
σ∂C,i ∩ σS are added to the set Cv.

Since Tv is a triangulation of σS , the set Cv is by construction also a triangulation of σS .
This triangulation trivially gives a triangulation of the faces τS . Because we assume that τS is
contained in the union of its Voronoi cells, with a margin of 8eC we now can draw two important
conclusions:

• The vertices of the triangulation of each face τS have the colors of the vertices pi of τS .

• None of the simplices in the triangulation of σ∂C,i ∩ σS can have n+ 1 colors, because every
such simplex must be close to one face τS , which means that it must be contained in the
union of the Voronoi cells V (pi) of the vertices of τS .

We can now invoke Sperner’s lemma; Cv is a triangulation of the simplex σS whose every
face has been colored with the appropriate colors (since σS triangulated by Tv satisfies the
assumptions of Sperner’s lemma, see Lemma 6.3). This means that there is a simplex Cv that is
colored with n+ 1 colors. Because of our second observation above, the simplex with these n+ 1
colors must lie in the interior of σS and is thus a canvas simplex.

We summarize by the following lemma:

Lemma 6.4. If every face τS of σS with vertices pi is at distance 8eC from the boundary of
the union of its Voronoi cells ∂(∪V (pi)), then there exists a canvas simplex in Cv such that it is
colored with the same vertices as the vertices of σS .

The key task that we now face is to guarantee that faces τS indeed lie well inside of the union
of the appropriate Voronoi regions. This requires first and foremost power protection. Indeed,
if a point set is power protected, the distance between a Voronoi vertex c and the Voronoi faces
that are not incident to c, which we will refer to from now on as foreign Voronoi faces, can be
bounded, as shown in the following Lemma:

Lemma 6.5. Suppose that c is the circumcenter of a δ-power protected simplex σ of a Delaunay
triangulation built from an ε-sample, then all foreign Voronoi faces are at least δ2/8ε far from c.

The proof of this Lemma is given in the appendix (Section C.2).
In almost all cases, this result gives us the distance bound we require: we can assume that

vertices {cF0 , cF1 , . . . , cFn−1 , cFn} which we used to construct Tv, are well placed, meaning that
there is a minimum distance between these vertices and foreign Voronoi objects. However it can
still occur that foreign Voronoi objects are close to a face τS of σS . This occurs even in two
dimensions, where a Voronoi vertex v′ can be very close to a face τS because of obtuse angles,
as illustrated in Figure 5.
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v

v′

Tv
v′ v′

Figure 5: The point v′ can be arbitrarily close to Tv, as shown by the red segments (left and
center). After piecewise linear deformation, this issue is resolved, as seen by the green segments
(right).

Thanks to power protection, we know that v′ is removed from foreign Voronoi objects. This
means that we can deform σS (in a piecewise linear manner) in a neighborhood of v′ such that
the distance between v′ and all the faces of the deformed σS is lower bounded.

In general the deformation of σS is performed by “radially pushing” simplices away from
the foreign Voronoi faces of v with a ball of radius r = min

{
µ/16, δ2/64ε

}
. The value µ/16 is

chosen so that we do not move any vertex of σv (the dual of v): indeed, P is µ-separated and
thus dE(pi, pj) > µ. The value δ2/64ε is chosen so that σS and its deformation stay isotopic (no
“pinching” can happen), using Lemma 6.5. In fact it is advisable to use a piecewise linear version
of “radial pushing”, to ensure that the deformation of σS is a polyhedron. This guarantees that
we can triangulate the intersection, see Chapter 2 of Rourke and Sanderson [25]. After this
deformation we can follow the steps we have given above to arrive at a well-colored simplex.

Lemma 6.6. Let P be a δ-power protected (ε, µ)-net. Let v be a Voronoi vertex of the Euclidean
Voronoi diagram VorE(P), and Tv as defined above. If the length eC of the longest canvas edge
is bounded as follows: eC < r = min

{
µ/16, δ2/64ε

}
, then there exists a canvas simplex that

witnesses v and the corresponding simplex σv in DelE(P).

Conclusion So far, we have only proven that Delg(P) ⊆ Deldg(P). The other inclusion, which
corresponds to Condition (2) mentioned above, is much simpler: as long as a canvas edge is
shorter than the smallest distance between a Voronoi vertex and a foreign face of the Riemannian
Voronoi diagram, then no canvas simplex can witness a simplex that is not in Delg(P). Such a
bound is already given by Lemma 6.5 and thus, if eC < δ2/8ε then Deldg(P) ⊆ Delg(P). Observe
that this requirement is weaker than the condition imposed in Lemma 6.6 and it was thus already
satisfied. It follows that Deldg(P) = Delg(P) if eC < min

{
µ/16, δ2/64ε

}
, which concludes the

proof of Theorem 6.1.

Remark 6.7. Assuming that the point set is a δ-power protected (ε, µ)-net might seem like a
strong assumption. However, it should be observed that any non-degenerate point set can be seen
as a δ-power protected (ε, µ)-net, for a sufficiently large value of ε and sufficiently small values
of δ and µ. Our results are therefore always applicable but the necessary canvas density increases
as the quality of the point set worsens (Lemma 6.6). In our companion practical paper [26,
Section 7], we showed how to generate δ-power protected (ε, µ)-nets for given values of ε, µ and
δ.
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7 Extension to more complex settings
In the previous section, we have placed ourselves in the setting of an (open) domain endowed

with the Euclidean metric field. To prove Theorem 5.1, we need to generalize Theorem 6.1 to
more general metrics, which will be done in the two following subsections.

The common path to prove Deldg(P) = Delg(P) in all settings is to assume that P is a power
protected net with respect to the metric field. We then use the stability of entities under small
metric perturbations to take us back to the now solved case of the domain Ω endowed with an
Euclidean metric field. Separation and stability of Delaunay and Voronoi objects has previously
been studied by Boissonnat et al. [2, 5], but our work lives in a slightly more complicated setting.
Moreover, our proofs are generally more geometrical and sometimes simpler. For completeness,
the extensions of these results to our context are detailed in Appendix C for separation, and in
Appendix E for stability.

We now detail the different intermediary settings. For completeness, the full proofs are
included in the appendices.

7.1 Uniform metric field

We first consider the rather easy case of a non-Euclidean but uniform (constant) metric field
over an (open) domain. The square root of a metric gives a linear transformation between the
base space where distances are considered in the metric and a metric space where the Euclidean
distance is used (see Appendix B.1.1). Additionally, we show that a δ-power protected (ε, µ)-net
with respect to the uniform metric is, after transformation, still a δ-power protected (ε, µ)-net
but with respect to the Euclidean setting (Lemma E.1 in Appendix E), bringing us back to the
setting we have solved in Section 6. Bounds on the power protection, sampling and separation
coefficients, and on the canvas edge length can then be obtained from the result for the Euclidean
setting, using Theorem 6.6. These bounds can be transported back to the case of uniform metric
fields by scaling these values according to the smallest eigenvalue of the metric (Theorem H.1 in
Appendix H).

7.2 Arbitrary metric field

The case of an arbitrary metric field over Ω is handled by observing that an arbitrary metric
field is locally well-approximated by a uniform metric field. It is then a matter of controlling the
distortion.

We first show that, for any point p ∈ Ω, density separation and power protection are locally
preserved in a neighborhood Up around p when the metric field g is approximated by the constant
metric field g′ = g(p) (Lemmas E.2 and E.16 in Appendix E): if P is a δ-power protected (ε, µ)-
net with respect to g, then P is a δ′-power protected (ε′, µ′)-net with respect to g′. Previous
results can now be applied to obtain conditions on δ′, ε′, µ′ and on the (local) maximal length
of the canvas such that Deldg(P) = Delg(P) (Lemma H.2 in Appendix H).

These local triangulations can then be stitched together to form a triangulation embedded
in Ω. The (global) bound on the maximal canvas edge length is given by the minimum of the
local bounds, each computed through the results of the previous sections. This ends the proof
of Theorem 5.1.

Once the equality between the complexes is obtained, conditions giving the embeddability
of the discrete Karcher Delaunay triangulation and the discrete straight Delaunay triangulation
are given by previous results that we have established in Sections 3.1 and 3.2 respectively.

Inria



Anisotropic triangulations via discrete Riemannian Voronoi diagrams 15

8 Extensions of the main result

Approximate geodesic computations Approximate geodesic distance computations can
be incorporated in the analysis of the previous section by observing that computing inaccurately
geodesic distances in a domain Ω endowed with a metric field g can be seen as computing ex-
actly geodesic distances in Ω with respect to a metric field g′ that is close to g (Section H.3 in
Appendix H).

General manifolds The previous section may also be generalized to an arbitrary smooth n-
manifold M embedded in Rm. We shall assume that, apart from the metric induced by the
embedding of the domain in Euclidean space, there is a second metric g defined on M. Let
πp : M → TpM be the orthogonal projection of points of M on the tangent space TpM at p.
For a sufficiently small neighborhood Up ⊂ TpM, πp is a local diffeomorphism (see Niyogi [23]).

Denote by PTp the point set {πp(pi), pi ∈ P} and PUp the restriction of PTp to Up. Assuming
that the conditions of Niyogi et al. [23] are satisfied (which are simple density constraints on ε
compared to the reach of the manifold), the pullback of the metric with the inverse projection
(π−1
p )∗g defines a metric gp on Up such that for all q, r ∈ Up, dgp(q, r) = dg(π−1

p (q), π−1
p (r)). This

implies immediately that if P is a δ-power protected (ε, µ)-net onM with respect to g then PUp
is a δ-power protected (ε, µ)-net on Up. We have thus a metric on a subset of a n-dimensional
space, in this case the tangent space, giving us a setting that we have already solved. It is left
to translate the sizing field requirement from the tangent plane to the manifoldM itself. Note
that the transformation πp is completely independent of g. Boissonnat et al. [2, Lemma 3.7] give
bounds on the metric distortion of the projection on the tangent space. This result allows to
carry the canvas sizing field requirement from the tangent space toM.

9 Implementation

The construction of the discrete Riemannian Voronoi diagram and of the discrete Riemannian
Delaunay complex has been implemented for n = 2, 3 and for surfaces of R3. An in-depth
description of our structure and its construction as well as an empirical study can be found in
our practical paper [26]. We simply make a few observations here.

The theoretical bounds on the canvas edge length provided by Theorems 5.1 and 6.1 are far
from tight and thankfully do not need to be honored in practice. A canvas whose edge length are
about a tenth of the distance between two seeds suffices. This creates nevertheless unnecessarily
dense canvasses since the density does not in fact need to be equal everywhere at all points and
even in all directions. This issue is resolved by the use of anisotropic canvasses.

Our analysis was based on the assumption that all canvas vertices are painted with the color
of the closest site. In our implementation, we color the canvas using a multiple-front vector
Dijkstra algorithm [7], which empirically does not suffer from the same convergence issues as the
traditional Dijkstra algorithm, starting from all the sites. It should be noted that any geodesic
distance computation method can be used, as long as it converges to the exact geodesic distance
when the canvas becomes denser. The Riemannian Delaunay complex is built on the fly during
the construction of the discrete Riemannian Voronoi diagram: when a canvas simplex is first
fully colored, its combinatorial information is extracted and the corresponding simplex is added
to Delg(P).
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Overview of the appendices
The topics of the appendices are as follows:

A We review basic definitions related to simplices and complexes.

B We describe our generalization of the notion of distortion between metrics due to Labelle
and Shewchuk.

C We discuss the separation of Voronoi objects. The main differences between this appendix
and [2] are in our definition of metric distortion, the use of power protection, and the more
geometrical nature of the proofs.

D This appendix is related to the previous one and focuses on dihedral angles of Delaunay
simplices. These results are intermediary steps used in Appendices E and H.

E Here we built upon the previous two sections and discuss the stability of nets and Voronoi
cells. This section distinguishes itself by the elementary and geometrical nature of the
proofs.

F We prove that the Delaunay simplices can be straightened, under sufficient conditions. The
proof of the stability of the center of mass, which forms the core of this appendix, is also
remarkable in the sense that it generalizes trivially to a far more general setting.

G We illustrate a degenerate case of Section 6.3.

