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Abstract—This work investigates the performance of cosparse vs. social
cosparse regularizations in addressing the audio denoising problem.
Beyond the cosparse (also known as sparse analysis) model, results show
that exploiting structures in the time-frequency domain is beneficial to
audio signal restoration for high degradation levels.

I. INTRODUCTION

The last decades popularized time-frequency (TF) sparse models
[1] for audio reconstruction. Some work [2], [3] showed that the
sparse analysis (or cosparse) way of modeling signals could exhibit
low computational costs and are worth considering, particularly if
the target application requires real-time processing. The cosparse
model considers z & Ax approximately sparse with A the analysis
operator (forward frequency transform like DCT or DFT) and x the
time-domain signal of interest. Besides, structured sparsity (from
the synthesis point of view) [1] and especially the social sparsity
framework [4] were recognized to be able to better capture and take
into account some typical TF patterns in audio signals.

Motivated by the success of the sparse analysis version of the
SPADE algorithm [3] for declipping, as well as the potential of
the social sparsity framework [4] for denoising, we postulate that
coupling these two concepts could be beneficial to audio restoration.
The following work compares the performance of regular cosparse
and social cosparse models to state-of-the-art time-frequency block-
thresholding method (BT) [5] on the audio denoising problem.

II. COSPARSE AND SOCIAL COSPARSE ALGORITHMS

We consider the following degradation model for the case of time-
domain signals corrupted with additive noise: y = x + e, with x an
audio signal and e modeled as white Gaussian noise of variance o2.
We process blocks of overlapping frames Y, € R-* Y from the
signal y, on which a Hamming analysis window is applied (y, is the
center frame of the block and L the frame size in samples).

Cosparse regularized approaches to inverse problems can be cast
as an optimization problem, where the cost function to minimize is
a sum of a data-fidelity term (here ||X, — Y,||2 ) and a regular-
ization term enforcing sparsity. Depending on the choice of these
two terms, non-convexity and/or non-smoothness can prevent from
using conventional optimization algorithm to solve it. The ADMM
framework [6], which we use here, allows to alleviate this problem.
We define an iterative ADMM procedure in which, notably, a well-
chosen shrinkage or thresholding is applied at each iteration and acts
as a proxy for the cosparse regularization term.

The choice of this proxy is the key difference between regular
cosparse and social cosparse algorithms. In the regular cosparse case,
the well-known hard-thresholding operator H,(-) is applied at each
iteration on the current estimate AX,. In the social cosparse case,
as we wish to promote some time-frequency particular structures or
patterns, hard-thresholding is replaced by Persistent Empirical Wiener
(PEW) shrinkage defined in [7]. This shrinkage explicitly includes a
time-frequency neighborhood I which promotes local time-frequency
structures around each time-frequency point ij. Thus, the shrinkage
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on a given frame n involves not only the frame n itself but also 2b
adjacent frames symmetrically selected around y, or its frequency
representation z,. We can summarize this shrinkage as:
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where we recall that Z, = AX,, and (ij) is a time-frequency
index. One TF neighborhood is chosen for all TF points in a given
Z, among a subset {F(k)}kzl..ﬁ of possible predefined patterns
(examples are given in Figure 1). Pj; are the indexes corresponding
to the binary TF patch associated with I" centered in (ij). S,.(-) )
is applied component-wise, therefore it can be computed through
multidimensional convolution in the Fourier domain. The shrinkage
parameter p (and thresholding parameter p in the regular sparse case
respectively) is adapted at each ADMM iteration following a specific
decreasing scheme. The exact procedures for the choice of I' and
w are not described here due to lack of space. After the denoising
step, we perform an overlap-add synthetization from the denoised
estimates X, € R" to yield the denoised signal X.

III. EXPERIMENTAL STUDY

We conducted numerical tests on items from the RWC Music
Database [8]. We processed excerpts from the “Pop”, “Jazz” and
“Classical Orchestra” music subcategories. Around 1 hour of audio
content in total from each genre was contaminated with additive
white noise at five Signal-to-Noise Ratios (SNR) {0, 5, 10, 15, 20}
dB. Each excerpt was then denoised using BT [5], the cosparse
and the social-cosparse approaches. The algorithms parameters are
listed in Table 1. The local TF neighborhoods available for the social
cosparse approach are those presented in Figure 1. Figure 2 displays
the improvements in dB as a function of the input SNR for the BT,
social cosparse and regular cosparse approaches. Results presented
for popular, jazz and classic orchestral music show that either the
social cosparse method (for low input SNR) or both the social
and simple cosparse techniques (for high input SNR) numerically
outperform BT. While performance is somewhat similar between
social and regular approaches at high enough SNR (or even in favor
of the latter, on one subset), we observe a clear superiority of the
social approach in severe noisy conditions.

IV. CONCLUSION

This work shows that cosparse models are suitable to recover
signals in the audio denoising context. While both cosparse and social
cosparse approaches perform better than state-of-the-art at high SNR,
the regular cosparse method shows its limitations from moderate
to low SNR. By contrast, the joint use of cosparse and structured
sparsity models is particularly efficient at low SNR, and numerically
outperforms state-of-the-art block-thresholding in this case.
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gure 1. Example set of predefined time-frequency neighborhoods for PEW shinkage. On each I'(z), columns correspond to time frames and rows to

frequency bins. For instance, we expect that I'(;) will emphasize tonal content, while I'(2y should be more suitable for transients and attacks.

Table I
EXPERIMENTAL PARAMETERS
Parameters Frame size [samples] | Overlap [%] | Overlapping segments Accuracy Analysis operator Set of neighborhood
Value L = 1024 75 b=5 B=10"3 A = DFT {T1);T2),---Tg) } -
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Figure 2. Experimental Comparison for SNR improvements
REFERENCES [6] J. Eckstein and D. Bertsekas, “On the Douglas-Rachford splitting method
and the proximal point algorithm for maximal monotone operators,”
S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 1999. Mathematical Programming, vol. 55, no. 1-3, pp. 293-318, 1992.
S. Kiti¢, “Cosparse regularization of physics-driven inverse problems,” [7] M. Kowalski, “Thresholding rules and iterative shrinkage/thresholding
PhD Thesis, IRISA, Inria Rennes, 2015. [Online]. Available: https: algorithm: A convergence study,” in IEEE International Conference on
//hal.archives-ouvertes.fr/tel-01237323 Image Processing (ICIP). 1EEE, 2014, pp. 4151-4155.
S. Kiti¢, N. Bertin, and R. Gribonval, “Sparsity and cosparsity for audio  [8] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC music
declipping: a flexible non-convex approach,” in Latent Variable Analysis database: Popular, classical and jazz music databases.” in ISMIR, vol. 2,
and Signal Separation (LVA/ICA). Liberec, Czech Republic: Springer, 2002, pp. 287-288.

2015, pp. 243-250.

M. Kowalski, K. Siedenburg, and M. Dorfler, “Social sparsity! neighbor-
hood systems enrich structured shrinkage operators,” IEEE Transactions
on Signal Processing, vol. 61, no. 10, pp. 2498-2511, 2013.

G. Yu, S. Mallat, and E. Bacry, “Audio denoising by time-frequency block
thresholding,” IEEE Transactions on Signal Processing, vol. 56, no. 5, pp.
1830-1839, 2008.



