N
N

N

HAL

open science

The HARNESS Platform: A Hardware-and
Network-Enhanced Software System for Cloud
Computing

Jose G F Coutinho, Mark Stillwell, Katerina Argyraki, George Ioannidis,

Anca Iordache, Christoph Kleineweber, Alexandros Koliousis, John Mcglone,

Guillaume Pierre, Carmelo Ragusa, et al.

» To cite this version:

Jose G F Coutinho, Mark Stillwell, Katerina Argyraki, George Ioannidis, Anca lordache, et al.. The
HARNESS Platform: A Hardware-and Network-Enhanced Software System for Cloud Computing.
Ivan Mistrik; Rami Bahsoon; Nour Ali; Maritta Heisel; Bruce Maxim. Software Architecture for Big
Data and the Cloud, Morgan Kaufmann, 2017, 9780128054673. hal-01507344

HAL Id: hal-01507344
https://inria.hal.science/hal-01507344
Submitted on 13 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01507344
https://hal.archives-ouvertes.fr

The HARNESS Platform:
A Hardware- and Network-Enhanced Software
System for Cloud Computing

Jose G.F. Coutinho!, Mark Stillwell', Katerina Argyraki?, George loannidis?, Anca lordache?,
Christoph Kleineweber*, Alexandros Koliousis!, John McGlone®, Guillaume Pierre?,
Carmelo Ragusa®, Peter Sanders?, Thorsten Schitt?, Teng Yu!, Alexander Wolf®

'Imperial College London, UK 2EPFL, Switzerland
5SAP Labs, USA SSAP, UK

"Maxeler Technologies, UK

3Université de Rennes 1, France *Zuse Institute Berlin, Germany

8University of California, Santa Cruz, USA

gabriel.figueiredo@imperial.ac.uk

Abstract—HARNESS is a next generation cloud-computing platform
that offers commodity and specialized resources in support of large-
scale data processing applications. We focus primarily on application
domains that are currently not well supported by today’s cloud providers,
including the areas of scientific computing, business-analytics, and
online machine learning. These applications often require acceleration
of critical operations using devices such as FPGAs, GPGPUs, network
middleboxes, and SSDs. We explain the architectural principles that
underlie the HARNESS platform, including the separation of agnostic and
cognizant resource management that allows the platform to be resilient
to heterogeneity while leveraging its use. We describe a prototype
implementation of the platform, which was evaluated using two testbeds:
(1) a heterogeneous compute and storage cluster that includes FPGAs
and SSDs and (2) Grid’5000, a large-scale distributed testbed that spans
France. We evaluate the HARNESS cloud-computing platform with two
applications: Reverse-Time Migration, a scientific computing application
from the geosciences domain, and AdPredictor, a machine learning
algorithm used in the Bing search engine.

1 INTRODUCTION

Modern cloud computing technologies and interfaces, as demon-
strated by the web-service industry, can vastly improve the
flexibility and ease-of-use of distributed systems, while simul-
taneously simplifying administration and reducing downtimes and
maintenance costs. However, current data center infrastructures are
built primarily to service distributed N-tier web-based applications
that run on commodity hardware, leaving out many scientific and
engineering applications that have complex task communication
interdependencies, and may rely on a variety of heterogeneous
accelerator technologies (e.g., GPGPUs, ASICs, FPGAs) to achieve
the desired performance. Furthermore, web service applications
are engineered to scale horizontally in response to demand, while
for many other types of applications there may be a need to
select the most appropriate configuration, which involves not only
identifying the number and type of resources, but also provide
a more complex description of resource requirements, such as

the network bandwidth between resources, or the desired FPGA
interconnect topology.

To better service workloads stemming from application domains
currently not supported by cloud providers, we have designed and
implemented an enhanced cloud platform stack, HARNESS, that
fully embraces heterogeneity. HARNESS handles all types of
cloud resources as first-class entities, breaking away from the
VM-centric model employed by most cloud platforms used today.
Moreover, HARNESS is designed to be resilient to different types
of heterogeneous resources with its multitier architecture composed
of agnostic and cognizant resource managers, and a novel API that
provides a common interface to these managers. New types of cloud
resources can be integrated into HARNESS, including complex
state-of-the-art FPGA accelerator clusters, such as the MPC-X
developed and marketed by Maxeler [8]; as well as more abstract
resources, such as QoS-guaranteed network links. Our approach
provides full control over which resource features and attributes
are exposed to cloud tenants, allowing them to submit fine-grained
allocation requests that are tailored to the requirements of their
application workloads, instead of relying on a set of predefined
configurations (flavors).

This chapter is structured as follows. Section 2 describes related
work. Section 3 provides an overview of the key features of the
HARNESS approach. Section 4 focuses on how heterogeneous
cloud resources are managed within HARNESS. Section 5 covers
the implementation of a HARNESS cloud prototype based on
components developed by the project partners. The evaluation of
the HARNESS cloud platform and infrastructure is reported in
Section 6, and Section 7 concludes this chapter.

2 RELATED WORK
The HARNESS cloud platform provides two autonomous, yet fully
integrated, cloud layers:

1. The platform layer, commonly known as Platform-as-a-
Service (PaaS), manages the life-cycle of applications de-

ployed in a cloud infrastructure. There are several com-
mercial PaaS systems currently available, including Cloud
Foundry [19], Google App Engine [5], Microsoft Azure [9]
and OpenShift [32];

2. The infrastructure layer, commonly known as Infrastructure-
as-a-Service (IaaS), exposes cloud resources and services that
allow applications to run. Notable IaaS systems include Ama-
zon AWS [1], Google Compute Engine [6], and Rackspace
Open Cloud [37].

In addition to commercial cloud platforms, there have been
a number of EU research projects that focused on solving
specific cloud computing problems. For instance, Venus-C [13]
targeted the development, test and deployment of a highly-scalable
cloud infrastructure; PaaSage [11] covered the intelligent and
autonomic management of cloud resources that included elastic
scalability; CELAR [2] focused on the dynamic provisioning of
cloud resources; LEADS [7] covered the automatic management
of resources across multiple clouds; BigFoot [12] designed a
scalable system for processing and interacting with large volumes
of data; CloudSpaces [4] focused on cloud data concerns such
as consistency and replication over heterogeneous repositories;
and CloudLightning [3] worked on the problem of provisioning
heterogeneous cloud resources using a service description language.

An important part of a cloud platform is the API, which
provides an interface for interacting with its components. Attempts
to standardize cloud interfaces have been spearheaded by a number
of organizations, most notably Organization for the Advancement
of Structured Information Standards (OASIS), Distributed Man-
agement Task Force (DMTF) and Open Grid Forum (OGF). The
current state of the major available open cloud interface standards
is summarized in Table 1, and described next:

o The Topology and Orchestration Specification for Cloud
Applications (TOSCA) [34] standard from OASIS describes
how to specify the topology of applications, their components,
and the relationships and processes than manage them. This
allows the cloud consumer to provide a detailed, but abstract,
description of how their application or service functions,
while leaving implementation details up to the cloud provider.
With TOSCA, cloud users can describe how their distributed
application should be deployed (in terms of which services
need to communicate with each other), as well as how
management actions should be implemented (e.g., start the
database before the web service, but after the file server);

e The Cloud Application Management for Platforms
(CAMP) [33] standard from OASIS targets PaaS cloud
providers. This standard defines how applications can be
bundled into a Platform Deployment Package (PDP), and in
turn how these PDPs can be deployed and managed through
a REST over HTTP interface. It includes descriptions of
platforms, platform components (individual services offered
by a platform), application components (individual parts an
application that run in isolation) and assemblies (collections of

Specification ~ Standards Org. Version Focus

TOSCA [34] OASIS 1.0 orchestration
CAMP [33] OASIS 1.1 deployment
CIMI [18] DMTF 2.0 infrastructure
OCCI [31] OGF 1.1 infrastructure

Table 1: Current open cloud interface standards.

2

possibly-communicating application components). Users can
specify how application components interact with each other
and components of the platform, but infrastructural details
are left abstract. For example, a user would not know if their
components were executing within shared services, containers
or individual virtual machines;

e The Cloud Management Initiative (CMI) [18] standard
was developed by the Cloud Management Working Group of
DMTF. As with most cloud standards it relies on REST over
HTTP. While XML is the preferred data transfer format due to
the ability to easily verify that data conforms to the appropriate
schema, JSON is also allowed. CIMI has pre-defined resource
types defined in the standard, notably networks, volumes,
machines, and systems (collections of networks, volumes, and
machines), and the actions that may be performed upon a
resource are constrained by its type (e.g., machines can be
created, destroyed, started, stopped, or rebooted);

e The Open Cloud Computing Interface (OCCI) [31] stan-
dard comes from OGF, an organization that was previously
very active in defining grid computing standards. It is
divided into three sections: core, infrastructure and HTTP
rendering. The core specification defines standard data types
for describing different types of resources, their capabilities,
and how they may be linked together, while the infrastructure
specification explicitly defines resource types for compute,
network, and storage. The HTTP rendering section defines
how to implement OCCI using REST over HTTP. Taken
together, these three sections allow OCCI to present similar
functionality as found in other IaaS-layer interfaces, such as
Amazon EC2 [1], OpenStack Nova [10], and CIMI. However,
OCCI is designed to be flexible, and the core specification
can be used with extension standards to define new resource

types.