H This appendix gives the proofs for our main result, Theorem 5.1, in the general setting of
an arbitrary metric. We naturally rely heavily on Appendices C, D, E, and H.

The references for the Appendix can be found at the end of the Appendix.

A Simplices and complexes
The purpose of this section is to offer the precise definitions of concepts and notions related

to simplicial complexes. The following definitions live within the context of abstract simplices
and complexes.

A simplex σ is a non-empty finite set. The dimension of σ is given by dim σ = #(σ)− 1, and
a j-simplex refers to a simplex of dimension j. The elements of σ are called the vertices of σ.
The set of vertices of σ is noted Vert(σ).

If a simplex τ is a subset of σ , we say it is a face of σ , and we write τ ≤ σ. A 1-dimensional
face is called an edge. If τ is a proper subset of σ , we say it is a proper face and we write τ < σ.
A facet of σ is a face τ with dim τ = dim σ − 1.

For any vertex p ∈ σ, the face opposite to p is the face determined by the other vertices
of σ, and is denoted by σp. If τ is a j-simplex, and p is not a vertex of σ, we may construct
a (j+1)-simplex σ = p∗ τ , called the join of p and τ as the simplex defined by p and the vertices
of τ .

The length of an edge is the distance between its vertices. The height of p in σ is D(p, σ) =
d(p, aff σp).

A circumscribing ball for a simplex σ is any n-dimensional ball that contains the vertices of σ
on its boundary. If σ admits a circumscribing ball, then it has a circumcenter, C(σ), which is the
center of the unique smallest circumscribing ball for σ. The radius of this ball is the circumradius
of σ, denoted by R(σ).
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A.1 Complexes

Before defining Delaunay triangulations, we introduce the more general concept of simplicial
complexes. Since the standard definition of a simplex as the convex hull of a set of points does
not extend well to the Riemannian setting (see Dyer [15]), we approach these definitions from a
more abstract point of view.

The length of an edge is the distance between its vertices. A circumscribing ball for a simplex
σ is any n-dimensional ball that contains the vertices of σ on its boundary. If σ admits a
circumscribing ball, then it has a circumcenter, C(σ), which is the center of the unique smallest
circumscribing ball for σ. The radius of this ball is the circumradius of σ, denoted by R(σ).
The height of p in σ is D(p, σ) = d(p, aff(σp)). The dihedral angle between two facets is the
angle between their two supporting planes. If σ is a j-simplex with j ≥ 2, then for any two
vertices p, q ∈ σ, the dihedral angle between σp and σq defines an equality between ratios of
heights (see Figure 6).

sin∠(aff(σp), aff(σq)) = D(p, σ)
D(p, σq)

= D(q, σ)
D(q, σp)

.

p

q

u

v

u

v

p

q

θ

θ

D(p, σ)D(p, σq)

Figure 6: Acute and obtuse dihedral angles

A.2 Simplicial complexes

Simplicial complexes form the underlying framework of Delaunay triangulations. An abstract
simplicial complex is a set K of simplices such that if σ ∈ K, then all the faces of σ also belong to
K. The union of the vertices of all the simplices of K is called the vertex set of K. The dimension
of a complex is the largest dimension of any of its simplices. A subset L ⊆ K is a subcomplex of
K if it is also a complex. Two simplices are adjacent if they share a face and incident if one is a
face of the other. If a simplex in K is not a face of a larger simplex, we say that it is maximal. If
all the maximal simplices in a complex K of dimension n have dimension n, then the simplicial
complex is pure. The star of a vertex p in a complex K is the subcomplex S formed by set of
simplices that are incident to p. The link of a vertex p is the union of the simplices opposite of
p in Sp.

A geometric simplicial complex is an abstract simplicial complex whose faces are materialized,
and to which the following condition is added: the intersection of any two faces of the complex
is either empty or a face of the complex.
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B Geodesic distortion
The concept of distortion was originally introduced by Labelle and Shewchuk [20] to relate

distances with respect to two metrics, but this result can be (locally) extended to geodesic
distances.

B.1 Original distortion

We first recall their definition and then show how to extend it to metric fields. The notion
of metric transformation is required to define this original distortion, and we thus recall it now.

B.1.1 Metric transformation

Given a symmetric positive definite matrix G, we denote by F any matrix such that det(F ) >
0 and F tF = G. The matrix F is called a square root of G. The square root of a matrix is
not uniquely defined: the Cholesky decomposition provides, for example, an upper triangular F ,
but it is also possible to consider the diagonalization of G as OTDO, where O is an orthonormal
matrix and D is a diagonal matrix; the square root is then taken as F = OT

√
DO. The latter

definition is more natural than other decompositions since
√
D is canonically defined and F is

then also a symmetric definite positive matrix, with the same eigenvectors as G. Regardless
of the method chosen to compute the square root of a metric, we assume that it is fixed and
identical for all the metrics considered.

The square root F offers a linear bijective transformation between the Euclidean space and
a metric space, noting that

dG(x, y) =
√

(x− y)tF tF (x− y) = ‖F (x− y)‖ = ‖Fx− Fy‖ ,

where ‖·‖ stands for the Euclidean norm. Thus, the metric distance between x and y in Euclidean
space can be seen as the Euclidean distance between two transformed points Fx and Fy living
in the metric space of G.

B.1.2 Distortion

The distortion between two points p and q of Ω is defined by Labelle and Shewchuk [20] as
ψ(p, q) = ψ(Gp, Gq) = max

{∥∥FpF−1
q

∥∥ ,∥∥FqF−1
p

∥∥}, where ‖·‖ is the Euclidean matrix norm, that
is ‖M‖ = supx∈Rn

‖Mx‖
‖x‖ . Observe that ψ(Gp, Gq) ≥ 1 and ψ(Gp, Gq) = 1 when Gp = Gq.

A fundamental property of the distortion is to relate the two distances dGp and dGq . Specif-
ically, for any pair x, y of points, we have

1
ψ(p, q) dGp(x, y) ≤ dGq (x, y) ≤ ψ(p, q) dGp(x, y). (3)

Indeed,

dp(x, y) =
∥∥∥Fp(x− y)

∥∥∥ =
∥∥FpF−1

q Fq(x− y)
∥∥ ≤ ∥∥FpF−1

q

∥∥∥∥∥Fq(x− y)
∥∥∥ ≤ ψ(Gp, Gq) dq(x, y),

and the other inequality is obtained similarly.
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B.2 Geodesic distortion
The previous definition can be defined to hold (locally) for metric fields instead of metric, as

we show now.

Lemma B.1. Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let ψ0 ≥ 1
be a bound on the metric distortion, in the sense of Labelle and Shewchuk. Suppose that U is in-
cluded in a ball Bg(p0, r0), with p0 ∈ U and r0 ∈ R+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0.
Then, for all x, y ∈ U ,

1
ψ0
dg(x, y) ≤ dg′(x, y) ≤ ψ0 dg(x, y),

where dg and dg′ indicate the geodesic distances with respect to g and g′ respectively.

Proof. Recall that for p ∈ Bg(p0, r0) and, for any pair x, y of points, we have

1
ψ0

dg(p)(x, y) ≤ dg′(p)(x, y) ≤ ψ0 dg(p)(x, y).

Therefore, for any curve γ(t) in U , we have that

1
ψ0

∫ √
〈γ̇, γ̇〉g(γ(t))dt ≤

∫ √
〈γ̇, γ̇〉g′(γ(t))dt ≤ ψ0

∫ √
〈γ̇, γ̇〉g(γ(t))dt.

Considering the infimum over all paths γ that begin at x and end at y, we obtain the result.

Note that this result is independent from the definition of the distortion and is entirely based
on the inequality comparing distances in two metrics (Equation 3).

C Separation of Voronoi objects
Power protected point sets were introduced to create quality bounds for the simplices of

Delaunay triangulations built using such point sets [2]. We will show that power protection
allows to deduce additional useful results for Voronoi diagrams. In this section we show that
when a Voronoi diagram is built using a power protected sample set, its non-adjacent Voronoi
faces, and specifically its Voronoi vertices are separated. This result is essential to our proofs
in Sections 6 and 7 where we approximate complicated Voronoi cells with simpler Voronoi cells
without creating inversions in the dual, which is only possible because we know that Voronoi
vertices are far from one another.

We assume that the protection parameter δ is proportional to the sampling parameter ε, thus
there exists a positive ι, with ι ≤ 1, such that δ = ιε. We assume that the separation parameter µ
is proportional to the sampling parameter ε and thus there exists a positive λ, with λ ≤ 1, such
that µ = λε.

C.1 Separation of Voronoi vertices
The main result provides a bound on the Euclidean distance between Voronoi vertices of

the Euclidean Voronoi diagram of a point set and is given by Lemma C.4. The following three
lemmas are intermediary results needed to prove Lemma C.4.

Lemma C.1. Let B = B(c,R) and B′ = B(c′, R′) be two n-balls whose bounding spheres ∂B
and ∂B′ intersect, and let H be the bisecting hyperplane of B and B′, i.e. the hyperplane that
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contains the (n− 2)-sphere S = ∂B ∩ ∂B′. Let θ be the angle of the cone (c, S). Writing ρ = R′

R
and ‖c− c′‖ = λR, we have

cos(θ) = 1 + λ2 − ρ2

2λ . (4)

If R ≥ R′, we have cos(θ) ≥ λ
2 .

Proof. Let q ∈ S; applying the cosine rule to the triangle 4cc′q gives

λ2R2 +R2 − 2λR2 cos(θ) = R′
2
, (5)

which proves Equation (4). If R ≥ R′, then ρ ≤ 1, and cos(θ) ≥ λ/2 immediately follows from
Equation (4).

c c′
θ θ̃

B

B′
B′+δ

q
q̃

H

˜H

Figure 7: Construction used in Lemmas C.1 and C.2.

Lemma C.2. Let B = B(c,R) and B′ = B(c′, R′) be two n-balls whose bounding spheres ∂B
and ∂B′ intersect, and let θ̃ be the angle of the cone (c, S̃) where S̃ = ∂B ∩ ∂B′+δ. Writing
‖c− c′‖ = λR, we have

cos(θ̃) = cos(θ)− δ2

2R2λ

Proof. Let q̃ ∈ S̃, applying the cosine rule to the triangle 4cc′q̃ gives

λ2R2 +R2 − 2λR2 cos(θ̃) = R′
2 + δ2.

Subtracting (5) from the previous equality yields δ2 = 2λR2(cos(θ) − cos(θ̃)), which proves the
lemma.

The altitude of the vertex pi in the simplex σ is denoted by D(pi, σ).
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Lemma C.3. Let σ = p ∗ τ and σ′ = p′ ∗ τ be two Delaunay simplices sharing a common
facet τ . (Here ∗ denotes the join operator.) Let B(σ) = B(c,R) and B(σ′) = B(c′, R′) be the
circumscribing balls of σ and σ′ respectively. Then σ′ is δ-power protected with respect to p, that
is p 6∈ B(σ′)+δ if and only if ‖c− c′‖ ≥ δ2

2D(p,σ) .

Proof. The spheres ∂B and ∂B′+δ intersect in a (n− 2)-sphere S̃ which is contained in a hyper-
plane H̃ parallel to the hyperplane H = aff(τ). For any q̃ ∈ S̃ we have

d(H̃,H) = d(q̃, H) = R(cos(θ)− cos(θ̃)) = δ2

2 ‖c− c′‖ ,

where the last equality follows from Lemma C.2 and d(H̃,H) denotes the distance between the
two parallel hyperplanes. See Figure 7 for a sketch. Since p ∈ ∂B, p belongs to B(σ′)+δ if and
only if p lies in the strip bounded by H and H̃, which is equivalent to

d(p,H) = D(p, σ) < δ2

2 ‖c− c′‖ .

The result now follows.

We can make this bound independent of the simplices considered, as shown in Lemma C.4.

Lemma C.4. Let P be a δ-power protected (ε, µ)-sample. The protection parameter ι is given
by δ = ιε. For any two adjacent Voronoi vertices c and c′ of VD(P), we have

‖c− c′‖ ≥ δ2

4ε = ι2ε

4 .

