M. [. Amenta and . Bern, Surface Reconstruction by Voronoi Filtering, Discrete & Computational Geometry, vol.22, issue.4, pp.481-504, 1999.
DOI : 10.1007/PL00009475

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Boissonnat, R. Dyer, and A. Ghosh, Constructing intrinsic Delaunay triangulations of submanifolds, p.21
URL : https://hal.archives-ouvertes.fr/hal-00804878

J. Boissonnat, R. Dyer, and A. Ghosh, THE STABILITY OF DELAUNAY TRIANGULATIONS, International Journal of Computational Geometry & Applications, vol.27, issue.5, pp.303-333, 1304.
DOI : 10.1007/s10711-008-9261-1

URL : https://hal.archives-ouvertes.fr/hal-00807050

J. Boissonnat, R. Dyer, and A. Ghosh, DELAUNAY STABILITY VIA PERTURBATIONS, Boissonnat and A. Ghosh. Manifold reconstruction using tangential Delaunay complexes. Discrete and Computational Geometry, pp.125-152, 1310.
DOI : 10.1145/1667053.1667060

URL : https://hal.archives-ouvertes.fr/hal-01097086

]. W. Boo86 and . Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, p.21, 1986.

B. [. Bobenko and . Springborn, A Discrete Laplace???Beltrami Operator for Simplicial Surfaces, Discrete & Computational Geometry, vol.32, issue.1, pp.740-756, 2007.
DOI : 10.1007/s00454-007-9006-1

URL : http://arxiv.org/abs/math/0503219

J. Boissonnat, C. Wormser, and M. Yvinec, Anisotropic Delaunay Mesh Generation, SIAM Journal on Computing, vol.44, issue.2, pp.467-512, 2015.
DOI : 10.1137/140955446

URL : https://hal.archives-ouvertes.fr/inria-00615486

S. Cheng, T. K. Dey, and E. A. Ramos, Manifold reconstruction from point samples, SODA, pp.1018-1027, 2005.

S. [. Cañas and . Gortler, Duals of orphan-free anisotropic voronoi diagrams are embedded meshes, Proceedings of the 2012 symposuim on Computational Geometry, SoCG '12, pp.219-228
DOI : 10.1145/2261250.2261283

B. Delaunay, Sur la sphère vide, Izv. Akad. Nauk SSSR, vol.7, issue.2, pp.793-800, 1934.

R. Dyer, G. Vegter, and M. Wintraecken, Riemannian simplices and triangulations, Geometriae Dedicata, vol.41, issue.4, pp.91-138
DOI : 10.1007/s10711-015-0069-5

URL : http://arxiv.org/abs/1406.3740

]. R. Dye10 and . Dyer, Self-Delaunay meshes for surfaces, 2010.

R. Dyer, H. Zhang, and T. Möller, Surface sampling and the intrinsic Voronoi diagram, Computer Graphics Forum, vol.32, issue.3, pp.1393-1402, 2008.
DOI : 10.1111/j.1467-8659.2008.01279.x

A. N. Hirani, K. Kalyanaraman, and E. B. Vanderzee, Delaunay Hodge star, Computer-Aided Design, vol.45, issue.2, pp.540-544, 2012.
DOI : 10.1016/j.cad.2012.10.038

G. [. Jiménez and . Petrova, On matching point configurations, p.25, 2013.

]. G. Lei99 and . Leibon, Random Delaunay triangulations, the Thurston- Andreev theorem, and metric uniformization, 1999.

D. [. Leibon and . Letscher, Delaunay triangulations and Voronoi diagrams for Riemannian manifolds, Proceedings of the sixteenth annual symposium on Computational geometry , SCG '00, pp.341-349, 2000.
DOI : 10.1145/336154.336221

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. [. Labelle and . Shewchuk, Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation, Proceedings of the nineteenth conference on Computational geometry , SCG '03, pp.191-200, 2003.
DOI : 10.1145/777792.777822

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. W. Thu97 and . Thurston, Three-Dimensional Geometry and Topology, p.17, 1997.