3 OVERVIEW

A key distinguishing feature of HARNESS, when compared to
current state-of-the-art and state-of-the-practice cloud computing
platforms, is that it fully embraces heterogeneity. More specifically,
HARNESS handles resources that are not only different in terms of
size and nominal capacity, but also that are intrinsically different
from each other, including FPGAs, GPGPUs, middleboxes, hybrid
switches and SSDs, in cloud data center infrastructures. Such
support exacerbates the complexity of the management process for
both the platform and the infrastructure layers.

While the availability of heterogeneous resources in cloud data
centers is not a new concept, the current approach to supporting
heterogeneity involves the use of the VM-centric model, where
specialized resources are viewed as mere attributes of VMs, e.g.,
a VM coupled with a GPU or an FPGA. Alternatively, one can
envision a cloud computing platform that handles a closed set of
heterogeneous resources, however it is less trivial how to create a
platform that can integrate new types of cloud resources without
having to redesign its underlying architecture and management
algorithms. In this context, we have introduced novel aspects to the
cloud computing platform design:

e HARNESS supports the allocation of different types of
resources, from conceptual resources (bandwidth) to complex
physical resources (cluster of FPGAs). In contrast, existing
TaaS systems, such as OpenStack [10], expose only one
type of compute resource to tenants - as virtual or physical

(baremetal) machines - with database and communication
facilities exposed as high-level services. HARNESS goes
beyond the VM-centric model by treating all types of resources
as first-class entities, thus cloud tenants can request virtual
FPGAs and virtual network links between pairs of resources
in the same way VMs are allocated in today’s cloud platforms;

o HARNESS allows the side-by-side deployment of commodity
and specialized resources, thus dramatically increasing the
number of possible resource configurations in which an appli-
cation can be deployed. In other words, an application may be
deployed in many ways by varying the types and the number
of resources, each option having its own cost, performance,
and utilization footprint. In this context, applications express
their wants and needs to the HARNESS platform, as well
as the price they are prepared to pay for various levels of
service. This expression of wants and needs builds upon what
can be expressed through today’s simple counts of virtual
machines or amounts of storage, to encompass the specific
characteristics of specialized technologies;

o HARNESS supports the automatic generation of performance
models that guide the selection of well-chosen sets of
resources to meet application requirements and service-level
objectives. We developed several techniques to reduce the
profiling effort of generic applications, including the use
of monitoring resource utilization to generate higher-quality
performance models at a fraction of time [25], as well
as extrapolating production-size inputs using smaller sized
datasets;

« HARNESS is designed to be resilient to heterogeneity. We
developed a multitier infrastructure system, such that the top
level management can perform operations with different levels
of agnosticism, so that introducing new types of resources
and tailoring a cloud platform to target specialized hardware
devices does not lead to a complete redesign of the software
architecture and/or its top-level management algorithms;

o The various resource managers that make up the HARNESS
infrastructure are governed by a single API specification that
handles all types of resources uniformly. Thus, a new type of
resource can be incorporated into HARNESS by integrating
a resource manager that implements the HARNESS APL
Furthermore, cross-cutting functionality such as monitoring,
debugging, pricing and security features can be introduced by
extending the HARNESS API specification, thus covering all
cloud resources types managed by HARNESS.

4 MANAGING HETEROGENEITY

One of the key problems addressed by the HARNESS project
is how to seamlessly incorporate and manage different types of
heterogeneous resources in the context of a cloud computing
platform. This includes not only supporting resources targeted
by the HARNESS consortium (Figure 1), but also generalizing this
approach beyond the HARNESS resource set.

There are many challenges in handling heterogeneity in the
context of a cloud computing platform. First, in contrast with
commodity CPU-based servers, specialized resources are largely
invisible to operating systems. Moreover, established cloud in-
frastructure management software packages, including OpenStack,
provide very limited support for these types of resources. Instead,
specialized resources must be directly managed by the application
programmer, including not just execution of code but also in

GPU-based
parallel-thread
engines

BANDWIDTH
MORE { CAPACITY
10§

Managed
Storage
Resources

Middleboxes for HORESERVERS

in-network

aggregation
)| 2B8res ASIC-based =

OpenFlow
switching
fabric

D00 dooh dod
e

S vspeed
o) 15, — " o @

Cluster of
FPGA-based
dataflow engines

Figure 1: The HARNESS resource set consists of a group of
compute, communication and storage resources. Some of these
resources include (clockwise from top): (a) GPU accelerators,
(b) managed storage volumes with performance guarantees, (c) hy-
brid switches that can handle millions of access control rules, (d) a
cluster of FPGA-based devices that can be accessed via network,
and (e) general-purpose middleboxes that allow application-specific
network functions to be performed along network paths.

slower
{ HARNESS Resource Manager } global
agnostic
management HARNESS
API
more
opportunities HARNESS HARNESS HARNESS
for reuse Resource Manager Resource Manager Resource Manager
vendor specific I
interface
A Vendor
esource
faster g panieec B
- Manager Manager
resource-specific _
management Eﬁ 1 I
- ==
Vendor
less | E .
opportunities - Eﬁ—u Manager local
forreuse|
OpenNebula

degree of heterogeneity

Figure 2: A heterogeneous cloud computing platform, supporting
various types of resources, can be built by composing resource
managers that implement the HARNESS API in a hierarchical
system.

many cases tasks that are traditionally supported by both hardware
and software such as allocation, de-allocation, load balancing,
context switching and virtualization. A second challenge in
handling heterogeneity is developing a system that does not require
redesigning the architecture or rewriting the allocation algorithms
when new types of resources are introduced, considering that each
type of resource exposes different control mechanisms, as well as
interfaces for acquiring feedback about availability and monitoring.
Furthermore, each type of resource exhibits different semantics for
expressing capacity and allocation requests.

management

management

4.1

We have addressed these challenges by designing a cloud comput-
ing architecture where runtime resource managers can be combined
hierarchically, as illustrated in Figure 2. In this organization, the
top levels of the hierarchy are HARNESS resource managers which
service requests using the HARNESS API. At the lower levels of
the hierarchy we find resource managers, provided by third-party
vendors, that handle specific devices using proprietary interfaces.
One of the responsibilities of the HARNESS resource managers is
to translate agnostic requests defined by the HARNESS API into
vendor-specific requests. Supporting multiple hierarchical levels
allows a system integrator to design an architecture using separation
of concerns, such that each manager can deal with specific types
of resources. A typical HARNESS platform deployment has a
top-level manager with complete knowledge about all the resources
that are available in the system, but very little understanding of how
to deal with any of these resources specifically. Any management
request (such as reservation or monitoring feedback) are delegated
to child managers that have a more direct understanding of the
resource(s) in question. A child manager can handle a resource
type directly or can delegate the request further down to a more
specific resource manager.

Hence, the top levels of the hierarchy have a more agnostic and
globalized view of available resources. This view can be acquired
dynamically by querying the lower-level resource managers at
regular time intervals. As we go down the hierarchy, we find a
more localized and cognizant management. The question remains,
how does one build an agnostic resource manager that can make
allocation decisions without understanding the specific semantics
of each type of resource? This is the topic of the next section.

Hierarchical Resource Management

4.2 Agnostic Resource Management

The scheduling research community has been aware of and
interested in the problem of allocating resources and scheduling
tasks on large-scale parallel distributed systems with some degree
of heterogeneity for some time. While work in this area generally
acknowledges the underlying variations in capabilities between
classes of resources, and much has been made of the differences in
how time- and space- shared resources (e.g., CPUs vs memory) are
partitioned between users and tasks, these works usually assume
uniformity in semantics presented by the interfaces used to allocate
these resources. For example, the authors of [39] assume that a
multi-resource allocation can be mapped to a normalized Euclidean
vector, and that any combination of resource allocation requests
can be reasonably serviced by a compute node so long as the vector
sum of the allocations assigned to a node does not exceed the
vector representing that node’s capacity in any dimension.

What we observe, however, is that heterogeneous resources
frequently expose complicated semantics that cannot be captured
by a simple single- or multi-dimensional availability metric. This is
generally due to internal constraints that disallow certain allocations
that would otherwise fall within the total “amount” of resource
presented by the device. For an illustrative example of why this
is so, consider the MPC-X cluster presented in Figure 3. This
type of cluster contains one or more MPC-X nodes, where each
node harbors a number of dataflow engine (DFE) devices [35]
that are physically interconnected via a ring topology. A DFE
is a specialised computation resource employing an FPGA to
support reconfigurable designs and 48GB (or more) RAM for
bulk storage. With this setup, applications running on CPU-based

4

machines dispatch computationally intensive tasks to single or
multiple DFEs across an Infiniband network. In the context of a
cloud platform, we wish to support allocation requests that specify
not only the number of DFEs, but also whether these DFEs must be
interconnected (RING) or not (GROUP). The choice of topology
for allocated DFEs depends on the application. For instance, stencil-
based applications can make use of interconnected DFEs (RING) to
increase throughput [28]. On the other hand, a GROUP allocation
allows the creation of a worker pool, to which tasks are sent to, and
are serviced by available DFE workers. In this case, once a DFE
allocation is satisfied, the residual capacity must be computed, and
that requires understanding how GROUP and RING allocations
affect the capacity of the MPC-X cluster.