Proof. For any simplex σ, we have D(p, σ) ≤ 2Rσ for all p ∈ σ, where Rσ denotes the radius
of the circumsphere of σ. For any σ in the triangulation of an ε-net, we have Rσ ≤ ε. Thus
D(p, σ) ≤ 2ε, and Lemma C.3 yields ‖c− c′‖ ≥ δ2/4ε.

Remark C.5. In this section, we have computed a lower bound on the distance between two
(adjacent) Voronoi vertices. In Appendix E, we shall show that Voronoi vertices are stable under
metric perturbations, meaning that when a metric field is slightly modified, the position of a
Voronoi vertex does not move too much. The combination of this separation and stability will
then be the basis of many proofs in this paper.

C.2 Separation of Voronoi faces (Proof of Lemma 6.5)
Similar results can be obtained on the distance between a Voronoi vertex c and faces that

are not incident to c, also referred to as foreign faces. Note that we are still in the context of an
Euclidean metric.

The following lemma can be found in [3, Lemma 3.3] for ordinary protection instead of power
protection.

Lemma C.6. Suppose that c is the circumcenter of a δ-power protected simplex σ of a Delaunay
triangulation built from an ε-sample, then all foreign Voronoi faces are at least δ2/8ε removed
from c.
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p0

q

p1

x

r

p2

c

c′

c′′

p3

p4

V (p0)

σ

Figure 8: Illustration of the notations for the proof of Lemma 6.5. The simplex σ is dashed in
yellow and has vertices p0p1p2. The distances cc′ and cc′′ are lower bounded by δ2/4ε.

Proof. We denote by p0 an (arbitrary) vertex of σ, and by q a vertex that is not in σ but is
adjacent to p0 in Del(P). Let x be a point in B(c, r) ∩ VE(p0), with 0 < r < δ2/4ε. The
upper bound for r is chosen with Lemma C.3 in mind: we are trying to find a condition such
that x ∈ VE(p0). The notations are illustrated in Figure 8.

Because of the triangle inequality, we have that

|d(c, q)− d(x, q)| ≤ d(x, c)
|d(c, pi)− d(x, pi)| ≤ d(x, c).

By power protection, we have that d(c, q)2 ≥ d(c, pi)2 + δ2. Therefore,

(d(x, q) + r)2 ≥ (d(x, pi)− r)2 + δ2

d(x, q)2 + 2rd(x, q) ≥ d(x, pi)2 − 2rd(x, pi) + δ2

d(x, q)2 ≥ d(x, pi)2 − 2r(d(x, pi) + d(x, q)) + δ2.

Without loss of generality, we can assume that q is the site closest to c and thus d(x, q) <
d(x, c). If P is an ε-net, we have

d(x, pi) + d(x, q) ≤ d(x, pi) + d(c, q) ≤ ε+ 3ε = 4ε,

so

d(x, q)2 ≥ d(x, pi)2 − 8rε+ δ2.

This implies that as long r < δ2/8ε, x lies in a Voronoi object associated to the vertices pi of
σ.

Further progressing, we can show that Voronoi faces are thick, with Lemma C.7. This prop-
erty is useful to construct a triangulation that satisfies the hypotheses of Sperner’s lemma.
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Lemma C.7. Let P be a δ-power protected (ε, µ)-net. Let V0 be the Voronoi cell of the site p0 ∈
P in the Euclidean Voronoi diagram VDE(P). Then for any k-face F0 of V0 with k ∈ [1, . . . , n],
there exists x ∈ F0 such that

d(x, ∂F0) > δ2

16ε ,

where ∂F0 denotes the boundary of the face F0.

Proof. All the vertices of F0 are circumcenters of VDE(P). Consider the erosion of the face
F0 by a ball of radius δ2

16ε and denote it F−0 . If F−0 is empty, we contradict the separation
Lemma 6.5.

D Bounds on dihedral angles
The use of nets allows us to deduce bounds on the dihedral angles of faces of the Delaunay

triangulation, as well as on the dihedral angles between adjacent faces of a Voronoi diagram.
Those bounds are frequently used throughout this paper, and specifically to prove stability of
Voronoi vertices (see Appendix E). Since we are interested in dihedral bounds in the Euclidean
setting, the point set is first assumed to be a net with respect to the Euclidean metric field. We
complicate matters slightly with Lemma D.5 by assuming that the point set is a power protected
net with respect to an arbitrary metric field that is not too far from the Euclidean metric field (in
terms of distortion), and still manage to expose bounds with respect to the Euclidean distance.

D.1 Bounds on the dihedral angles of Euclidean Voronoi cells
Assuming that a point set is an (ε, µ)-net allows us to deduce lower and upper bounds on the

dihedral angles between adjacent Voronoi faces when the metric field is Euclidean.

Lemma D.1. Let Ω = Rn and P be an (ε, µ)-net with respect to the Euclidean distance on Ω.
Let p ∈ P and V(p) be the Voronoi cell of p ∈ P. Let q, r ∈ P be two sites such that V(q) and
V(r) are adjacent to V(p) in the Euclidean Voronoi diagram of P. Let θ be the dihedral angle
between BS(p, q) and BS(p, r). Then

2 arcsin
( µ

2ε

)
≤ θ ≤ π − arcsin

( µ
2ε

)
.

Proof. We consider the plane H that passes through the sites p, q and r. Notations used below
are illustrated in Figure 9.
Lower bound. Let mpq and mpr be the projections of the site p on respectively the bisectors
BS(p, q) and BS(p, r). Since P is an (ε, µ)-net, we have that lq = |p−mpq| ≥ µ/2, lr =
|p−mpr| ≥ µ/2 and L = |p− c| ≤ ε. Thus

θ = arcsin
(
lq
L

)
+ arcsin

(
lr
L

)
≥ 2 arcsin

( µ
2
ε

)
= 2 arcsin

( µ
2ε

)
.

Note that since 0 < µ < 2ε, we have 0 < µ/2ε < 1.
Upper bound. To obtain an upper bound on θ, we compute a lower bound on the angle α = q̂pr
at p, noting that θ = π − α. Let lqr = |q − r|, and R = |c− r|. By the law of sines, we have

lqr
sin(α) = 2R.
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c

q

p

r

θ1

θ2

p

q

r

c

mpq

mpr

α

θ

Figure 9: Construction and notations used in Lemma D.1.

Since P is an (ε, µ)-net, we have lqr ≥ µ and R ≤ ε. Finally,

α ≥ arcsin
( µ

2ε

)
=⇒ θ ≤ π − arcsin

( µ
2ε

)
.

D.2 Bounds on the dihedral angles of Euclidean Delaunay simplices
Bounds on the dihedral angles of simplices guarantee the thickness – the smallest height

of any vertex – of simplices, and thus their quality. Additionally, they can be used to show
that circumcenters of adjacent simplices are far from one another, thus proving the stability of
circumcenters and of Delaunay simplices.

D.2.1 Using power protection with respect to the Euclidean metric field

We first assume that the metric field g is the Euclidean metric field gE and show that the
simplices of an Euclidean Delaunay triangulation constructed from a power protected net are
thick.

Recall that the dihedral angle can be expressed through heights as

sin∠(aff(σp), aff(σq)) = D(p, σ)
D(p, σq)

= D(q, σ)
D(q, σp)

.

The bound on dihedral angles is obtained by bounding the height of vertices in a simplex. An
obvious upper bound on the height of a vertex p in σ is D(p, σ) < 2ε. A lower bound is already
obtained in Lemma C.3: we have that D(p, σ) ≥ δ2/2 ‖c− c′‖ = δ2/4ε. We can thus bound the
dihedral angles as follows:

Lemma D.2. Let P be a δ-power protected (ε, µ)-net with respect to the Euclidean metric field g0.
Let ϕ be the dihedral angle between two facets τ1 and τ2 of a simplex σ of Delg0(P). Then

arcsin(s0) ≤ ϕ ≤ π − arcsin(s0),

with s0 = Aλ,ι
2 and Aλ,ι defined as in the previous Lemma.
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Proof. Recall that

sin(ϕ) = sin∠(aff(σp), aff(σq)) = D(p, σ)
D(p, σq)

= D(q, σ)
D(q, σp)

.

From previous remarks, we have that

D(q, σp) ≥ D(q, σ) ≥ δ2

4ε ,

and D(q, σ) ≤ 2ε. Thus, if ϕ = ∠(aff(σp), aff(σq)), then

sin∠(aff(σp), aff(σq)) ≥
δ2

4ε
1
2ε = ι2

2 =: s0

Note that 0 < s0 < 1 and thus

arcsin(s0) ≤ ϕ ≤ π − arcsin(s0).

D.2.2 Using power protection with respect to an arbitrary metric field

When considering a Voronoi diagram built using the geodesic distance induced by an arbitrary
metric field g, the assumption of a power protected net is made with respect to this geodesic
distance. To prove the stability of the power protected assumption under metric perturbation,
we will however need to deduce lower and upper bounds on the dihedral angles between faces
of the simplices of the Riemannian Delaunay complex with respect to the Euclidean metric field
. We prove here that if the point set P is a δ-power protected (ε, µ)-net with respect to an
arbitrary metric field g and if the distortion between g and the Euclidean metric field gE is small,
then the dihedral angles of the simplices of the Euclidean Delaunay triangulation of P can be
bounded.

We first give a result on the stability of Delaunay balls which expresses that if two metric
fields have low distortion, the Delaunay balls of a simplex with respect to each metric field are
close. One of these metric fields is assumed to be the Euclidean metric field. A similar result
can be found in the proof of Lemma 5 in the theoretical analysis of locally uniform anisotropic
meshes of Boissonnat et al. [6].

Lemma D.3. Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let
ψ0 ≥ 1 be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with
p0 ∈ U and r0 ∈ R+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Assume furthermore that g′
is the Euclidean distance (thus dg′ = dE). Let B = Bg(c, r) be the geodesic ball with respect to
the metric field g, centered on c ∈ U and of radius r. Assume that BE(c, ψ0r) ⊂ U . Then B
can be encompassed by two Euclidean balls BE(c, r−ψ0) and BE(c, r+ψ0) with r−ψ0 = r/ψ0 and
r+ψ0 = ψ0r.

Proof. This is a straight consequence from Lemma B.1. Indeed, we have for all x ∈ U that

1
ψ0
dE(c, x) ≤ dg(c, x) ≤ ψ0dE(c, x),

and similarly
1
ψ0
dg(c, x) ≤ dE(c, x) ≤ ψ0dg(c, x).
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Thus,

x ∈ BE

(
c,

r

ψ0

)
⇐⇒ dE(c, x) ≤ r

ψ0
=⇒ 1

ψ0
dg(c, x) ≤ r

ψ0
,

giving us BE(c, r−ψ0) ⊂ B. On the other hand, we have

x ∈ Bg(c, r) ⇐⇒ dg(c, x) ≤ r =⇒ 1
ψ0
dE(c, x) ≤ r,

giving us B ⊂ BE(c, r+ψ0).

Note that r−ψ0 and r+ψ0 go to r as ψ0 goes to 1.
We now use this stability result to provide Euclidean dihedral angle bounds assuming power

protection with an arbitrary metric field that is close to gE. We first require the intermediary
result given by Lemma D.4.
Lemma D.4 (Whitney’s lemma). Let H be a hyperplane in Euclidean n-space and τ an n− 1-
simplex whose vertices lie at most η from the H and whose minimum height is hmin. Then the
angle ξ between aff(τ) and H is bounded from above by

sin(ξ) ≤ ηd

hmin
.

Proof. By definition, the barycenter of a (n − 1)-simplex has barycentric coordinates λi = 1/d.
This means that it has distance a hmin/n to each of its faces. So the ball centered on the
barycenter with radius hmin/n is contained in the simplex. This means that for any direction in
aff(τ) there exists a line segment of length 2hmin/n that lies within τ . Moreover the end points
of this line segments lie at most η from H because the vertices of the τ do. This means that the
angle ξ is bounded by

sin(ξ) ≤ 2η
2hmin/d

= ηd

hmin
.

