N

N

An efficient methodology for the analysis and modeling
of computer experiments with large number of inputs

Bertrand Iooss, Amandine Marrel

» To cite this version:

Bertrand Iooss, Amandine Marrel. An efficient methodology for the analysis and modeling of computer
experiments with large number of inputs. UNCECOMP 2017 2nd ECCOMAS Thematic Conference
onUncertainty Quantification in Computational Sciences and Engineering, Jun 2017, Rhodes Island,
Greece. pp.187-197, 10.7712/120217.5362.16891 . hal-01511505

HAL Id: hal-01511505
https://inria.hal.science/hal-01511505

Submitted on 21 Apr 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/hal-01511505
https://hal.archives-ouvertes.fr

AN EFFICIENT METHODOLOGY FOR THE ANALYSIS AND
MODELING OF COMPUTER EXPERIMENTS WITH LARGE NUMBER
OF INPUTS
Bertrand Iooss'? and Amandine Marrel?

'EDF R&D
6 Quai Watier, 78401 Chatou, France
e-mail: bertrand.iooss@edf.fr
2 Institut de Mathématiques de Toulouse
31062 Toulouse, France
3 CEA, DEN, DER
13108 Saint-Paul-lez-Durance, France
e-mail: amandine.marrel@cea.fr

Abstract

Complex computer codes are often too time expensive to be directly
used to perform uncertainty, sensitivity, optimization and robustness anal-
yses. A widely accepted method to circumvent this problem consists in
replacing cpu-time expensive computer models by cpu inexpensive math-
ematical functions, called metamodels. For example, the Gaussian pro-
cess (Gp) model has shown strong capabilities to solve practical prob-
lems, often involving several interlinked issues. However, in case of high
dimensional experiments (with typically several tens of inputs), the Gp
metamodel building process remains difficult, even unfeasible, and appli-
cation of variable selection techniques cannot be avoided. In this paper,
we present a general methodology allowing to build a Gp metamodel with
large number of inputs in a very efficient manner. While our work focused
on the Gp metamodel, its principles are fully generic and can be applied
to any types of metamodel. The objective is twofold: estimating from a
minimal number of computer experiments a highly predictive metamodel.
This methodology is successfully applied on an industrial computer code.

Keywords: Computer experiments, Uncertainty Quantification,Sensitivity
Analysis, Metamodel, Gaussian process

1 INTRODUCTION

Quantitative assessment of the uncertainties tainting the results of computer
simulations is nowadays a major topic of interest in both industrial and scien-
tific communities. One of the key issues in such studies is to get information
about the output when the numerical simulations are expensive to run. For
example, in nuclear engineering problems, one often faces up with cpu time
consuming numerical models and, in such cases, uncertainty propagation, sensi-
tivity analysis, optimization processing and system robustness analysis become
difficult tasks using such models. In order to circumvent this problem, a widely
accepted method consists in replacing cpu-time expensive computer models by
cpu inexpensive mathematical functions, called metamodels [6]. This solution



has been applied extensively and has shown its relevance especially when simu-
lated phenomena are related to a small number of random input variables (see
[7] for example).

However, in case of high dimensional numerical experiments (with typically
several tens of inputs), depending on the complexity of the underlying numer-
ical model, the metamodel building process remains difficult, even unfeasible.
For example, the Gaussian process (Gp) model [22] which has shown strong
capabilities to solve practical problems, has some caveats when dealing with
high dimensional problems. The main difficulty relies on the estimation of Gp
hyperparameters. Manipulating pre-defined or well-adapted Gp kernels (as in
[18, 5]) is a current research way, while coupling the estimation procedure with
variable selection techniques has been proposed by several authors [24, 16, 25].

In this paper, we pursue the effort on the latter technique by proposing a
more rigorous and robust method for building a Gp metamodel with a high-
dimensional vector of inputs. First, we clarify the sequence of the different
steps of the methodology, while updating their technical core with more relevant
statistical techniques. For example, the screening step is raised by the use
of recent and powerful techniques in terms of variable selection using a small
number of model runs. Second, contrary to the previous works, we do not
remove the non-selected inputs from the Gp model, keeping the uncertainty
caused by the dimension reduction by using the joint metamodel technique [15].
The integration of this residual uncertainty is important in terms of robustness
of subsequent safety studies.

The next section of this paper presents our general methodology. The third,
fourth and fifth sections are devoted to a detailed explanation of each of its
steps. The last section shows an application of this work on a thermal-hydraulic
calculation case simulating accidental scenario in a nuclear reactor. It also gives
some prospects of this work.