Also in Figure 3, we consider another type of resource, the
XtreemFS storage, which allows users to request storage volumes
with specific capacity and performance. As with the MPC-X
cluster, to compute the residual capacity of an XtreemFS storage
resource requires understanding the inner works of the XtreemFS
management algorithms, the physical storage devices used and the
corresponding performance models. These performance models
indicate, for instance, how performance degrades with the number
of concurrent users. Additional examples of resources with complex
semantics include: a (not necessarily homogeneous) collection of
machines capable of running some mix of programs or virtual
machines (e.g., a cluster), and a virtual network with embedded
processing elements.

To support a central allocation process that has no specific
understanding about the type of resources it handles, we use child
resource managers, as shown in Figure 3, which oversee the process
of translating agnostic management requests from the top-level
manager to requests that are specific to a particular type of resource.
Each child resource manager is responsible for reporting available
resources, servicing allocation and deallocation requests, as well
as reporting monitoring information (e.g., resource utilization).

More importantly, child managers report the capacity of all
resources to the top-level managers. As previously discussed, an
agnostic top-level manager cannot simply look at the descrip-
tions of available resources and reason about their nominal and
residual capacities, including understanding whether a sequence
of allocation requests can “fit” on or in a resource, as such a
capability would require an intimate knowledge about how to
interpret the capacity of each type of resource. Moreover, while
every resource considered by a resource allocation algorithm has
some finite capacity, for some resources it may not be possible to
fully represent this capacity as a singleton or vector of numerical
values, requiring instead a more complex representation.

Rather than ignoring this limitation and modeling finite resource
capacities as integers or vectors, as in most works, we assume
a more abstract representation, wherein the top-level manager
is supplied the following information from the child manager
overseeing resources of type x:

i. the allocation space specification (A,), e.g., the set of all valid
allocation requests for resource of type x;

ii. an operation of composition (+,) that groups allocation
requests;

iii. a partial-ordering relation (<,) on the set of basic requests
that fulfills the following property: to say that an allocation
request a € A is “smaller” than b € A, means that servicing
a requires less of a resource’s capacity than servicing b. More
formally, a <, b means that if the residual capacity of

HARNESS Resource Manager

“If an XtreemFS storage resource has

1TB + bandwidth 500 Mb/s and

we reserve two 200 MB volumes

with 100 Mb/s performance,

how much bandwidth would we have left?” L
¥

HARNESS Resource
Manager for XtreemFS

178
500 MB/s
SEQUENTIAL

17B
|— 150K iops
RANDOM

XtreemFS Cloud
Filesystem

1 Y
Not
possible
If the MPC-X cluster has
2 DFEs available, resource capacities: Cy
and we reserve 5 DFEs, allocation spec: Ay,
how many DFEs composition: +y,
would we have left? | fits <=
{ HARNESS Resource } { HARNESS Resource]
Manager for MPC-X Manager for X

MPC-X #1 MPC-X #2

Topology: GROUP,
Size: 2

|
Topology: RING,
Size: 4

Maxeler MPC-X
Cluster

Figure 3: The top-level manager can allocate abstract resources with the support of child resource managers. To support higher-level
management, each child resource manager handling a resource x exposes abstract operators (4, <), the allocation specification (A,)
which defines the space of all valid allocation requests, and the capacities of all available resources of type x (C,). XtreemFS is a cloud
filesystem which manages heterogeneous storage devices. The MPC-X cluster provides a pool of Maxeler dataflow engines (DFEs). A
dataflow engine is a physical compute resource which contains an FPGA as the computation fabric and RAM for bulk storage, and can

be accessed by one or more CPU-based machines.

resource x is sufficient to service b then it must be sufficient
to service a if @ was substituted for b.

In Figure 3 we illustrate the interactions between the top-level
and child resource managers during the allocation process. The
implementation of each abstract operator, including the ordering of
both capacities and allocation requests, is specific to each type of
resource. Figure 5 presents an example of the ordering of MPC-X
allocation requests.

This level of abstraction is necessary to allow the platform to
incorporate resources with arbitrary resource allocation semantics,
but it can be difficult to adapt standard resource allocation
algorithms. In particular, traditional resource allocation approaches
have some notion of a numerical quantity that can represent the
size of either an item to be placed or the residual capacity of a
resource. For example, consider the best-fit strategy commonly
used for bin-packing and memory allocation, which simply follows
the heuristic that the largest items remaining to be packed will be
the ones with the least flexibility as to where they can be placed,
and so these should be handled first, and they should be assigned
to the resources where there is a minimum of left-over space, so
as to minimize underutilized resources. In the next section we will
discuss a strategy for ranking resource allocation requests that can
be used to adapt conventional allocation algorithms to work with
arbitrary heterogeneous resources in an agnostic manner.

4.3 Ranking Allocation Requests

The aim of this section is to describe a general procedure for
computing a ranking function that can serve as a proxy for the

size or the residual capacity of arbitrary resource types [40].

This ranking function can be used as an input to an allocation
heuristic. While in this section we focus primarily on the MPC-X

device, our technique can be applied deterministically to generate
ranking functions for resources with arbitrary resource capacity
and allocation representations, extending beyond a simple scalar
or vector representation. We demonstrate this process through
an illustrative example and argue that the same approach can
be applied more broadly to any device for which a HARNESS
resource manager can supply the functional interface described in
the previous section.

To apply a standard and well established resource allocation
algorithm, such as first-fit or best-fit, to an extended domain of
heterogeneous resources, we need some way to compare the relative
“size” of requests that may not be related under the inequality
defined for the resource type. The standard approach is to base
the size of the request on the amount of resource consumed (e.g.,
number of CPU cores or megabytes of memory). However, we note
that for resource allocation among competing users what matters is
the degree to which satisfying a request limits the possible future
uses of the corresponding resource.

Recall that the MPC-X device supports two kinds of resource
allocation requests: GROUP and RING requests. A GROUP request
contains the number of desired DFE devices inside an MPC-X box,
while a RING request requires that all of the allocated devices be
interconnected (see Figure 3). We use GG,, (n=1. .. 8) to represent
GROUP requests and R,, (n=1...8) to represent RING requests.
The index of a request represents the number of DFE devices
required.

Given our previous definition of inequality, we can see that the

MPC-X MPC-X

—
adjacent DFEs
I

A

non-adjacent DFEs

(a) (b)

Figure 4: To understand the relationship Ry < G5, consider a G'5
allocation corresponding to the selection of five arbitrary DFEs
inside an MPC-X box. As can be seen in (a), selecting the 5th DFE
implies that at least two of the selected DFEs in a G5 allocation
must be adjacent, i.e., Ry. While this example may lead us to
conclude that R3 < G5, note that (b) depicts the case of a G5
allocation that does not hold three adjacent DFEs (R3).

following must hold:

Vn € [1, 7], Gn < Gn+1 (1)
vn S [17 7]3 Rn S Rn+1 (2)
Vn € [1,8],Gn < Ry, 3)

Furthermore, when considering how DFE devices must be selected
in an actual resource allocation for the MPC-X, we can derive the
following relationships:

Gy =Ry)
G7 =Ry)
Gs = Rs (6)
Ry, <G5 @)
Rz < Gs ®)

Figure 4 explains relationship (7), and the same argument can
be made to (8). These observations can be further extended to
include a more constrained relation defined as: a < b iff a is less
than b and there is no third allocation request ¢, distinct from a and
b, such that a < ¢ < b. In this case we say that b covers a, and
thus:

vn € {172v3347577}7Gn j G(n-i-l (9)
Vn € (2,7, R < Rus1 (10)
vn € [1,7,G, < Ry (11

It should be noted that it is not the case that R < R, as
we have G; = R; and therefore Ry < Gy < Rjs. Similarly,
G does not cover Gg, as G7 = Ry, and therefore we have
Ge < Rg < G7.

These covering relationships can be used to form an initial
lattice of basic resource allocation requests for the MPC-X device
as depicted in Figure 5. As this structure places “larger” requests
(e.g., those that either take up more space or put greater constraint
on future use of the resource) higher in the hierarchy, this suggests
that height might be a reasonable proxy for size. Unfortunately, the
relationships between the basic allocation requests for the MPC-X
device prevent the easy definition of a consistent height function.
For example, we cannot define the height value of G5 because two

Gy R3

| |
G Ry
NS
G2
|

G17R1

Figure 5: A lattice-topology for MPC-X resource allocation
requests.