We can now give the main result which bounds Euclidean dihedral angles, assuming power
protection with respect to the arbitrary metric field.
Lemma D.5. Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let
ψ0 ≥ 1 be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0),
with p0 ∈ U and r0 ∈ R+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU be a δ-power
protected (ε, µ)-net over U , with respect to g. Let B = Bg(c, r) and B′ = Bg(c′, r′) be the geodesic
Delaunay balls of σ = τ ∗p and σ′ = τ ∗p′, with σ, σ′ ∈ Delg(PU ). Assume that PU is sufficiently
dense such that U contains B and B′. Then the minimum height of the simplex satisfies

hmin =

√√√√√1−

n (r2 + r′2)
(

1
ψ2

0
− ψ2

0

)
8εhmin

2

·


(r2 + r′2)

(
1
ψ2

0
− ψ2

0

)
+ δ2

ψ2
0

4ε −
n

(r2+r′2)
(

1
ψ2

0
−ψ2

0

)
8εhmin√√√√√1−

n (r2+r′2)
(

1
ψ2

0
−ψ2

0

)
8εhmin

2
(r + r′)


.
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Note that this is the height of p in σ with respect to the Euclidean metric.

We proceed in a similar fashion as the proof Lemma C.1. However, a significant difference
is that we are interested here in only proving that power protection with respect to the generic
metric field provides a height bound in the Euclidean setting (rather than an equivalence).

Proof. We use the following notations, illustrated in Figure 10:

• B±ψ0
E and B′±ψ0

E are the two sets of (Euclidean) enclosing balls of respectively B and B′
defined as in Lemma D.3.

• B′+δ is the power protected ball of σ′, given by B′+δ = B(c′,
√
r′2 + δ2).

• B′+δ,±ψ0
E are the two Euclidean balls enclosing B′+δ.

• S = ∂B−ψ0 ∩ ∂B′+ψ0 , S̃ = ∂B+ψ0 ∩ ∂B′+δ,−ψ0 and S′ = ∂B+ψ0 ∩ ∂B′−ψ0 .

• q is a point on S, q̃ is a point on S̃ and q′ is a point on S′.

• H is the geodesic supporting plane of τ , that is {argmin(
∑
vi∈τ λidg(x, vi))}.

• HE, H̃E and HE are the two Euclidean hyperplanes orthogonal to [cc′] passing through
respectively q, q̃ and q′.

• θ = ĉ′cq θ̃ = ĉ′cq̃, and λc = |cc′| /r.

c c′

θ̃

B

B′+δ

q

q̃

HE

H̃E

B′
p

p′

r

r′

√
r′2 + δ2

θ

B−ψ0

B+ψ0

B′+δ,+ψ0

B′+δ,−ψ0

B′+ψ0

B′−ψ0

H H ′E

aff(τ)

Figure 10: Construction and notations used in the proof of Lemma D.5

While the vertices of τ live onH, affE(τ) is not necessarily orthogonal to [cc′] and consequently

dE(p,HE) ≤ dE(p, τ).
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The separation between the hyperplanes HE and H̃E provides a lower bound on the distance
dE(p, τ), thus on the height DE(p, σ). We therefore seek to bound dE(HE, H̃E).

By definition of the enclosing Euclidean balls, we have that

|cq| = r

ψ0
, |cq̃| = ψ0r, |c′q| = ψ0r

′, and |c′q̃| = 1
ψ0

√
r′2 + δ2

Using the law of cosines in the triangles 4cc′q and 4cc′q̃, we find

r′2 + δ2

ψ2
0

= λ2
cr

2 + ψ2
0r

2 − 2λcψ0r
2 cos(θ̃)

ψ2
0r
′2 = λ2

cr
2 + r2

ψ2
0
− 2λcr

2

ψ0
cos(θ),

where λcr = |c− c′|. Subtracting one from the other, we obtain

ψ2
0r
′2 − r′2 + δ2

ψ2
0

= r2

ψ2
0
− ψ2

0r
2 + 2λcψ0r

2 cos(θ̃)− 2λcr
2

ψ0
cos(θ)

⇐⇒ r

ψ0
cos(θ)− ψ0r cos(θ̃) =

r2

ψ2
0
− ψ2

0r
′2 + r′2+δ2

ψ2
0
− ψ2

0r
2

2λcr

⇐⇒ r

ψ0
cos(θ)− ψ0r cos(θ̃) =

(r2 + r′2)
(

1
ψ2

0
− ψ2

0

)
+ δ2

ψ2
0

2λcr
,

so that

d(HE, H̃E) = r

ψ0
cos(θ)− ψ0r cos(θ̃) =

(r2 + r′2)
(

1
ψ2

0
− ψ2

0

)
+ δ2

ψ2
0

2λcr
.

Similarly we can calculate the distance dE(HE, H
′
E) to be:

dE(HE, H
′
E) =

1
ψ2 (r′)2 + |c− c′|2 − ψ2r2

2|c− c′| −
ψ2(r′)2 + |c− c′|2 − 1

ψ2 r
2

2|c− c′|

=
(r2 + r′2)

(
1
ψ2

0
− ψ2

0

)
2|c− c′| .

≤
(r2 + r′2)

(
1
ψ2

0
− ψ2

0

)
4ε

Lemma D.4 gives us that the angle ξ between HE and aff(τ) is bounded by

sin(ξ) ≤ ndE(HE, H
′
E)

2hmin
.

The vertices of τ lie in between HE and H ′E and inside BE(c′, ψr′). Thus, if we restrict to the
q̃cc′ plane, distance between the point where aff(τ) intersects HE and the orthogonal projection
πHE(q̃) of q̃ on HE is at most ψ(r+ r′). This in turn implies that the line connecting πHE(q̃) and
q̃ intersects aff(τ) at most distance (r+ r′) tan(ξ) from HE. This also gives us that the distance
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from q̃ to its orthogonal projection πaff(τ)(q̃) on aff(τ) is bounded by

cos(ξ)(d(H̃E, HE)− tan(ξ)(r + r′)) =

√
1−

(
ndE(HE, H ′E)

2hmin

)2
·d(H̃E, HE)−

ndE(HE,H
′
E)

2hmin√
1−

(
ndE(HE,H′E)

2hmin

)2
(r + r′)

 .

Here we note that hmin originally referred to the minimum height of a face, but because the
height of a face is always greater than the height in the simplex we may read this in a general
way, that is we regard hmin as a universal lower bound on the height. Because |q̃ − πaff(τ)(q̃)|
bounds the height of the simplex we get the following relation:

hmin =

√
1−

(
ndE(HE, H ′E)

2hmin

)2

d(H̃E, HE)−
ndE(HE,H

′
E)

2hmin√
1−

(
ndE(HE,H′E)

2hmin

)2
(r + r′)



hmin =

√√√√√1−

n (r2 + r′2)
(

1
ψ2

0
− ψ2

0

)
8εhmin

2

·


(r2 + r′2)

(
1
ψ2

0
− ψ2

0

)
+ δ2

ψ2
0

4ε −
n

(r2+r′2)
(

1
ψ2

0
−ψ2

0

)
8εhmin√√√√√1−

n (r2+r′2)
(

1
ψ2

0
−ψ2

0

)
8εhmin

2
(r + r′)


To make the expression a bit more readable, we introduce

s1 =
(r2 + r′2)

(
1
ψ2

0
− ψ2

0

)
4ε

so that

hmin =

√
1−

(
n

s1

2hmin

)2

(s1 + δ2

4εψ2
0

)
−

n s1
2hmin√

1−
(
n s1

2hmin

)2
(r + r′)


hmin + n

s1

2hmin
(r + r′) =

√
1−

(
n

s1

2hmin

)2(
s1 + δ2

4εψ2
0

)
.

Multiplying with hmin and squaring we find:

(h2
min + n

s1

2 (r + r′))2 =
(
h2

min −
(
n
s1

2

)2
)(

s1 + δ2

4εψ2
0

)2
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We note that in the limit ψ → 1, s1 tends to zero, we therefore expand hmin is terms of s1. Using
a computer algebra system we find

h2
min = δ4

210ψ4ε2 +
(

δ2

128ψ2ε
− n(r + r′)

)
s1

−
δ4 (16n2 − 1

)
+ 214n2ψ4ε2(r + r′)2

64δ4 s2
1 +O(s3

1)

We emphasize that this equation gives hmin = δ2/4ε as ψ tends to 1. This means that for
sufficiently small metric distortion the height of a protected simplex will be strictly positive.

Lemma D.6. Let g be a metric field and P be a point set defined over Rn. Let ψ0 = ψ(g,E).
Assume that P is a δ-power protected (ε, µ)-net over Rn. Let φ be the dihedral angle between two
faces of a simplex τ ∈ DelE(P). Then

arcsin(s0) ≤ φ ≤ π − arcsin(s0),

with s0 detailed in the proof.

Proof. Denote hmin the lower bound on D(q, σ) obtained in the previous lemma. We also imme-
diate have that

D(q, σ) ≤ 2ε.

Let ϕ be the dihedral angle between aff(σp) and aff(σq). Recall that

sin(ϕ) = sin∠(aff(σp), aff(σq)) = D(p, σ)
D(p, σq)

= D(q, σ)
D(q, σp)

Thus

sin(ϕ) ≥ hmin

2ε =: s0.

For s0 to make sense, we want s0 > 0, which is bound to happen as ψ0 goes to 1, as shown
in Lemma D.5: hmin goes to δ2/4ε thus hmin/4ε goes to ι2/4 > 0.

E Stability
The notion of stability designates the conservation of a property despite changes of other

parameters. In our context, the main assumptions concern the nature of point sets: we assume
that point sets are power protected nets and wish to preserve these hypotheses despite (small)
metric perturbations. The stability is important both from a theoretical and a practical point
of view. Indeed, if an assumption is stable under perturbation, we can simplify matters without
losing information. For example, we will prove that if a point set is a net with respect to a metric
field g, then it is also a net (albeit with slightly different sampling and separation parameters) for
a metric field g′ that is close to g (in terms of distortion) In a practical context, the stability of
an assumption provides robustness with respect to numerical errors (see, for example, the work
of Funke et al. [17] on the stability of Delaunay simplices).
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E.1 Stability of the protected net hypothesis under metric transfor-
mation

It is rather immediate that the power protected net property is preserved when the point set
is transformed (see Section B.1.1) between these spaces, as shown by the following lemma.

Lemma E.1. Let P be a δ-power protected (ε, µ)-net in Ω. Let g = g0 be a uniform Riemannian
metric field and F0 a square root of g0. If P is a δ-power protected (ε, µ)-net with respect to g0
then P ′ = {F0pi, pi ∈ P} is a δ-power protected (ε, µ)-net with respect to the Euclidean metric.

Proof. This results directly from the observation that

d0(x, y)2 = (x− y)tg0(x− y) = ‖F0(x− y)‖2 = d(F0x, F0y)2.

E.2 Stability of the protected net hypothesis under metric perturba-
tion

Metric field perturbations are small modifications of a metric field in terms of distortion.
Since a generic Riemannian metric field g is difficult to study, we will generally consider a
uniform approximation g0 of g within a small neighborhood, such that the distortion between
both metric fields is small over that neighborhood. In that context, the perturbation of g is
the act of bringing g onto g0. Stability of the assumption of power protection was previously
investigated by Boissonnat et al. [4] in the context of manifold reconstructions.

E.2.1 Stability of the net property

The following lemma shows that the “net” property is preserved when the metric field is
perturbed: a point set that is a net with g is also a net with respect to g′, a metric field that is
close to g.

Lemma E.2. Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let
ψ0 ≥ 1 be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with
p0 ∈ U and r0 ∈ R+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU be a point set in U .
Suppose that PU is an (ε, µ)-net of U with respect to g. Then PU is an (εg′ , µg′)-net of U with
respect to g′ with εg′ = ψ0ε and µg′ = µ/ψ0.

Proof. By Lemma B.1, we have that

∀x, y ∈ U, 1
ψ0
dg′(x, y) ≤ dg(x, y) ≤ ψ0dg′(x, y).

Therefore
∀x ∈ U,∃p ∈ PU , dg(x, p) ≤ ε⇒ ∀x ∈ U,∃p ∈ PU , dg′(x, p) ≤ ψ0ε,

and
∀p, q ∈ PU , dg(p, q) ≥ µ⇒ ∀p, q ∈ PU , dg′(p, q) ≥

µ

ψ0
.

