Delaunay Triangulation of Manifolds

Abstract : We present an algorithm for producing Delaunay triangulations of manifolds. The algorithm can accommodate abstract manifolds that are not presented as submanifolds of Euclidean space. Given a set of sample points and an atlas on a compact manifold, a manifold Delaunay complex is produced for a perturbed point set provided the transition functions are bi-Lipschitz with a constant close to 1, and the original sample points meet a local density requirement; no smoothness assumptions are required. If the transition functions are smooth, the output is a triangulation of the manifold. The output complex is naturally endowed with a piecewise flat metric which, when the original manifold is Riemannian, is a close approximation of the original Riemannian metric. In this case the output complex is also a Delaunay triangulation of its vertices with respect to this piecewise flat metric.
Type de document :
Article dans une revue
Foundations of Computational Mathematics, Springer Verlag, 2017, 45, pp.38. 〈10.1007/s10208-017-9344-1〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/hal-01509888
Contributeur : Jean-Daniel Boissonnat <>
Soumis le : mardi 18 avril 2017 - 16:31:15
Dernière modification le : jeudi 15 juin 2017 - 13:46:42
Document(s) archivé(s) le : mercredi 19 juillet 2017 - 15:29:02

Fichiers

manmesh.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh. Delaunay Triangulation of Manifolds. Foundations of Computational Mathematics, Springer Verlag, 2017, 45, pp.38. 〈10.1007/s10208-017-9344-1〉. 〈hal-01509888〉

Partager

Métriques

Consultations de la notice

185

Téléchargements de fichiers

80