AN
Gs L UR3 | Ryl
N
Gs | Gy L URs |
NN
Gyl URy | R3]
N
Gyl Gz LURy |
NN
Gs | Ry |
NS
Ga

Figure 6: A modular lattice-topology for MPC-X resource alloca-
tion requests, which has been derived from the non-modular lattice
presented in Figure 5.

nodes immediately under it, G4 and Rp, are at different levels in
the hierarchy.

While the initial lattice structure does not admit a well-defined
height function, that is, it is not modular, we can use the reverse of
Birkhoff’s representation theorem [17] to extend the non-modular
partially-ordered topology to a modular downset lattice (Figure 6).
The downset of a basic resource allocation request is a set
containing that request and all smaller requests (e.g., the downset
of G, denoted G3 |, is the set {G2, G3}). The downset lattice
preserves the inequality relationship, but also includes additional
nodes labeled with unions of the downsets of basic requests. By
constructing a modular lattice, we can define a ranking function
for the lattice that obeys the valuation law: for any two nodes in
the lattice, the sum of their ranks will equal the sum of the ranks
of the smallest element larger than both and the largest element
smaller than both. For a finite lattice this is equivalent to stating
that for any node the length of every path from that node to the
bottom will be the same, and so it is possible to define a consistent
ranking function based on the height. Note that if requests have the
same height, then it is up to the allocation algorithm to break ties,
for instance, giving priority to the requests that arrived first.

In practice, with the above result, we can develop agnostic
top-level managers that can generate a modular lattice to derive
the total ordering of allocation requests and resource capacities,
as long as lower-level managers implement the API described in
Section 4.4. In this context, these lower-level managers only define
the partial ordering between any two resources (i.e., <;).

4.4 HARNESS API

The HARNESS API provides a uniform interface for resources
managers to support hierarchical resource management and ag-
nostic resource allocation as described in Sections 4.1 and 4.2.
Resource managers implementing the HARNESS API (referred to
as HARNESS resource managers) can be combined hierarchically
taking into account separation of concerns, such that each resource
manager handles specific classes of resources at different levels
of abstraction. The HARNESS API follows the RESTful style,
where interactions are handled through HTTP requests to provide
an Infrastructure-as-a-Service (IaaS) platform.

We have successfully employed the HARNESS API to support
and manage a wide range of resources that span from physical
clusters of FPGAs to conceptual resources such as virtual links.
Each HARNESS resource manager exposes a set of resources of
a specific type, including their corresponding residual capacities,
allowing virtualized instances of these resources to be allocated
by defining the required capacity. While the implementation of the
API is specific to a type of resource, the API makes a small number
of assumptions about its nature:

i. A resource has a specific capacity which can be finite or
infinite;
ii. A resource operates on a specific allocation space;
iii. The availability of a function which computes (or estimates)
changes in capacity based on an allocation request;
iv. Instances of any resource type (e.g., virtual machine) can be
created and destroyed;
v. Resources can be monitored with feedback provided on
specific metrics.

We group the HARNESS API functions in four categories
(Figure 7):

7

« Management. Allows resource managers to register to other
HARNESS resource managers in a hierarchical organization;

¢ Resources. Provides information about the state of available
resources (nominal or residual capacities — C,,), the allocation
space specification (A,), and a method that returns whether
the aggregation (+,) of a given set of allocation requests can
be serviced (<) by a given resource capacity;

o Reservations. Allows allocation requests to be submitted,
the status of resource instances to be queried, and resource
instances to be destroyed;

o Metrics and Logging. Provides monitoring information about
resources and their instances, as well as logging information
about resource management.

The HARNESS API sits slightly above the pure infrastructure
layer (IaaS). It does not attempt to describe application orches-
tration like TOSCA or deployment like CAMP (leaving these
problems to a PaaS layer), but rather, like OCCI and CIMI is more
concerned with allocating and linking infrastructure resources.
However, unlike these standards (see Section 2 for more details),
which come with built-in models of different resource “types”, such
as machines, VMs, networks, and storage devices, the HARNESS
API considers all abstract resources to be of the same type. As
can be seen in Figure 3, while resources such as XtreemFS cloud
storage and Maxeler MPC-X cluster are inherently different from
each other, they are handled transparently as a single type resource,
having each a corresponding resource manager that provides an
implementation of the HARNESS APL

This allows for a more flexible model that can accommodate
a wider array of cloud-enabled devices, as well as supporting
cross-cutting services such as pricing and monitoring, which do
not have to support multiple resource models. Once resources
have been allocated in HARNESS, the deployment phase allows
each provisioned resource to be handled using resource-specific
mechanisms, including APIs, tools and services, to make full use
of their capabilities.

5 PROTOTYPE DESCRIPTION

In this section, we describe the HARNESS prototype, presented in
Figure 8, which has been implemented to validate our approach.
The HARNESS prototype has been deployed in two testbeds:
Grid’5000, which allows us to explore a large-scale research
infrastructure to support parallel and distributed computing ex-
periments [16]; and the Imperial Cluster testbed, which supports
clusters of hardware accelerators and heterogeneous storage.

The HARNESS architecture is split into three layers: (1) a
platform layer that manages applications, (2) an infrastructure layer
that is responsible for managing cloud resources, and (3) a virtual
execution layer where applications are deployed and executed. Next,
we explain each HARNESS layer in more detail.

5.1

The platform layer automates the choice of resources to run an
application: cloud tenants indicate requirements for job completion
time and/or monetary cost. The platform then decides which set of
resources best satisfy these objectives and constraints. To execute
an application in HARNESS, a cloud user must supply: (i) an
application manifest describing the structure of the application
and the types of resources it can potentially execute on; (ii) a
service-level objective (SLO) defining non-functional requirements

The Platform Layer

@nagement

« POST /v3/managers: registers manager

* GET /v3/managers: returns list of managers

* GET /v3/managers/ID: returns info for manager ID
* DELETE /v3/managers/ID: deletes manager ID

« DELETE /v3/managers: deletes all managers

Reservations

* POST /v3/reservations: requests a reservation
* GET /v3/reservations: gets the list of all reservations

* GET /v3/reservations/ID/check: checks the status of
reservation ID

« DELETE /v3/reservations/ID: releases reservation ID
&DELETE /v3/reservations: releases all reservations

HARNESS
API

Resources

~

* GET /v3/resources: gets all available resources

* GET /v3/resources/alloc-spec: gets allocation
specification

« POST /v3/resources/calculate-capacity: calculates
capacity based on given resource state and
allocation/release requests

Metrics and Logging
* GET /v3/reservations/metrics: gets metrics for a
particular reserved instance

* GET /v3/resources/metrics: gets metrics for a particular
resource

* GET /v3/logs: return logs from the resource manager

J

Figure 7: The HARNESS API provides a REST-based interface for top-level resource managers to handle heterogeneous resources.

Users
submit :

app, manifest, SLO ¥V AMeedback
[ConPaaS J
submit application v A feedback

U\[© Application Manager (AM)]

Platform Layer

allocation request * Tleedback
‘ Cross-Resource Scheduler (CRS) J
)
IRM-NET
networked VMs ;
reservation : available resources - 'f
request V' feedback A v A4
IRM-NEUTRON IRM-NOVA IRM-SHEPARD IRM-XtreemFS
network resources VMs HW accelerators storage devices
[17 v ¢
Openstack Openstack MaxelerOS XtreemFS
Neutron Controller Nova Controller Orchestrator Scheduler
A DFE¢ s ¢ available
Tanagely reservation reservation ¥ OSDs

1 XireemFS

v Directory
MRCs status

PCle device reservation
SHEPARD
Compute

=

| w]]w]m]

execute read/write
task operations

switches servers
Infrastructure

Layer

OpenCL | Maxeler0S |A\vhaDala‘ \ XtreemFS client
Executive ‘ POSIX
Application
deploy and execute Module
services + applications
& ConPaas agent

virtual machines
Virtual Execution Layer

Figure 8: The HARNESS architecture is composed of three layers:
a platform layer that is responsible for managing applications,
an infrastructure layer where cloud resources are managed, and
a virtual execution layer where applications are deployed and
executed.

for this execution, such as the maximum execution latency or the
maximum monetary cost; and (iii) the application binaries and
scripts. Once this information is supplied, the HARNESS platform
deploys the application over a well-chosen sets of resources such
that the manifest and the SLO are respected. As mentioned
in Section 3, an important part of this process is developing
performance models that guide this selection. In HARNESS, we
developed several techniques to reduce the profiling effort of
arbitrary applications, including taking into account monitoring
information to generate high-quality performance models at a
fraction of time, as well as extrapolating production-size inputs
using reduced-size datasets [25].