And, with εg′ = ψ0ε and µg′ = µ/ψ0, P is an (εg′ , µg′)-net of U .

Remark E.3. We assumed that µ = λε. By Lemma E.2, we have ε′ = ψ0ε and µ′ = µ
ψ0

.
Therefore

µ′ = λε

ψ0
= λ

ψ2
0
ε′.
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E.2.2 Stability of the power protection property

It is more complex to show that the assumption of power protection is preserved under metric
perturbation. Previously, we have only considered two similar but arbitrary Riemannian metric
fields g and g′ on a neighborhood U . We now restrict ourselves to the case where g′ is a uniform
metric field. We shall always compare the metric field g in a neighborhood U with the uniform
metric field g′ = g0 = g(p0) where p0 ∈ U . Because g0 and the Euclidean metric field differ only
by a linear transformation, we simplify matters and assume that g0 is the Euclidean metric field.

We now give conditions such that the point set is also protected with respect to g0. A few
intermediary steps are needed to prove the main result:

• Given two sites, we prove that the bisectors of these two sites in the Voronoi diagrams built
with respect to g and with respect to g′ = gE are close (Lemma E.5).

• We prove that the Voronoi cell of a point p0 with respect to g, Vg(p0) can be encompassed
by two scaled versions (one larger and one smaller) of the Euclidean Voronoi cell VE(p0)
(Lemma E.12).

• We combine this encompassing with bounds on the dihedral angles of Euclidean Delau-
nay simplices given by Lemma D.6 to compute a stability region around Voronoi vertices
where the same combinatorial Voronoi vertex of lives for both Vg(p0) and VE(p0) in 2D
(Lemma E.13). We then extend it to any dimension by induction (Lemma E.14).

The main result appears in Lemma E.16 and gives the stability of power protection under metric
perturbation.

We first define the scaled version of a Voronoi cell more rigorously.

Definition E.4 (Relaxed Voronoi cell). Let ω ∈ R. The relaxed Voronoi cell of the site p0 is

V+ω
g (p0) = {x ∈ U | dg(p0, x)2 ≤ dg(pi, x)2 + ω for all i 6= 0}.

The following lemma expresses that two Voronoi cells computed in similar metric fields are
close.

Lemma E.5. Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let
ψ0 ≥ 1 be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with
p0 ∈ U and r0 ∈ R+, such that ∀p ∈ Bg(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU = {pi} be a point
set in U . Let Vp0,g denote a Voronoi cell with respect to the Riemannian metric field g.

Suppose that the Voronoi cell V2ρ2(ψ2
0−1)

g′ (p0) lies in a ball of radius ρ with respect to the
metric g′, which lies completely in U . Let ω0 = 2ρ2(ψ2

0 − 1). Then Vg(p0) lies in V+ω0
g′ (p0) and

contains V−ω0
g′ (p0).

Proof. Let BSg(p0, pi) be the bisector between p0 and pi with respect to g. Let y ∈ BSg(p0, pi)∩
Bg′(p0, ρ), where Bg′(p0, ρ) denotes the ball centered at p0 of radius ρ with respect to g′. Now
dg(y, p0) = dg(y, pi), and thus

|dg′(y, p0)2 − dg′(y, pi)2| =
∣∣dg′(y, p0)2 − dg(y, p0)2 + dg(y, pi)2 − dg′(y, pi)2∣∣

≤
∣∣dg′(y, p0)2 − dg(y, p0)2∣∣+

∣∣dg′(y, pi)2 − dg(y, pi)2∣∣
≤ (ψ2

0 − 1)(dg′(y, p0)2 + dg′(y, pi))2

≤ 2ρ2(ψ2
0 − 1).

Thus dg′(y, p0)2 ≤ dg′(y, pi)2 + ω and dg′(y, p0)2 ≥ dg′(y, pi)2 − ω with ω = 2ρ2(ψ2
0 − 1), which

gives us the expected result.
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Remark E.6. Lemma E.5 does not require g′ to be a uniform metric field.

We clarify in the next lemma that the bisectors of a Voronoi diagram with respect to a
uniform are affine hyperplanes.

Lemma E.7. Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let
ψ0 ≥ 1 be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with
p0 ∈ U and r0 ∈ R+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU = {pi} be a point
set in U . Let g′ be a uniform metric field. We refer to g′ as g0 to emphasis its constancy. Let
p0 ∈ PU . The bisectors of V±ω0

g0
(p0) are hyperplanes.

Proof. The bisectors of V±ω0
g0

(p0) are given by

BS±ω0
g0

(p0, pi) =
{
x ∈ Ω | dg0(p0, x)2 = dg0(pi, x)2 ± ω0

}
.

For x ∈ BS±ω0
g0

(p0, pi), we have by definition that

‖x− p0‖2g0
= ‖x− pi‖2g0

± ω0

⇐⇒ (x− p0)tg0(x− p0) = (x− pi)tg0(x− pi)± ω0

⇐⇒ 2xtg0(pi − p0) = ptig0pi − pt0g0p0 ± ω0.

which is the equation of an hyperplane since g0 is uniform.

The cells V±ω0
g0

(p0) are unfortunately impractical to manipulate as we do not have an ex-
plicit distance between the boundaries ∂Vg0(p0) and ∂V±ω0

g0
(p0). However that distance can be

bounded; this is the purpose of the following lemma.

Lemma E.8. Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let
ψ0 ≥ 1 be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with
p0 ∈ U and r0 ∈ R+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU = {pi} be a point set
in U . Assume furthermore that g0 is the Euclidean metric field. Let p0 ∈ PU . We have

dg0(∂Vg0(p0), ∂V±ω0
g0

(p0)) := min
x∈∂ Vg0 (p0)
y∈∂ V±ω0

g0 (p0)

dg0(x, y) ≤ ρ2
0(ψ2

0 − 1)
µ0

,

with ρ0 defined as ρ is in Lemma E.5.

Proof. Let mω0 be the intersection of the segment [p0, pi] and the bisector BS−ω0
g0

(p0, pi), for
i 6= 0. Let m be the intersection of the segment [p0, pi] and ∂Vg0(p0), for i 6= 0. We have{

mω0 ∈ BS−ω0
g0

(p0, pi) ⇐⇒ 2mT
ω0

(pi − p0) = pTi pi − pT0 p0 − ω0

m ∈ ∂Vg0(p0) ⇐⇒ 2mT (pi − p0) = pTi pi − pT0 p0

Therefore
2(m−mω0)T (pi − p0) = ω0.

Since (m−mω0) and (pi − p0) are linearly dependent,

ω0 = 2 |m−mω0 | |pi − p0| .

P is µ0-separated, which implies that

ω0 ≥ 2 |m−mω0 |µ0,
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and
|m−mω0 | ≤

ω0

2µ0
= ρ2

0(ψ2
0 − 1)
µ0

.

Definition E.9. In the following, we use ρ = 2ε0, and therefore ω0 = 8ε2
0(ψ2

0 − 1). We show
that this choice is reasonable in Lemma E.15. Additionally, we define

η0 = ρ2
0(ψ2

0 − 1)
µ0

.

We are now ready to encompass the Riemannian Voronoi cell of p0 with respect to an arbitrary
metric field g with two scaled versions of the Euclidean Voronoi cell of p0. The notions of dilated
and eroded Voronoi cells will serve the purpose of defining precisely these scaled cells.

Definition E.10 (Eroded Voronoi cell). Let ω ∈ R. The eroded Voronoi cell of p0 is the
morphological erosion of Vg(p0) by a ball of radius ω:

EV−ωg (p0) = {x ∈ Vg(p0) | dg(x, ∂Vg(p0)) > ω}.

Definition E.11 (Dilated Voronoi cell). Let ω ∈ R. The dilated Voronoi cell of p0 is:

DV+ω
g (p0) =

⋂
i 6=0

Hω(p0, pi),

where Hω(p0, pi) is the half-space containing p0 and delimited by the bisector BS(p0, pi) translated
away from p0 by ω0 (see Figure 11).

The second important step on our path towards the stability of power protection is the
encompassing of the Riemannian Voronoi cell, and is detailed below.

Lemma E.12. Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let
ψ0 ≥ 1 be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with
p0 ∈ U and r0 ∈ R+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU = {pi} be a point set
in U . We have

EV−η0
g0

(p0) ⊆ V−ω0
g0

(p0) ⊆ Vg0(p0) ⊆ V+ω0
g0

(p0) ⊆ DV+η0
g0

(p0).

These inclusions are illustrated in Figure 11.

Proof. Using the notations and the result of Lemma E.8, we have

|m−mω0 | ≤ η0.

Since the bisectors BSω0
g′ (p0, pi) are hyperplanes, the result follows.

In Figures 11 and 12, DV+η0
g0

and EV−η0
g0

are shown in green and Vg0 in yellow.
The next step is to prove that we have stability of the Voronoi vertices of Vg(p0), meaning

that a small perturbation of the metric only creates a small displacement of any Voronoi vertex of
the Voronoi cell of p0. The following lemma shows that Voronoi vertices are close if the distortion
between the metric fields g and g0 is small. The approach is to use Lemmas E.5 and E.12: we
know that each (n− 1)-face of the Riemannian Voronoi cell Vg(p0) and shared by a Voronoi cell
Vg(q) is enclosed within the bisectors of DVg0(p0) and EVg0(p0) (which are translations of the
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p0

η
η

Vg0(p0)

DV +η0
g0 (p0)

EV −η0
g0 (p0)

V +ω0
g0 (p0)

V −ω0
g0 (p0)

Figure 11: The different encompassing cells around p0. The Riemannian Voronoi diagrams with
respect to g and g0 are traced in dark cyan and black respectively. The Voronoi cell Vg0(p0) is
colored in yellow. The cells DV+η0

g0
and EV−η0

g0
are colored in green, and the cells V±ω0

g0
(p0) are

colored in purple.

bisectors of Vg0(p0)) for the sites p0 and q. These two bisectors create a “band” that contains
the bisector BSg(p0, q). Given a Voronoi vertex c in Vg(p0), c can be obtained as the intersection
of n + 1 Voronoi cells, but also as the intersection of n Voronoi (n − 1)-faces of Vg(p0). The
intersection of the bands associated to those n (n − 1)−faces is a parallelotopic-shaped region
which by definition contains the same (combinatorially speaking) Voronoi vertex, but for Vg0(p0).
Lemmas E.13 and E.14 express this reasoning, which is illustrated in Figure 12 for 2D and 13
for any dimension.

Lemma E.13. We consider here Ω = R2. Let U ⊂ Ω be open, and g and g′ be two Riemannian
metric fields on U . Let ψ0 ≥ 1 be a bound on the metric distortion. Suppose that U is included
in a ball Bg(p0, r0), with p0 ∈ U and r0 ∈ R+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let
PU = {pi} be a point set in U . Assume furthermore that PU is a δ0-power protected (ε0, µ0)-net
with respect to g0 (the Euclidean metric). Let p0 ∈ PU . Let c and c0 be the same Voronoi vertex
in respectively Vg(p0) and Vg0(p0). Then dg0(c, c0) ≤ χ2 with

χ2 = 2η0√
1 + µ0

2ε0
−
√

1− µ0
2ε0

= 2η0√
1 + λ

2ψ2
0
−
√

1− λ
2ψ2

0

.

where λ is given by µ0 = λ
ψ2

0
ε0 (see Lemma E.3).

Proof. We use Lemma E.12. Vg(p0) lies in DV+η0
g0

and contains EV−η0
g0

. The circumcenters c
and c0 lie in a parallelogrammatic region centered on c0, itself included in the ball centered on
c0 and with radius χ. The radius χ is given by half the length of the longest diagonal of the
parallelogram (see Figure 12). By Lemma E.2, P is an (ε0, µ0)-net with respect to g0. Let θ be
the angle of the Voronoi corner of Vg0(p0) at c0. By Lemma D.1, that angle is bounded:

θm = 2 arcsin
(
µ0

2ε0

)
≤ θ ≤ π − arcsin

(
µ0

2ε0

)
= θM .
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Since π − θM < θm, χ is maximal when θ > π/2. We thus assume θ > π/2, and compute a
bound on χ as follows:

sin
(
π − θ

2

)
= η0

χ
=⇒ χ = η0

sin
(
π−θ

2
)

≤ η0

sin
(

1
2 arcsin

(
µ0
2ε0

))
≤ 2η0√

1 + µ0
2ε0
−
√

1− µ0
2ε0

=: χ2,

using sin( 1
2 arcsin(α)) = 1

2
(√

1 + α−
√

1− α
)
.

c′

c

χ

EV −η0g0 (p0)

η0

θ

c′

Vg0(p0)DV +η0
g0 (p0)

θ

η0

Vg0(p0) EV −η0g0 (p0)

η0

DV +η0
g0 (p0)

c

η0χ

Figure 12: Black lines trace Vorg0 and cyan lines trace Vorg. The cell Vg0(p0) is colored in yellow
and the cell Vg(p0) is dashed. The green regions correspond to DV+η

g0
(p0) and EV−ηg0

(p0). On
the left, the configuration where θ < π/2; on the right, θ > π/2.

The result obtained in Lemma E.13 can be extended to any dimension using induction and
the stability of the Voronoi vertices of facets.

Lemma E.14. We consider here Ω = Rn. Let U ⊂ Ω be open, and g and g′ be two Riemannian
metric fields on U . Let ψ0 ≥ 1 be a bound on the metric distortion. Suppose that U is included
in a ball Bg(p0, r0), with p0 ∈ U and r0 ∈ R+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let
PU = {pi} be a δ0-power protected (ε0, µ0)-net with respect to g0 (the Euclidean metric). Let
p0 ∈ PU . Let c and c0 be the same Voronoi vertex in respectively Vg(p0) and Vg0(p0). Then
dg0(c, c0) ≤ χ with

χ = χ2

sinn−2 (ϕ0
2
) .

where χ2 is defined as in Lemma E.13, and ϕ0 is the maximal dihedral angle between two faces
of a simplex.

Proof. We know from Lemma E.5 that Vg(p0) lies in DV+η0
g0

and contains EV−η0
g0

. The circum-
centers c and c0 lie in a parallelotopic region centered on c0 defined by the intersection of n
Euclidean thickened Voronoi faces. This parallelotope and its circumscribing sphere are difficult
to compute. However, it can be seen as the intersection of two parallelotopic tubes defined by
the intersection of n− 1 Euclidean thickened Voronoi faces. From another point of view, this is
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the computation of the intersection of the thickened duals of two facets τ1 and τ2 incident to p0
of the simplex σ ∈ Del(P), dual of c (and c0), see Figure 13 (left).

Figure 13: Left, a simplex, the duals of two faces and their respective thickened duals (cylinders);
the orange thickened dual is orthogonal to the purple face (and inversely). Right, the intersection
of the two tubes, seen from above, illustrates the proof of Lemma E.14.

The stability radius χ is computed incrementally by increasing the dimension and proving
stability of the circumcenters of the faces of the simplices. We prove the formula by induction.

The radius of each tube is given by the stability of the radius of the circumcenter in the lower
dimension of the facet. The base case, Rn = R3, is solved by Lemma E.13, and gives

χ2 = 2η0√
1 + λ

2ψ2
0
−
√

1− λ
2ψ2

0

.

We now consider two facets τ1 and τ2 that are incident to p0. Denote D1 and D2 their respective
duals. By Lemma E.5, D1 and D2 lie in two cylinders C1 and C2 of radius χ2. C1 and C2 are
also orthogonal to τ1 and τ2 and c and c0 lie in C1 ∩ C2. The angle ϕ between C1 and C2 is
exactly the dihedral angle between τ1 and τ2. By Lemma D.6, we have

arcsin(s0) ≤ ϕ ≤ π − arcsin(s0) with s0 = 1
2

[
ι2

4ψ2
0
− 1

2

(
ψ2

0 −
1
ψ2

0

)]
Let ϕ0 = arcsin(s0) = π − arcsin(s0). We encompass the intersection of the cylinders, difficult
to compute, with a sphere whose radius can be computed as follows (see Figure 13, right):

χ3 = χ2

cos(α) with α = π

2 −
ϕ0

2 .

Thus,
χ3 = χ2

sin
(
ϕ0
2
) .

Recursively,
χ = χ2

sinn−2 (ϕ0
2
) .

We have assumed in different lemmas that we could pick values of ρ0 or ω0 that fit our need.
The following lemma shows that these assumptions were reasonable.

RR n° 9056



40 Boissonnat & Rouxel-Labbé & Wintraecken

Lemma E.15. Lemmas E.12 and E.14 allow us to characterize the parameter ρ0 more precisely.
Indeed, an assumption of Lemma E.5 was that Vω0

g0
(p0) is included in a ball Bg0(p0, ρ0). If the

sampling of P is sufficiently dense, such an assumption is reasonable.
Proof. By definition, the Voronoi cell Vω0

g0
(p0) is included in the dilated cell DV+η0

g0
(p0). Since

the point set is an ε-sample, we have dg0(p0, x) ≤ ε0 for x ∈ Vg0(p0). By Lemma E.14, we have
for x ∈ DV+η0

g0
(p0)

dg0(p0, x) ≤ ε0 + χ.

Recall from Lemma E.14 that

χ = χ2[
sin
( 1

2 arcsin (s0)
)]n−2 .

with η0 = ρ2
0(ψ2

0−1)
µ0

and s0 = 1
2

[
ι2

4ψ2
0
− 1

2

(
ψ2

0 − 1
ψ2

0

)]
. We require Vω0

g0
(p0) ⊂ Bg0(p0, ρ0), which

is verified if DV+η0
g0

(p0) ⊂ Bg0(p0, ρ0), that is if

ε0 + χ2[
sin
( 1

2 arcsin (s0)
)]n−2 ≤ ρ0

⇐⇒ 4η0(√
1 + λ

2ψ2
0
−
√

1− λ
2ψ2

0

)(√
1 + s0 −

√
1− s0

)n−2 ≤ ρ0 − ε0

⇐⇒ 4ρ2
0(ψ2

0 − 1)

µ0

(√
1 + λ

2ψ2
0
−
√

1− λ
2ψ2

0

)(√
1 + s0 −

√
1− s0

)n−2 ≤ ρ0 − ε0

⇐⇒ 4(ψ2
0 − 1)(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

)(√
1 + s0 −

√
1− s0

)n−2 ≤
µ0(ρ0 − ε0)

ρ2
0

⇐⇒ 4ψ0(ψ2
0 − 1)(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

)(√
1 + s0 −

√
1− s0

)n−2 ≤
λε(ρ0 − ε0)

ρ2
0

, by Remark E.3.

The parameter ρ0 can be chosen arbitrarily as long as it is greater than ε0, and we have taken
ρ0 = 2ε0 (see Definition E.9), which imposes

ψ2
0(ψ2

0 − 1)(√
1 + λ

2ψ2
0
−
√

1− λ
2ψ2

0

)(√
1 + s0 −

√
1− s0

)n−2 ≤
λ

16 . (6)

Recall that the parameter λ is fixed. By continuity of the metric field, limε→0 ψ0 = 1, therefore
the left hand side goes to 0 and Inequality (6) is eventually satisfied as the sampling is made
denser.

Finally, we can now show the main result: the power protection property is preserved when
the metric field is perturbed.
Lemma E.16. Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let
ψ0 ≥ 1 be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with
p0 ∈ U and r0 ∈ R+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Assume that PU is a δ-power
protected (ε, µ)-net in U with respect to g. If δ is well chosen, then PU is a δ0-power protected
net with respect to g0, with

δ2
0 =

(
1
ψ2

0
− ψ2

0

)
(ε+ χ)2 − 4εχ

ψ2
0

+ δ2

ψ2
0
.
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Proof. By Lemma E.2, we know that PU is (ε0, µ0)-net with respect to g0. Let q ∈ PU , with q
not a vertex in the dual of c. Let c0 be the combinatorial equivalent of c in Vg0(P) Since P is
a δ-power protected net with respect to g, we have dg(c, q) >

√
r2 + δ2, where r = dg(c, p). On

the one hand, we have

dg0(c0, q) ≥ dg0(q, c)− dg0(c, c0)

≥ 1
ψ0
dg(q, c)− χ

≥ 1
ψ0

√
r2 + δ2 − χ.

by Lemma E.13. On the other hand, for any p ∈ PU such that p is a vertex of the dual of c, we
have

r0 = dg0(c0, p) ≤ dg0(c, p) + dg0(c0, c)
≤ ψ0dg(c, p) + χ

≤ ψ0r + χ.

Thus δ0-power protection of PU with respect to g0 requires
1
ψ0

√
r2 + δ2 − χ > χ+ ψ0r

⇐⇒
√
r2 + δ2 > ψ0(2χ+ ψ0r).

This is verified if

δ2 > (ψ0(2χ+ ψ0r))2 − r2 = 4χ2ψ2
0 + 4χψ3

0r + ψ4
0r

2 − r2

= 4χ2ψ2
0 + 4χψ3

0r + (ψ4
0 − 1)r2,

for all r ∈ [µ/2, ε]. This gives us

δ2 > 4χ2ψ2
0 + 4χψ3

0ε+ (ψ4
0 − 1)ε2. (7)

This condition on δ is only reasonable if the right hand side is not too large. Indeed, since P
is an ε-sample, we must have dg(c, q) < 2ε. However, we have that dg(c, q)2 > dg(c, p)2 + δ2 by
δ-power protection of P with respect to g. Because dg(c, p) < ε, it suffices that δ < ε. We will
now show that this is reasonable by examining the limit of the right hand side of Inequality (7).

We note, see Lemma E.14, that

χ = χ2

sinn−2 (ϕ
2
) = 4η(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

)(√
1 + s0 −

√
1− s0

)n−2 ,

where ε0 = ψ0ε and µ0 = µ/ψ0 = λε/ψ0 (see Remark E.3). So that

4χ2ψ2
0 + 4χψ3

0ε+ (ψ4
0 − 1)ε2 = 4

 16εψ4
0(ψ2

0 − 1)

λ
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

)(√
1 + s0 −

√
1− s0

)n−2


2

+ 4 16εψ3
0(ψ2

0 − 1)

λ
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

)(√
1 + s0 −

√
1− s0

)n−2ψ
3
0

+ (ψ2
0 − 1)(ψ2

0 + 1)ε2. (8)
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This means that the right hand side of (7) is of the form f(ψ0)(ψ2
0 − 1)ε2, where f(ψ0) is a

function that tends to a constant as ψ0 goes to 1:

f(ψ0) = 4

 16ψ4
0

λ
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

)(√
1 + s0 −

√
1− s0

)n−2


2

+ 4 16ψ6
0

λ
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

)(√
1 + s0 −

√
1− s0

)n−2

+ (ψ2
0 + 1)

ψ0→1−→ 4

 16

λ

(√
1 + λ

2 −
√

1− λ
2

)(√
1 + ι2

4 −
√

1− ι2

4

)n−2


2

+ 4 16

λ

(√
1 + λ

2 −
√

1− λ
2

)(√
1 + ι2

4 −
√

1− ι2

4

)n−2

+ 2

So the bound given in Equality (7) may be easily satisfied if the metric distortion is sufficiently
small.

We now provide an explicit value for δ0 in terms of δ. Let ξ = dg(c, q) and ξ0 = dg0(c0, q0).
We have the following bounds on r0 and ξ0:

1
ψ0

(r − ξ) ≤ r0 ≤ ψ0(r + ξ)

1
ψ0

√
(r − χ)2 + δ2 ≤ ξ0 ≤ ψ0

√
(r + χ)2 + δ2.

If we had δ̃-power protection, we would have

r2
0 + δ̃2 ≤ ξ2

0 ⇐⇒ δ̃2 ≤ ξ2
0 − r2

0

⇐⇒ δ̃2 ≤ 1
ψ2

0

(
(r − χ)2 + δ2)− ψ2

0(r + χ)2

⇐⇒ δ̃2 ≤ 1
ψ2

0
(r + χ)2 − 4rχ

ψ2
0

+ δ2

ψ2
0
− ψ2

0(r + χ)2

⇐= δ̃2 ≤
(

1
ψ2

0
− ψ2

0

)
(ε+ χ)2 − 4εχ

ψ2
0

+ δ2

ψ2
0
.