The platform layer includes two main components: ConPaaS
and the Application Manager:

e ConPaa8 [30] is an integrated runtime environment for elastic
cloud platforms. It consists of two key components: (i) a Web
server providing a graphical interface where users can submit
and manage their applications; and (ii) the Director which
is in charge of authenticating users and instantiating one
Application Manager for each application instance submitted
by a user. Once it has created an Application Manager instance,
it forwards all subsequent management requests about this
application to the Application Manager in charge of the
application.

o The Application Manager (AM) is in charge of controlling
the execution of one particular application. It is a generic and
application-agnostic component, and thus a new Application
Manager does not need to be developed for every new applica-
tion. The Application Manager operates in a virtual machine
provisioned using the HARNESS cloud resources. This virtual
machine contains a specific program in charge of interpreting
application manifests and SLOs, building performance models
for arbitrary applications, choosing the type and number of
resources that an application needs to execute within its SLO,
provisioning these resources, deploying the application’s code
and data in the provisioned resources, and finally collecting
application-level feedback during and after execution.

Whenever the Director and the Application Manager needs to
provision resources in the HARNESS platform (either to create a
new Application Manager instance or to run an actual application),

it sends a resource provisioning request to the infrastructure layer,
which we explain next.

5.2 The Infrastructure Layer

The infrastructure layer is in charge of managing all cloud resources
and making them available on demand. Its key components are
the CRS (Cross-Resource Scheduler) and the IRMs (Infrastructure
Resource Managers). These correspond respectively to the top-
level HARNESS resource manager, and the child HARNESS
resource managers described in Section 4.1. In particular, the CRS
handles high-level requests involving multiple resources, while
the IRMs are responsible for translating agnostic management
requests into resource-specific requests. The currently implemented
IRMs are: IRM-NET (network resources), IRM-NOVA (Open-
Stack compute resources), IRM-NEUTRON (OpenStack network
resources), IRM-SHEPARD (hardware accelerator resources) and
IRM-XtreemFS (XtreemFS storage resources). Beneath the IRMs,
we have components that manage specific resources, which include
OpenStack [10], SHEPARD [30], MaxelerOS Orchestrator [8] and
XtreemFS [38].
Below we provide details about some of these components:

o The Cross-Resource Scheduler (CRS) is in charge of
handling resource provisioning requests [22]. It processes
single resource requests, and requests for a group of het-
erogeneous resources with optional placement constraints
between resources. For example, an application may request
one virtual machine and one FPGA such that the two devices
are located close to each other. It uses the network proximity
maps provided by IRM-NET, and decides which set of
physical resources should be chosen to accommodate each
request. Once this selection has been made, it delegates the
actual provisioning of the resources to corresponding IRMs.
Each IRM is in charge of managing some specific type of
heterogeneous resources, including VMs, GPGPUs, FPGAs,
storage and network devices.

e The Network Resource Manager (IRM-NET) provides the
CRS with up-to-date maps of the physical resources which
are part of the cloud. These maps contain network prox-
imity measurements realized pairwise between the physical
resources, such as latency, and available bandwidth. This
information allows the CRS to service allocation requests
with placement constraints, such as allocating two VMs with
a specific latency requirement between them. This component
also handles bandwidth reservations, allowing virtual links to
be allocated. Finally, IRM-NET supports subnet and public IP
allocations by delegating these requests through IRM-NOVA
and IRM-NEUTRON. In particular, users can request one or
more subnets and assign VMs to them, and also assign public
IPs to individual VMs.

e The MaxelerOS Orchestrator supports the allocation of
networked DFEs located in MPC-X devices. The MaxelerOS
Orchestrator provides a way to reserve DFEs for IRM-
SHEPARD. These accelerators are then available to appli-
cations over the local network.

o XtreemFS is a fault-tolerant distributed file system that
provides three kinds of services: (1) the directory service
(DIR), (2) the metadata and replica catalog (MRC) server,
and (3) the object storage device (OSD) [38]. The DIR tracks
status information of the OSDs, MRCs, and volumes. The
volume metadata is managed by one MRC. File contents are

9

spread over an arbitrary subset of OSDs. In addition, the
XtreemFS Scheduler handles the reservation and release of
data volumes to be used by the HARNESS application. Data
volumes are characterized by their size, the type of accesses it
is optimized for (random vs. sequential), and the number of
provisioned IOPS.

5.3 The Virtual Execution Layer

The virtual execution layer is composed of reserved VMs where
the application is deployed and executed (Figure 8). In addition
to the application itself, the VMs contain components (APIs and
services) that support the deployment and execution processes,
including allowing the application to interact with (reserved)
resource instances. These components include:

o The ConPaaS agent, which performs management actions
on behalf of the Application Manager: it configures the VM
where the Application Manager resides, installs code/data
resources such as GPGPUs, FPGAs and XtreemFS volumes,
configures access to heterogeneous resources, starts the
application, and finally collects application-level feedback
during execution [36];

o The Executive is a scheduling process that given a fixed set
of provisioned heterogeneous compute resources, selects the
most appropriate hardware accelerator for a given application
task [20], [29];

e The XtreemFS client is in charge of mounting XtreemFS
volumes in the VMs and making them available as regular
local directories [38].

6 EVALUATION

In this section, we report two cloud deployment scenarios using
HARNESS, which are currently not supported by traditional cloud
computing platforms:

o Executing HPC Applications on the Cloud: This case
study (Section 6.1) demonstrates how HPC applications such
as RTM (Reverse Time Migration) can exploit hardware
accelerators and managed storage volumes as cloud resources
using HARNESS. These experiments were performed in the
Imperial Cluster testbed;

¢ Resource Scheduling with Network Constraints: This case
study (Section 6.2) demonstrates the benefits of managed
networking when deploying distributed applications such as
Hadoop MapReduce in a cloud platform. In this scenario,
cloud tenants can reserve bandwidth, which directly affects
where jobs are deployed. This work was conducted in
Grid’5000 with physical nodes located in Rennes and Nantes.

6.1

Reverse Time Migration (RTM) represents a class of computa-
tionally intensive applications used to process large amounts of
data, thus a subclass of HPC applications. Some of the most
computationally intensive geoscience algorithms involve simulating
wave propagation through the earth. The objective is typically to
create an image of the subsurface from acoustic measurements
performed at the surface. To create this image, a low-frequency
acoustic source is activated and the reflected sound waves are
recorded, typically by tens of thousands of receivers. We term this
process a shot, and it is repeated many thousands of times while
the source and/or receivers are moved to illuminate different areas

Executing HPC Applications on the Cloud

€4.00

€2.00

€1.00

#CPU cores: 1, 4, 8
#DFEs: 2,3

€0.50

€0.25

cost

#CPU Cores: 3
#DFEs: 4
memory: 2GB
storage performance: 250MB/s

€0.13

€0.06

€0.03

€0.02
4s 8s 16s

execution time

10

#CPU cores: 1
#DFEs: 4
storage perf: 9MB/s

CPU cores: 1.4
#DFEs: 0

memory: 1GB, 2GB
storage perf: 250MB/s

CPU Cores: 4
#DFEs: 0

/ g
memory: 1GB

storage performance: 250MB/s

32s 64s 128s 256s

= Resource Configurations —e—Pareto Front

Figure 9: Performance model for the RTM demonstrator automatically generated by the Application Manager.

of the subsurface. The resulting dataset is dozens or hundreds of
terabytes in size.

Our experiments were conducted on the Imperial Cluster
testbed, which includes 3 physical compute machines, a DFE
cluster harboring 24 DFEs, and standard HDD and SSD storage
drives. The dataset used in our experiments are based on the
Sandia/SEG Salt Model 45 shot subset'.

Deploying RTM on a heterogeneous cloud platform. In this
experiment, we demonstrate how an HPC application, such as RTM,
is deployed and executed in the HARNESS cloud platform. The
RTM binary, along with its deployment and initialization scripts,
are compressed into a tarball. This tarball is submitted to the
HARNESS cloud platform along with the application manifest.
The application manifest describes the resource configuration space,
which allows the Application Manager to derive a valid resource
configuration to run the submitted version of RTM.

When the application is submitted, the HARNESS platform
creates an instance of the Application Manager which oversees the
life-cycle of the application. The Application Manager operates
in two modes. In the profiling mode, the Application Manager
creates a performance model by running the application on
multiple resource configurations and capturing the execution time
of each configuration. Associated with the performance model,
we have a pricing model which indicates the monetary cost of
using a specific resource configuration. With the performance and
pricing models, the application manager can translate cost and
performance objectives specified in the SLO (e.g., to execute the
fastest configuration) into a resource configuration that can best
achieve these objectives.