Therefore we can take δ2
0 = δ2

ψ2
0

+
(

1
ψ2

0
− ψ2

0

)
(ε + χ)2 − 4εχ

ψ2
0
. Note that with this definition,

δ0 goes to δ as ψ0 goes to 1, which proves that our value of δ0 is legitimate.

F Embeddability of the straight Delaunay triangulation
(Proofs of Section 3.2)

We first prove Lemma 3.3, recalled below, which bounds the distance between the same point
on a the Karcher and the straight simplex.
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Lemma. Let P be an ε-sample with respect to g on Ω. Let {pi} be a set of n + 1 vertices in
M such that N = ∩pi∈PV (pi) 6= ∅. Let σ̄ and σ̃ be the straight and Karcher simplices that
realize N . Let x̃ be a point on the Karcher simplex σ̃ determined by the barycentric coordinates
{λi} (see Equation 2). Let xe be the point uniquely determined by {λi} as xe =

∑
i λipi. If

the geodesic distance dg is close to dE – that is the distortion ψ(g, gE) is bounded by ψ0 – then
|x̃− xe| ≤

√
2 · 43(ψ0 − 1)ε2.

Proof. The key observation is that given a convex function f and a function f ′ that is close,
that is f − f ′ < α with α small, then the minimum value of f ′ is at most of min f + α. If we
observe that at any point x where f(x) > min f + 2α, we also have f ′(x) > min f + α so x is
not a minimum of f ′, we see that the minima of f and f ′ can not be far apart. In particular,
we have that if xf ′,min is the point where f ′ attains its minimum, then f ′(xf ′,min) ≤ min f + α.
The precise argument goes as follows.

We again assume that (possibly after a linear transformation) the metric is close to the
Euclidean one, that is:

dg(x, y) = |x− y|+ δdg(x, y),

with |δdg(x, y)| ≤ (ψ0 − 1) |x− y|. If we assume that |x− y| ≤ 4ε and ψ0 ≤ 2, it follows that

dg(x, y)2 = |x− y|2 + δd2
g(x, y),

with
δd2
g(x, y) ≤ 43(ψ0 − 1)ε2.

Recall that x̃ is the point where the functional

Eλ(x) =
∑
i

λidg(x, pi)2

attains its minimum.
Using the bounds above, we find that∑

i

λidg(x, pi)2 =
∑
i

λi |x− pi|2 +
∑
i

λiδd
2
g(x, pi),

where
∑
i λiδd

2
g(x, pi) ≤ 43(ψ0 − 1)ε2. We also see that∣∣∣∣∣∑

i

λidg(x̃, pi)2 −
∑
i

λi |x̃− pi|2
∣∣∣∣∣ ≤ 43(ψ0 − 1)ε2.

Taking f ′ to be
∑
i λidg(x̃, pi)2 in the explanation above, we find that∣∣∣∣∣∣∣
∑
i

λidg(x̃, pi)2 −
∑
i

λi

∣∣∣∣∣∣
∑
j

λjvj − pi

∣∣∣∣∣∣
2
∣∣∣∣∣∣∣ ≤ 43(ψ0 − 1)ε2,

because the Euclidean barycenter xe =
∑
i λipi is where the function

∑
i λi|x̃ − pi|2 attains its

minimum. Combining these results yields∣∣∣∣∣∣∣
∑
i

λi |x̃− pi|2 −
∑
i

λi

∣∣∣∣∣∣
∑
j

λjvj − pi

∣∣∣∣∣∣
2
∣∣∣∣∣∣∣ ≤ 2 · 43(ψ0 − 1)ε2. (9)
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This bounds the distance between x̃ and xe. An explicit bound can be found by observing that∑
i

λi |x− pi|2 =
∑
i

λi

((
x1 − p1

i

)2 + . . .+ (xn − pni )2
)

=
∑
i

λi
(
x1 − p1

i

)2 +
∑
i

λi
(
x2 − p2

i

)2 + . . .+
∑
i

λi (xn − pni )2

=
(
x1 −

∑
i

λip
1
i

)2

−

(∑
i

λip
1
i

)2

+
∑
i

λi
(
p1
i

)2 + . . .

+
(
xn −

∑
i

λip
n
i

)2

−

(∑
i

λip
n
i

)2

+
∑
i

λi (pni )2

=

∣∣∣∣∣x−∑
i

λipi

∣∣∣∣∣
2

+
∑
j

−(∑
i

λip
j
i

)2

+
∑
i

λi

(
pji

)2
 . (10)

Then, applying Equation 10 for both both x = x̃ and x = xe =
∑
j λjpj in Equation (9), we

obtain: ∣∣∣∣∣
∣∣∣∣∣x̃−∑

i

λipi

∣∣∣∣∣
2

+
∑
j

−(∑
i

λip
j
i

)2

+
∑
i

λi

(
pji

)2


−


∣∣∣∣∣∣
∑
j

λjpj −
∑
i

λipi

∣∣∣∣∣∣
2

+
∑
j

−(∑
i

λip
j
i

)2

+
∑
i

λi

(
pji

)2

∣∣∣∣∣

=

∣∣∣∣∣x̃−∑
i

λipi

∣∣∣∣∣
2

≤ 2 · 43(ψ0 − 1)ε2.

which yields a distance bound of
√

2 · 43(ψ0 − 1)ε2.

Although we have formulated this metric distortion result for simplices, the same proof ex-
tends almost verbatim to continuous distributions. By this we mean that the barycenter with
respect to a metric g of a continuous distribution is close to the barycenter with respect to the
Euclidean metric, if g is close to the Euclidean metric. Furthermore, note that the proof does
not depend on the weights being positive.

We now prove Theorem 3.4, recalled below.
Theorem. Let P be a δ-power protected (ε, µ)-net with respect to g on Ω. Let {pi} be a set
of n + 1 vertices in Ω such that ∩pi∈P V(pi) 6= ∅. Let σ̄ and σ̃ be the straight and Karcher
simplices with vertices {pi}. Let τ̃ be a facet of σ̃, opposite of the vertex pi. If for all x̃ ∈ τ̃ , we
have |x̃− xe| smaller than the lower bound on D(pi, σ), where xe is the corresponding point on
σ̄ (as defined in Lemma 3.3), then there is no inversion created when σ̃ is straightened onto σ̄.
Furthermore, if this condition is fulfilled for all σ̃ ∈ D̃elg(P), then Delg(P) is embedded.
Proof. The lower bound on D(p, σ) given in Appendix D is proportional to ε. The proximity
(upper) bound from Lemma 3.3 is proportional to

√
(ψ0 − 1)ε, therefore going to 0 much faster.

The embeddability is thus satisfied once√
2 · 43(ψ0 − 1)ε2 <

δ2

4ε ⇐⇒ ψ0 < 1 + ι4

32 · 43 .
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G Deforming the triangulation Tv
An extreme configuration can have a sphere in Figure 14 separating parts of Tv from the

Voronoi vertex v. In that case, we can chose different spheres to “push away” faces. Figure 14
shows the construction. We do not detail the computations.

≥ µ
2

≥ δ2

8ε

T f
v

p

q

v

v′ r

Figure 14: Limit case of the deformation of Tv into Tv.

H Equality of the Riemannian Delaunay complexes in ad-
vanced geometric settings

In this section, we explain precisely how to obtain conditions on the maximal length of a
canvas edge and the quality of the sample set such that the Deldg(P) and the Delg(P) are equal.

H.1 Uniform metric field
We first investigate the setting of a subdomain of Rn endowed with a uniform metric field.
If, for all σ ∈ Deldg(P), there exists σC ∈ C such that σC witnesses σ, and ∀σC ∈ C the simplex

witnessed by σC belongs to Deldg(P), then we say that C captures Deldg(P). A Voronoi cell is said
to be captured if all its Voronoi vertices are witnessed by the canvas.

By Lemma E.1, if a point set P in Rn is a δ-power protected (ε, µ)-net with respect to a
uniform metric field g0 then the point set P ′ = {F0pi, pi ∈ P}, where F0 is the square root of g0,
is also a δ-power protected (ε, µ)-net, but with respect to the Euclidean metric. We can deduce
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an upper bound on the maximal length of an edge of C for a uniform metric field using the results
of Theorem 6.1 for the Euclidean setting. The main result is given by the following theorem:

Theorem H.1. Let P be a point set in Ω. Let g be a uniform Riemannian metric field on Ω
(∀x ∈ Ω, g(x) = g0). Let C be the canvas and let eC be the length of its longest edge. If

eC <
(

min
i

√
λi

)
min

{
µ

3 ,
δ2

32ε

}
,

then Deldg(P) = Delg(P).

Proof. Consider R = Vord
g0

(P) over C. Let F0 be a square root of G0. The matrix F0 provides
a stretching operator between the Euclidean and the metric spaces. Let P0 = {F0p, p ∈ P} be
the transformed point set and C0 be a canvas (a dense triangulation) of the transformed space.
Denote by R0 the discrete Riemannian Voronoi diagram of P0 with respect to gE over C0. Let
eC,0 be the upper bound on the canvas edge length of C0 provided by Theorem 6.1 such that D0
is captured by C0.

Since P0 is a δ-power protected net with respect to gE, we can invoke Theorem 6.1 and we
must thus have

eC,0 < min
{
µ

3 ,
δ2

32ε

}
,

for the canvas C0 to capture DelE(P0).
Let C′0 be the image of C by F0. Note that C′0 and C0 are two different triangulations of the

same space. If any edge of C′0 is smaller (with respect to the Euclidean metric) than eC,0, then
C′0 satisfies

eC′,0 < min
{
µ

3 ,
δ2

32ε

}
and thus C′0 captures DelE(P0).

Recall that given an eigenvector vi of G0 with corresponding eigenvalue λi, a unit length in
the direction vi in the metric space has length 1/

√
λi in the Euclidean space. Therefore, if the

bound eC of C is smaller than αeC0 , with

α = 1
max
i

(
1√
λi

) = min
i

√
λi,

then every edge of C′0 is smaller than eC,0. This implies that C′0 captures DelE(P0) and therefore
that C captures Delg0(P).

This settles the case of a uniform metric field.

H.2 Arbitrary metric field
We now consider an arbitrary metric field g over the domain Rn. The key to proving the

equality of the discrete Riemannian Delaunay complex and the Riemannian Delaunay complex
in this setting is to locally approximate the arbitrary metric field with a uniform metric field, a
configuration that we have dealt with in the previous section. We shall always compare the metric
field g in a neighborhood U with the uniform metric field g′ = g(p0) where p0 ∈ U . Because
g′ and the Euclidean metric field differ by a linear transformation, we can simplify matters and
assume that g′ is the Euclidean metric field. The main argument of the proof will be once again
that a power protected has stable and separated Voronoi vertices.

We recall the main result of this section, Theorem 5.1.
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Theorem. Let g be an arbitrary metric field on Ω. Assume that P is a δ-power protected
(ε, µ)−net in Ω with respect to g. Denote by C the canvas, and eC the length of its longest edge.
If

eC < min
p∈P

eC,p,

where eC,p is given by Lemma H.2, and if ε is sufficiently small and δ is sufficiently large (both
values will be detailed in the proof), then Deldg(P) = Delg(P).

We prove Theorem 5.1 by computing for each point p ∈ P the maximal edge length of the
canvas such that the Voronoi cell Vg(p) is captured correctly. Conditions on ε and δ shall emerge
from the intermediary results on the stability of power protected nets.

Lemma H.2. Let ψ0 ≥ 1 be a bound on the metric distortion and g be a Riemannian metric
field on U . Let U be an open neighborhood of Ω = Rn that is included in a ball Bg(p0, r0), with
p0 ∈ U and r0 ∈ R+ such that ∀p ∈ B(p0, r0), ψ(g(p), gE(p)) ≤ ψ0. Let PU be a point set in U
and let p0 ∈ PU .