For this experiment, the Application Manager deployed RTM

on different resource configurations, varying the number of CPU
cores (from 1 to 8), RAM sizes (1024MB and 2048MB), number of

1. The Sandia/SEG Salt Model 45 shot dataset can be downloaded here:
http://wiki.seg.org/wiki/SEG_C3_45_shot.

dataflow engines (from 1 to 4) and storage performances (10MB/s
and 250MB/s). The pricing model used is as follows:

cost(c) = c.num_dfes x 9 x 107" + c.epu_cores x 5 x 107+

c.mem_size x 3 x 107° 4 c.storage_perf x 107°

where for a given configuration ¢, c.num_dfes represents the
number of DFEs, c.cpu_cores corresponds to the number of CPU
cores, c.mem_size corresponds to the size of RAM (MB), and
c.storage_per f the storage performance (MB/s). The resulting
cost is in €/second. The pricing models presented in this section
are loosely based on the current offerings from Amazon EC2 [15],
however they can be arbitrary and can be updated dynamically to
reflect various factors, such as resource availability. The subject
of cloud resource pricing is complex, specially when considering
heterogeneous resources, and is outside the scope of this chapter.
Figure 9 presents the performance model generated by the
Application Manager using the pricing model specified above.
The Application Manager automatically selected and profiled 28
configurations, with 5 of these configurations identified as part
of the Pareto frontier. The number of profiled configurations is
dependent on the profiling algorithm used by the Application
Manager [22]. For each configuration, the Application Manager
reserves the corresponding resources, and deploys the application.
The initialization script supplied with the application automatically
detects the configuration attributes, and configures the application
to use these resources. For instance, if the configuration spec-
ifies 8 CPU cores, then the initialization script configures the
OMP_NUM_THREADS environment variable to that number, and
allow the application to fully utilize all provisioned CPU resources.
Figure 9 highlights four configurations in the top-right quadrant,
which correspond to the slowest and most expensive configurations,
and thus the least desirable of all the configurations identified. This
is due to the use of slow storage (9MB/s) which dominates the
performance of the job despite the use of DFEs. At the bottom-
right quadrant, there are five configurations highlighted that are

http://wiki.seg.org/wiki/SEG_C3_45_shot

job type
s

1500’5 20005 25005

job completion time

Figure 10: Performance of a single RTM shot using different
problem dimensions (S,M,L) and number of DFEs (1, 2 and 3).

relatively inexpensive, however they run relatively slow since they
do not employ DFEs. Finally, in the center of the figure, we find
three highlighted configurations which use a limited number of
CPU cores and DFEs, but they do not provide the best trade-off
between price and execution time. Instead, the five configurations
that provide the best trade-offs are those in the Pareto frontier, as
listed below:

#CPU Storage Execution

#ID | #DFEs RAM - Price
Cores Speed Time

A 0 4 1024MB | 250MB/s 84s €0.03

B 1 8 2048MB | 250MB/s 17s €0.17

C 2 1 1024MB | 250MB/s 12s €0.21

D 3 3 2048MB | 250MB/s 10s €0.27

E 4 3 2048MB | 250MB/s 8s €0.31

With the above configurations and the corresponding pricing,
the Application Manager can service SLO-based requests. For
instance, if the user requests the fastest configuration under €0.25,
the Application Manager would select configuration C, while A
would be identified as the cheapest configuration.

Exploiting different DFE topology reservations. The RTM
job deployed in HARNESS is both moldable and malleable [21]. A
moldable job can adapt to different resource configurations at the
start of the program. A malleable job, on the other hand, can be
reconfigured at run-time during program execution. Both types of
jobs provide more flexibility than a rigid job which is designed to
run on single resource configuration. In the following experiment,
we further explore RTM’s moldable and malleable properties.

Our implementation of the HARNESS platform supports the
DFFE cluster resource, as presented in Figure 3, with two types
of DFE allocation requests: GROUP and RING. As previously
explained, a request for a GROUP of N DFEs would provision /N
DFEs within the same MPC-X box, while requesting N DFEs of a
RING topology would provision N interconnected DFEs.

Figure 10 shows the performance of a single RTM shot using
different problem dimensions and number of DFEs. Multiple DFEs
are connected via RING. The characterization of these jobs is
summarized in Table 2. We can see that the number of DFEs makes
little impact on smaller jobs, such as S1, S2 and S3. This is due
to the fact that smaller workloads will not be able to fully utilize
multiple DFEs. Larger jobs, on the other hand, scale better and are
able to exploit larger number of DFEs. For instance, S3 is only 0.7
times faster than S1, while L3 is 2.6 x faster than L1.

Let us now focus on the impact of the DFE topology on
completing a multi-shot RTM job. Figure 11 shows the results of

11

Table 2: Three classes of RTM jobs using different number of
DFE:s.

[design [configuration | dimension | #iterations |
S1 1xDFE 200 x 200 x 200 2000
S2 2xDFEs (ring) | 200 x 200 x 200 2000
S3 3xDFEs (ring) | 200 x 200 x 200 2000
Ml 1xDFEs 400 x 400 x 400 4000
M2 2xDFEs (ring) | 400 x 400 x 400 4000
M3 3xDFEs (ring) | 400 x 400 x 400 4000
L1 1xDFEs 600 x 600 x 600 6000
L2 2xDFEs (ring) | 600 x 600 x 600 6000
L3 3xDFEs (ring) | 600 x 600 x 600 6000

completing an RTM job with varying number of shots. Each shot
has a dimension of 600 x 600 x 600, running in 6000 iterations.
For each number of shots, we compare the performance of using
3 independent DFEs (GROUP) against 3 interconnected DFEs
(RING). The former can process three shots in parallel, while the
latter, working as a single compute resource, can only process each
shot sequentially. Each independent DFE can compute a shot in
2353s, while the interconnected DFEs process a shot in 882s. It
can be seen from the figure that depending on the total number of
shots, one of the topologies is more efficient than the other. For
7 shots, the independent DFEs run faster, while for 11 shots the
interconnected DFEs run faster. Since RTM jobs are moldable, we
can optimize their performance by selecting the topology that can
provide the best performance according to the number of shots.

We can further speed-up the computation by configuring the
RTM job to be malleable, so that it adapts during runtime. As
can be seen in Figure 11, depending on the number of shots, we
can combine both types of topologies to reduce the completion
time. For instance, for 11 shots, we can execute 9 shots in three
sequences in parallel followed by 2 shots computed with the three
DFEs interconnected. This combination yields the best performance
(8821s) when compared to a static configuration using the parallel
configuration (9411s) or the interconnected configuration (9702s).
Malleable jobs can be automatically managed by a runtime
scheduler, which decides on the most optimal topology given
a set of allocated resources. In our HARNESS prototype, the
Executive component is responsible for this decision process (see
Section 5.3).

6.2 Resource Scheduling with Network Constraints

The purpose of this case study is to investigate the benefits of
managed networking when deploying a distributed application such
as the Hadoop-based AdPredictor [23] on a large-scale testbed such
as Grid’5000. AdPredictor represents a class of modern industrial-
scale applications, commonly known as recommender systems,
that target either open-source or proprietary on-line services. For
example, one such service is Mendeley [26], a free reference
organiser and academic social network that recommends related
research articles based on user interests. Another such service is
Bing [27], a commercial on-line search engine that recommends
commercial products based on user queries. In general, items are
matched with users and, due to the modern “data deluge”, these
computations are usually run in large-scale data centers. The ACM
2012 KDD Cup track2 dataset [14] has been used to evaluate
AdPredictor.

Grid5000 is a large-scale multi-site French public research
testbed designed to support parallel and distributed computing

12

20000s
18000s
16000s
14000s
D
2 12000s
g GROUP topology is slower
b than RING topology to
g complete 11 shots
5 10000s [
o
g GROUP topology is faster -i however, combining both topologies
o 8000s than RING topology to dynamically by reconfiguring
o complete 7 shots the topology at run-time allows
[e) better performance than using
— either topology statically
e000s L
Shot 4 mep- Shot 7 mee
shots—b shot 8 mep shot 11, shot 10 == [D1] [Ds]
4000s shot 3= shot 6 == shot 9 == RING topology
GROUP topology run-time
topology
reconfiguration
2000s
number of shots
Os
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
=== GROUP 2352.7 2352.7 2352.7 4705.4 4705.4 4705.4|7058.2(7058.2 7058.2 9410.9|9410.9|19410.9 11764 11764 11764 14116 14116 14116 16469 16469
== RING 881.99 1764 2646 3528 4410 5291.9(/6173.9(7055.9 7937.9 8819.9(9701.9| 10584 11466 12348 13230 14112 14994 15876 16758 17640
Reconfiguration 881.99 1764 2352.7 3234.7 4116.7 4705.4|5587.4(6469.4 7058.2 7940.2|8822.1|9410.9 10293 11175 11764 12646 13528 14116 14998 15880
Figure 11: The effect of different DFE topologies on RTM performance.
experiments. The backbone network infrastructure is provided by 10000 ‘
HDFS traffic
MR traffic

the French National Telecommunication Network for Technology,
Education and Research RENATER, which offers 11,900 km of
optic fiber links and 72 points of presence.

Figure 12 reports the throughput of one MapReduce worker
over time where the steady throughput consumption peaks at
approximately 200 Mbit/sec, excluding any bursts during shuffling.
Figure 13 presents the results of an AdPredictor job using the
same configuration by varying the available bandwidth between
the worker compute hosts. The application exhibits degradation
below 200 Mbit/sec, which is consistent with our measurements in
Figure 12.