Suppose that PU is a δ-power protected (ε, µ)−net of with respect to g. Let Vg(p0) be the
Voronoi cell of p0 in Vord

g(PU ). If

eC,p0 < min
i

(√
λi

)
min

{
µ

3 ,
`0
2

}
,

with {λi} the eigenvalues of g0 and `0 that is made explicit in the proof, and if ε is sufficiently
small and δ is sufficiently large (both values will also be detailed in the proof), then Deldg(P) =
Delg(P).

H.2.1 Approach

The many intermediary results needed to prove Theorem 5.1 are presented in Appendices C, D
and E. We refer to them at appropriate times.

We use the fact that a Riemannian Voronoi cell Vg(p0) can be encompassed into two Eu-
clidean Voronoi cells DV+η

E (p0) and EV−ηE (p0) that are scaled up and down versions of VE(p0)
(Lemma E.12). Specifically, EV−ηE (p0) and DV+η

E (p0) are defined by

EV−ωE (p0) = {x ∈ VE(p0) | dE(x, ∂VE(p0)) > ω},

and
DV+ω

E (p0) =
⋂
i 6=0

Hω(p0, pi),

where Hω(p0, pi) is the half-space containing p0 and delimited by the bisector BS(p0, pi) trans-
lated away from p0 by ω0. The constant η is the thickness of this encompassing and depends
on the bound on the distortion ψ0 in the neighborhood, and on the sampling and separation
parameters ε and µ. We have that η goes to 0 as ψ0 goes to 1.

The (local) stability of the power protected nets assumption is proved here again (Lemmas E.2
and E.16). From this observation, we can deduce that the Voronoi vertices of the Euclidean
Voronoi cell VE(p0) are separated, and thus that the Voronoi vertices of EVE(p0) are separated.
A bound on the maximal length of a canvas edge can then be computed such that EVE(p0) is
captured and thus Vg(p0) is captured.
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Difficulties The difficulty almost entirely comes from proving the stability of the assumption
of power protection under metric perturbation in any dimension, that is proving that if we
assume that P is δ-power protected with respect to the arbitrary metric field g, then, in a
small neighborhood around p0, the point set P is δ0-power protected with respect to g0 =
g(p). Assuming a power protected net does give us some bounds, but creates a tricky circular
dependency as the coefficient δ appears in the dihedral angles (see Lemma D.2). We remedy this
issue by proving that Euclidean dihedral angles are bounded assuming power protection with
respect to the arbitrary metric field, with Lemmas D.5 and D.6.

H.2.2 Proof of Lemma H.2

Lemma E.5 gives us that Vg(p0) lies in DV+η
E (p0) and contains EV−ηE (p0). Since Vg(p0)

contains EV−ηE (p0), if eC is small enough such that EV−ηE (p0) is captured, then Vg(p0) is also
captured. Proving that EV−ηE (p0) is captured is done similarly to the Euclidean setting. While
we do not explicitly have the power protected net property for the relaxed Voronoi cells (and
specifically, EV−ηE (p0)), we can still extract the critical property that the Voronoi vertices are
separated, as shown by the next lemma.
Lemma H.3. Assume U , g, and ψ0 as in Lemma H.2. Assume that the point set PU is a
δ0-power protected (ε, µ)-net with respect to the Riemannian metric field g. Then the Voronoi
vertices of EV−ηE (p0) are separated.
Proof. By Lemmas E.2 and E.16, we have local stability of the power protection and net prop-
erties. Hence, P is δ0-power protected (ε0, µ0)-net with respect to gE in U .

Let L0 = δ2
0/4ε0 be the separation bound induced by the δ0-power protection property of PU

(see Lemma C.4). Let l be the distance between any two adjacent Voronoi vertices of EV−ηE (p0).
We know by Lemma E.14 that the parallelotopic region around a Voronoi vertex is included in
a ball centered on the Voronoi vertex and of radius χ. The protection parameter ι is given by
δ = ιε. We have that

l ≥ L− 2χ

≥ δ2
0

4ε0
− 2 χ2

sinn−2 (ϕ
2
)

≥ δ2
0

4ε0
− 2 4η(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2 =: `0, (11)

where ϕ represents the dihedral angle and s0 = 1
2

[
ι2

4ψ2
0
− 1

2

(
ψ2

0 − 1
ψ2

0

)]
. For the stability regions

not to intersect, we require l to be positive. This can be ensured by enforcing that the lower
bound is positive:

δ2
0

4ε0
>

8η(√
1 + λ

2ψ2
0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2

Recall that ε0 = ψ0ε, µ0 = λε/ψ0 and ρ0 = 2ψ0ε. Using these notations, we see that l > 0 if

δ2
0 >

32ε0ρ
2
0(ψ2

0 − 1)
µ0

(√
1 + λ

2ψ2
0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2

δ2
0 >

128ε2ψ4
0(ψ2

0 − 1)
λ
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2 . (12)
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This condition is easy to satisfy when ψ0 goes to 1 because the right hand side of Inequal-
ity (12) is proportional to (ψ2

0 − 1)ε2.
The intermediary results that we use already impose some conditions on δ and ε, and we thus

would like to give the condition in Equation 12 in terms of δ, so that it may be compared with
Inequality (7). In Lemma E.16, we have seen that

δ2
0 = δ2

ψ2
0

+
(

1
ψ2

0
− ψ2

0

)
(ε+ χ)2 − 4εχ

ψ2
0
,

Thus

δ2

ψ2
0

+
(

1
ψ2

0
− ψ2

0

)
(ε+ χ)2 − 4εχ

ψ2
0
>

128ε2ψ4
0(ψ2

0 − 1)
λ
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2 ,

which is equivalent to

δ2 >
128ε2ψ6

0(ψ2
0 − 1)

λ
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2

+ 4εχ
+ (ψ4

0 − 1)(ε+ χ)2.

⇐⇒ δ2 > 8εψ3
0χ+ 4εχ+ (ψ4

0 − 1)(ε+ χ)2. (13)

This bound is again proportional to (ψ2
0 − 1)ε and is very similar to the bound given by Inequal-

ity (7), made explicit in Inequality (8), but Inequality (13) provides the tougher bound due to
the (ε+ χ) coefficient.

We can now provide an upper bound on the length of any canvas edge so that it captures
EV−ηE (p0) and prove Lemma H.2. From Theorem 6.1, we have that if the canvas edge length is
bounded as: eC < min{µ0/16, δ2

0/64ε0}, then VE(p0) is captured as P is a δ0-power protected
(ε0, µ0)-net with respect to the Euclidean metric field. As we want to capture EVE(p0), we
cannot directly use this result. We have nevertheless obtained the separation between the Voronoi
vertices of the eroded Voronoi cell (Equation 11). It is then straightforward to modify the result
of Theorem 6.6 by using the separation bound provided in Lemma H.3 instead of the one provided
by Lemma C.4. We thus choose

e0
C,p0

= min
{
µ

3 ,
`0
2

}
.

Remark H.4. We here ignore the consequences of Appendix G as it only complicates formulas
without changing the logical steps.

We should not forget that we have assumed that g0 is the Euclidean metric field, which
is generally not the case, we must in fact proceed like for the case of a uniform metric field
(Theorem H.1):

eC,p0 < min
j

(√
λi

)
(e0
C,p0

),

with {λi} the eigenvalues of g0.
Therefore, if the site set satisfies the previous conditions on ε and δ and the canvas is enough

for all of its edges to have a length smaller than eC,i, then EV−ηE (p0) is captured, and thus Vg(p0)
is captured, which proves Lemma H.2.
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Taking the minimum of all the bounds eC over all pi ∈ P, we obtain an upper bound on the
length of the longest canvas edge,

eC = min
pi∈P

eC,pi ,

such that all the Voronoi cells are captured.
In all the Lemmas necessary to obtain the local results, we have imposed conditions on ε and

δ. Similarly to the bound eC , the domain-wide bounds on ε and δ are computed from the local
values of ε and δ.

Finally, this proves that Deldg(P) = Delg(P) in the general setting (Theorem 6.1), when
geodesics are exactly computed.

H.3 Approximate geodesic distance computations
We have so far assumed that geodesics are computed exactly, which is generally not the case

in practice. Nevertheless, once the error in the approximation of the geodesic distances is small
enough, the computation of the discrete Riemannian Voronoi diagram with approximate geodesic
distances can be equivalently seen as the computation of a second discrete Riemannian Voronoi
diagram using exact geodesic distances but for a slightly different metric field.

Denote by d̃g the geodesic approximation and dg the exact geodesic distance with respect
to the metric field g. Assume that in a small enough neighborhood U (see Lemma B.1), the
distances can be related as ∣∣∣dg(p0, x)− d̃g(p0, x)

∣∣∣ ≤ ξdg(p0, x),

where ξ is a function of x that goes to 0 as the sampling parameter ε goes to 0. We can formulate
a lemma similar to Lemma E.5 to bound the distance between the same bisectors between sites
for the exact and the approximate diagrams.

Lemma H.5. Let ψ0 ≥ 1 be a bound on the metric distortion and g and g′ be two Riemannian
metric fields on U . Let U be an open neighborhood of Ω = R2 that is included in a ball Bg(p0, r0),
with p0 ∈ U and r0 ∈ R+ such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU be a point set in
U and let p0 ∈ PU . Let PU = {pi} be a point set in U . Let Ṽp0,g denote a Voronoi cell with
respect to the approximate geodesic distance.

Suppose that the Voronoi cell V +2ξρ̃
g (p0) lies in a ball of radius ρ̃ with respect to the metric

g, which lies completely in U . Then Ṽp0,g lies in V +2ξρ̃
g (p0) and contains V −2ξρ̃

g (p0).

Proof. Let B̃Sg(p0, pi) be the bisector between p0 and pi with respect to the approximate geodesic
distance. Let y ∈ B̃Sg(p0, pi)∩Bg(p0, ρ), where Bg(p0, ρ) denotes the ball centered at p0 of radius
ρ with respect to the exact geodesic distance. Now d̃g(y, p0) = d̃g(y, pi), and thus

|dg(y, p0)2 − dg(y, pi)2| =
∣∣∣dg(y, p0)2 − d̃g(y, p0)2 + d̃g(y, pi)2 − dg(y, pi)2

∣∣∣
≤
∣∣∣dg(y, p0)2 − d̃g(y, p0)2

∣∣∣+
∣∣∣dg(y, pi)2 − d̃g(y, pi)2

∣∣∣
≤ 2ξ(dg(y, p0)2 + dg(y, pi))2

≤ 2ξρ̃2.

Thus dg(y, p0)2 ≤ dg(y, pi)2 + ω̃ and dg(y, p0)2 ≥ dg(y, pi)2 − ω̃ with ω̃ = 2ξρ̃2, which gives us
the expected result.
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Denote by Ṽ (p0) the Voronoi cell of p0 with the approximate metric. We can then incorporate
Lemma H.5 to obtain a result similar to Lemma E.12.

Lemma H.6. Let U , ψ0, g, g0 and PU be defined as in Theorem 5.1. Then we can find η′0 and
ω′0 such that

EV−η
′
0

g0
(p0) ⊆ V−ω

′
0

g0
(p0) ⊆ V−ω̃g (p0) ⊆ Ṽg(p0) ⊆ V+ω̃

g (p0) ⊆ V+ω′0
g0

(p0) ⊆ DV+η′0
g0

(p0).

These inclusions are illustrated in Figure 15.

p0

Vg0(p0)

DV +η′0
g0

(p0)

EV −η
′
0

g0
(p0)

V +ω′0
g0

(p0)

V −ω
′
0

g0
(p0)

∂Ṽg(p0)

∂V −ω̃g (p0)

∂V +ω̃
g (p0)

Figure 15: Illustration of the different encompassing cells around p0 in the context of an approx-
imate geodesic distance. The RVDs with respect to g and g0 are respectively traced in red and
black. The dilated Voronoi cells are traced in blue and green. The Voronoi cell Vg0(p0) is colored
in yellow. The cells DV +η′0

g0 and EV −η
′
0

g0 are colored in green, and the cells V ±ω
′
0

g0 (p0) are colored
in purple.

The subsequent lemmas and proofs are similar to what was done in the case of exact geodesic
computations and we do not explicit them.
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