Consequently, when a network-bound application, such as
AdPredictor, is deployed on a cloud platform that provides no
network performance guarantees, it will have its performance
severely affected if resources have been reserved in a low-
bandwidth environment. Note that services like Microsoft Azure [9]
enforce a maximum bound on outgoing traffic bandwidth depending
on the VM type chosen, not allowing compute and network
resources to be tailored independently according to the application
needs. HARNESS addresses these issues by exposing network
bandwidth and latency as independent resources and constraints,
respectively. In this context, applications may define and submit
their desired network performance guarantees and the underlying
infrastructure will provision them, if available. This highlights a key
principle of HARNESS, which allows specialized and commodity
resources to be treated as first-class cloud entities.

We report three scenarios conducted in Grid’5000: (a) allocating
resources without network constraints; (b) allocating resources
using bandwidth reservation requests; and (c) allocating resources
with service-level objectives. The testbed used for these experi-
ments consists of 8 physical compute nodes across two different

1000

=
15
=}

10

Bandwidth Consumption (Mbit / sec)

100 150
Elapsed time (sec)

250

Figure 12: AdPredictor throughput over time.

100000 T
Job wall time —+—
Map duration —e—

Reduce duration —<—

10000

1000

Execution time (sec)

SN

100

100
Bandwidth (Mbit / sec)

1000 10000

Figure 13: AdPredictor performance vs bandwidth.

sites: Rennes (4 nodes) and Nantes (4 nodes). While both sites offer
high-speed gigabit connectivity of 1500 Mbit/sec, we have emulated
heavy network congestion in Nantes, so that the throughput of any
network flow in Nantes is limited to 500 Mbit/sec.

Allocating without network constraints. In the first exper-
iment we request 1 master and three worker instances without

450

T
Job wall time &=z
Map duration ——

Reduce duration £~~~

400 -

350

300

250

200

150

Execution time (sec)

100

50 -

2-1 1-2
Number of Workers in Rennes-Nantes

Figure 14: AdPredictor performance vs resource placement.

specifying network constraints. Figure 14 presents all the possible
configurations that may result from this allocation request, as
each worker may be placed either in Rennes or Nantes. If
the tenant specifies no network constraints, any one of these
placements may be possible, therefore the end-user will experience
a considerable variability in her application’s performance over
multiple deployments on the same cloud platform. It is evident
that the application’s execution time is dependent on whether the
workers are deployed in the high-bandwidth Rennes cluster, in the
congested Nantes cluster, or across both sites. Nevertheless, in this
scenario the tenant has no control over the final placement.

Allocating using bandwidth reservation requests. In order
to eliminate the suboptimal placements presented in Figure 14,
labelled as “2-17, “1-2” and “0-3, which involve at least one
of the workers being placed in the congested cluster of Nantes,
the tenant can specify a request demanding a reservation of 300
Mbit/sec between workers Workerl and Worker2, Workerl
and Worker3, and Worker2 and Worker3. Consequently, the
CRS takes into account this bandwidth reservation request when
allocating VMs (containers) for the workers, therefore eliminating
the suboptimal placements and deploying all workers in Rennes
under the conditions presented in this experiment. Listing 1 presents
the reservation request for this scenario, in which four VMs
(labelled Master and Worker1—4 respectively) are requested with
specific computation requirements, and three resources of type
“Link” specify minimum bandwidth requirements between Worker-
labeled VMs. Recall that resources of different types can be
requested independently from each other and tailored to the specific
requirements of an application.

Allocating with service-level objectives. In the previous
experiment, we requested bandwidth reservation in the application
manifest to deploy a Hadoop-based AdPredictor job. In a real
scenario, the cloud tenant is more concerned about job completion
time and the price of reserving resources. In order for the
HARNESS platform to derive a resource configuration that can
meet performance or cost objectives, it needs to have a performance
model. For this experiment, we have generated a performance
model based on profiling AdPredictor with different bandwidth
reservation requests.

The pricing model used in our experiments is as follows:

cost(c) =c.cpu_cores x 5 x 107* 4 c.mem_size x 3 x 107 °+
c.bandwidth x 2 x 107"

The bandwidth unit is Mb/s. With this pricing model, the price of
1Gb/s bandwidth is roughly equal to one VM with 4 cores and
8GB RAM.

13

{

”Master”: {
"Type”: “Machine”,
”Cores”: 4,
“Memory”: 4096

}.

"Workerl ”: {
”Type”: ”Machine”,
"Cores”: 12,
”Memory”: 16384

},

"Worker2”: {
"Type”: ”Machine”,
”Cores”: 12,
“Memory”: 16384

}

"Worker3”: {
"Type”: “Machine”,
”Cores”: 12,
”Memory ”: 16384

}.

“Link1”: {
”Type”: ”Link”,
”Source”: ”"Workerl”,
"Target”: ”"Worker2”,
”Bandwidth”: 300

}.

“Link27: {
”Type”: ”Link”,
”Source”: "Worker2”,
"Target”: ”"Worker3”,
”Bandwidth”: 300

}.

“Link37: {
”Type”: ”Link”,
”Source”: ”"Workerl”,
"Target”: ”"Worker3”,
”Bandwidth”: 300

}

}

Listing 1: Reservation request for compute and network resources.

Figure 15 presents the performance model of AdPredictor
running on Grid’5000. It contains 14 points where we vary the
bandwidth requirements from 1Mb/s to 1.5Gb/s, while maintaining
the same compute and storage configuration. It can be seen that
different bandwidth reservations have an impact in both pricing
and performance. Not all configurations provide a good trade-off
between price and execution time, and they are discarded. The
remaining configurations, 7 in total, are part of the Pareto frontier.
These configurations are then selected to satisfy objectives in terms
of pricing (the cheapest configuration costs €2.93 but requires 2361
seconds to complete) or in terms of completion time (the fastest
configuration completes the job in 256 seconds but costs €12.69).

7 CONCLUSION

In this chapter, we presented the HARNESS cloud computing
architecture, which supports two distinct layers:

e The HARNESS platform layer manages applications on behalf
of cloud tenants. More specifically, it automates the process
of selecting a resource configuration that can best satisfy
application-specific goals (e.g., low completion time), with
each configuration having its own cost, performance, and
utilization footprint. To achieve this, the platform layer resorts
to application profiling to automatically build performance
models. The platform also exploits the fact that application
performance characteristics may be observed using smaller
inputs, so it employs extrapolated application profiling tech-
niques to reduce the time and cost of profiling;

€128.00

Y
€64.00 .

B

€32.00 2.0 500,1000,1500 Mbls

€16.00 .
H
« ™ fastest (2565, €12.69) @ 200 Mb/s
€8.00
€4.00 s

€2.00

cost

€1.00

€0.50

€0.25

€0.13

€0.06

€0.03

€0.02

128s 256s 512s 1,024s

execution time

14

1, 2 and 3 Mb/s

/
4

cheapest (€ 2.93, 2361s) @ 5 Mb/s

2,048s 4,096s 8,192s 16,384s

= Resource Configurations —e— Pareto Front

Figure 15: Performance model generated for AdPredictor running on Grid’5000.

o The HARNESS infrastructure layer manages heterogeneous
resources on behalf of cloud providers. This layer uses a
resource management model in which all types of resources
are handled as first-class entities, as opposed to the VM-centric
model employed by current cloud providers. The infrastructure
layer is based on a multitier management approach, designed
to make cloud computing systems open and resilient to new
forms of heterogeneity, so that introducing new types of
resources does not result in having to redesign the entire
system. The various resource managers that make up the
HARNESS infrastructure are governed by a single API
specification that handles all types of resources uniformly.
Thus, a new type of cloud resource can be incorporated into
the HARNESS infrastructure by providing an implementation
of the HARNESS APIL

We developed a fully working prototype of the HARNESS
cloud computing platform, which incorporated the following
management technologies: (a) MaxelerOS Orchestrator for net-
worked DFE reservations; (b) SHEPARD for hardware accelerator
reservations; (c) XtreemFS for heterogeneous storage reservations;
(d) IRM-NET for network link reservations; and (d) a cross-
resource scheduler (CRS) which enfolds all these resource-specific
managers to optimize multiple reservation requests alongside
(optional) network placement constraints.

Our prototype was evaluated using two testbeds: (1) a het-
erogeneous compute and storage cluster that includes FPGAs
and SSDs where we deployed an HPC application (Reverse-Time
Migration), and (2) Grid’5000, a large-scale distributed testbed that
spans France to which we deployed a machine learning application
(AdPredictor). In our evaluation, we demonstrated how HARNESS
fully embraces heterogeneity, allowing the side-by-side deployment
of commodity and specialized resources. Such support increases the
number of possible resource configurations in which an application
can be deployed to, bringing wholly new degrees of freedom to the
cloud resource allocation and optimization problem.

PROJECT RESOURCES

The source-code of most of the HARNESS prototype compo-
nents and deployment projects has been released to the pub-
lic. In particular, the software projects that create the uni-
fied HARNESS platform can be downloaded from our GitHub
page (https://github.com/harnesscloud). Free-standing software
projects created or extended by HARNESS, such as ConPaaS
(http://www.conpaas.eu) and XtreemFS (http://www.xtreemfs.org),
have their own independent software download sites. A more
detailed description of each component available for down-
loading is found in http://www.harness-project.eu/?page_id=721.
Video demonstrations of our final prototype can be accessed in
http://www.harness-project.eu/?page_id=862. Technical outcomes
of the project not covered in this chapter can be found in the
HARNESS whitepaper [24]. Finally, a list of all our project
publications and technical reports can be found in our public
website: http://www.harness-project.eu/.

ACKNOWLEDGMENTS

Simulations presented in this paper were carried out using the
Grid’5000 experimental testbed, being developed under the IN-
RIA ALADDIN development action with support from CNRS,
RENATER and several Universities as well as other funding
bodies (see https://www.grid5000.fr). The HARNESS Project
was supported by the European Commission Seventh Framework
Programme, grant agreement no 318521.

REFERENCES

[1] Amazon Web Services. Available at http://aws.amazon.com/.

[2] CELAR project: automatic, multi-grained elasticity provisioning for the
cloud. Available at http://www.celarcloud.eu/.

[3] CloudLightning project: self-organising, self-managing heterogeneous
cloud. Available at http://cloudlightning.eu/.

[4] CloudSpaces project: an open service platform for the next generation of
personal clouds. Available at http://cloudspaces.eu/.

https://github.com/harnesscloud
http://www.conpaas.eu
http://www.xtreemfs.org
http://www.harness-project.eu/?page_id=721
http://www.harness-project.eu/?page_id=862
http://www.harness-project.eu/
https://www.grid5000.fr
http://aws.amazon.com/
http://www.celarcloud.eu/
http://cloudlightning.eu/
http://cloudspaces.eu/

[3]
(6]
(71
(8]

(9]
[10]

(11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]
(20]

[21]

[22]

[23]

[24]

[25]

[26]
(27]
[28]

[29]

(30]

[31]

(32]
[33]

[34]

Google App Engine.
appengine/.

Google Compute Engine. Available at https://cloud.google.com/products/
compute-engine/.

LEADS project: large-scale elastic architecture for data as a service.
Available at http://www.leads-project.eu/.

Maxeler Technologies: maximum performance computing . Available at
http://maxeler.com/.

Microsoft Azure Services Platform. Available at http://www.azure.net/.
OpenStack: open source software for creating private and public clouds.
http://openstack.org.

PaaSage project: a model-based cross cloud development and deployment
platform. Available at http://www.paasage.eu/.

The BigFoot project: an OpenStack based analytics-as-a-service solution.
Available at http://bigfootproject.eu/.

Venus-C project: virtual multi-disciplinary environments using cloud
infrastructures. Available at http://www.venus-c.eu/.

ACM SIGKDD. Predict the click-through rate of ads given the
query and user information. Available at http://www.kddcup2012.org/c/
kddcup2012-track?2/.

Amazon EC2 pricing. Available at http://http://aws.amazon.com/ec2/
pricing/.

D. Balouek et al. Adding virtualization capabilities to the Grid’5000
testbed. In Cloud Computing and Services Science, volume 367, pages
3-20. 2013.

G. Birkhoff. Lattice theory, volume 25. American Mathematical Soc.,
1940.

Cloud Management Working Group (CMWG). Cloud infrastructure
management interface (CIMI) specification. Available at http://www.dmtf.
org/standards/cmwg.

CloudFoundry. Available at http://www.cloudfoundry.com/.

J. G. F. Coutinho, O. Pell, E. O’Neill, P. Sanders, J. McGlone, P. Grigoras,
W. Luk, and C. Ragusa. HARNESS project: managing heterogeneous
computing resources for a cloud platform. In Reconfigurable Computing:
Architectures, Tools, and Applications, pages 324-329. Springer, 2014.
D. G. Feitelson and L. Rudolph. Towards convergence in job schedulers
for parallel supercomputers. In Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing, IPPS 96, pages 1-26.
Springer-Verlag, 1996.

FP7 HARNESS Consortium. Heterogeneous platform implementation
(updated). Technical Report D6.3.3, 2015.

T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich. Web-scale
bayesian click-through rate prediction for sponsored search advertising in
microsoft’s bing search engine. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 13-20, 2010.
HARNESS white paper. Available at http://www.harness-project.eu/
wp-content/uploads/2015/12/harness- white-paper.pdf.

A. Tordache, E. Buyukkaya, and G. Pierre. Heterogeneous resource
selection for arbitrary HPC applications in the cloud. In Proceedings of
the 10th International Federated Conference on Distributed Computing
Techniques (DAIS 2015), June 2015.

Mendeley. Available at http://www.mendeley.com/.

Microsoft Bing. Available at http://www.bing.com/.

X. Niu, J. G. F. Coutinho, and W. Luk. A scalable design approach for
stencil computation on reconfigurable clusters. In Proceedings of the
IEEE on Field Programmable Logic and Applications (FPL), 2013.

E. O’Neill, J. McGlone, J. G. F. Coutinho, A. Doole, C. Ragusa, O. Pell,
and P. Sanders. Cross resource optimisation of database functionality
across heterogeneous processors. In Proc. of the 12th IEEE International
Symposium on Parallel and Distributed Processing with Applications,
2014.

E. O’Neill, J. McGlone, P. Milligan, and P. Kilpatrick. SHEPARD:
scheduling on heterogeneous platforms using application resource de-
mands. In Parallel, Distributed and Network-Based Processing (PDP),
2014 22nd Euromicro International Conference on, pages 213-217, Feb
2014.

Open Grid Forum (OGF). Open cloud computing interface (OCCI)
specification. Available at http://occi-wg.org.

OpenShift. Available at https://www.openshift.com/.

Organization for the Advancement of Structured Information Stan-
dards (OASIS). Cloud application management for platforms (CAMP)
vl.l. Available at http://docs.oasis-open.org/camp/camp-spec/v1.1/
camp-spec-v1.1.html.

Organization for the Advancement of Structured Information Standards
(OASIS). Topology and orchestration specification for cloud applications
(TOSCA) v1.0. Available at http://docs.oasis-open.org/tosca/TOSCA/v1.
0/TOSCA-v1.0.html.

Available at https://developers.google.com/

[35]
[36]
[37]

[38]

[39]

[40]

15

O. Pell, O. Mencer, H. T. Kuen, and W. Luk. Maximum performance
computing with dataflow engines. In High-Performance Computing Using
FPGAs, pages 747-774, 2013.

G. Pierre and C. Stratan. ConPaaS: A platform for hosting elastic cloud
applications. IEEE Internet Computing, 16(5):88-92, Sept. 2012.
Rackspace open cloud. Available at https://www.rackspace.com/cloud.
J. Stender, M. Berlin, and A. Reinefeld. XtreemFS — a file system for the
cloud. In Data Intensive Storage Services for Cloud Environments. 1GI
Global, 2013.

M. Stillwell, F. Vivien, and H. Casanova. Virtual machine resource
allocation for service hosting on heterogeneous distributed platforms. In
Proceedings of the 26th International Parallel and Distributed Processing
Symposium, May 2012.

T. Yu, B. Feng, M. Stillwell, J. G. F. Coutinho, et al. Relation-
oriented resource allocation for multi-accelerator systems. In International
Conference on Application-specific Systems, Architectures and Processors
(ASAP), 2016.

https://developers.google.com/appengine/
https://developers.google.com/appengine/
https://cloud.google.com/products/compute-engine/
https://cloud.google.com/products/compute-engine/
http://www.leads-project.eu/
http://maxeler.com/
http://www.azure.net/
http://openstack.org
http://www.paasage.eu/
http://bigfootproject.eu/
http://www.venus-c.eu/
http://www.kddcup2012.org/c/kddcup2012-track2/
http://www.kddcup2012.org/c/kddcup2012-track2/
http://http://aws.amazon.com/ec2/pricing/
http://http://aws.amazon.com/ec2/pricing/
http://www.dmtf.org/standards/cmwg
http://www.dmtf.org/standards/cmwg
http://www.cloudfoundry.com/
http://www.harness-project.eu/wp-content/uploads/2015/12/harness-white-paper.pdf
http://www.harness-project.eu/wp-content/uploads/2015/12/harness-white-paper.pdf
http://www.mendeley.com/
http://www.bing.com/
http://occi-wg.org
https://www.openshift.com/
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
https://www.rackspace.com/cloud

	Introduction
	Related Work
	Overview
	Managing Heterogeneity
	Hierarchical Resource Management
	Agnostic Resource Management
	Ranking Allocation Requests
	HARNESS API

	Prototype Description
	The Platform Layer
	The Infrastructure Layer
	The Virtual Execution Layer

	Evaluation
	Executing HPC Applications on the Cloud
	Resource Scheduling with Network Constraints

	Conclusion
	References