2 GENERAL METHODOLOGY

The system under study is denoted
Y=9g(X1,...,Xaq) (1)

where g(-) is the numerical model (also called the computer code), whose output
Y and input parameters Xi,..., Xy belong to some measurable spaces ) and
Xi, ..., X4 respectively. X = (X1,...,X4) is the input vector and we suppose
that X = szl X, C R* and Y C R. For a given value of the vector of inputs
x = (x1,...,24) € R?% a simulation run of the code yields an observed value
y=g(x).

Our approach consists in four steps:

1. Step 1: Initial experimental design. Once the uncertain input vari-
ables of the numerical model g and their variation domain identified, a
design of n experiments is firstly performed and yields n model output



values. To constitute this learning sample, we use a space-filling design
(SFD) of experiments, providing a full coverage of the high-dimensional
input space.

2. Step 2: Screening. From the learning sample, a screening technique is
performed in order to identify the primary influential inputs (PII) on the
model output variability. It has been recently shown that screening based
on dependence measures [2, 4] or on derivative-based global sensitivity
measures [12, 21] are very efficient methods which can be directly applied
on a SFD. One of their great interest is that, additionally to their screening
job, the sensitivity indices they provide can be quantitatively interpreted.
From these screening results, the inputs are then ordered by decreasing
PII, for the purpose of the metamodeling step.

3. Step 3: Joint metamodeling and metamodel validation. The
sorted inputs are successively included in the group of explanatory in-
puts while the other inputs are considered as a global stochastic (i.e.
unknown) input and a joint Gp metamodel is built. At each iteration, a
first Gp model, only depending on the explanatory inputs, is built to ap-
proximate the mean component of the metamodel. The residual effect of
the other inputs is captured using a second Gp model which approximates
the variance component as a function of the explanatory inputs. For this,
a joint metamodeling procedure is used, as proposed by [15]. Moreover, in
order to deal with the large number of inputs, the optimization process,
which is required to estimate the hyperparameters of the Gp covariances,
uses as a starting point the values estimated at the previous iteration.

The accuracy and prediction capabilities of the metamodel are controlled
on a test sample or by cross-validation.

All these steps are described in the next subsections. The obtained meta-
model, which requires a negligible calculation time, can then be used to per-
form global sensitivity analysis, uncertainty propagation (for example through
Monte-Carlo simulations) or optimization processing.

3 STEP 1: INITIAL DESIGN OF EXPERI-
MENTS

The objective of the initial sampling step is to investigate the whole variation
domain of the uncertain parameters in order to fit a predictive metamodel which
approximates as accurately as possible the code in the whole domain of variation
of the uncertain parameter, independently from their probabilistic distributions.
For this, we use a space-filling design (SFD) of a certain number n of experi-
ments, providing a full coverage of the high-dimensional input space [6]. This
design enables to investigate the domain of variation of the uncertain parameters
and provides a learning sample.



Mathematically, this corresponds to the sample {x(l), . ,x(")} which is per-
formed on the model g. This yields n model output values denoted {y(l), cen y(”)}
with ¥ = g(x(?). The obtained learning sample is denoted (X,,Y;) with
X, =[x ,x<n>T}T and Y, = [y®,...,y™]". The goal is to build an
approximating model of g using the n-sample (X5, Y5).

The number n of simulations is a compromise between the CPU time required
for each simulation and the number of input parameters. Some thumb rules
propose to choose n at least as large as 10 times the dimension d of the input
vector [14, 16].

For the SFD type, a Latin Hypercube Sample (LHS) with optimal space-
filling and good projection properties [25] would be well adapted. In particular,
[6, 3] have shown the importance of ensuring good low-order sub-projection
properties. Maximum projection designs [11] or low-centered L? discrepancy
LHS [10] are then particularly well-suited.

Remark: Note that the input values are sampled uniformly, considering only
their variation ranges and not their initial probability distributions. Indeed, our
aim is to build a metamodel for a multi-objective purpose (sensitivity analysis,
uncertainty propagation, etc...). The input probability distributions will then be
used in the sensitivity analysis or uncertainty propagation studies.

4 STEP 2: INITIAL SCREENING

From the learning sample, an initial screening is performed in order to identify
the PII and sort them by decreasing order of influence. For this, two possibil-
ities are proposed: one based on dependence measures and another based on
derivative-based global sensitivity measures.

4.1 Screening based on dependence measure

[2] and more recently [4] have proposed to use dependence measures for screen-
ing purpose, by applying them directly on a SFD. These sensitivity indices
are not the classical ones variance-based measures (see [9] for a global review).
They consider higher order information about the output behavior in order to
provide more detailed information. Among them, the Hilbert-Schmidt indepen-
dence criterion (HSIC) introduced by [8] builds upon kernel-based approaches
for detecting dependence, and more particularly on cross-covariance operators
in reproducing kernel Hilbert spaces (RKHS).

If we consider two RKHS Fj, and G of functions X, — R and ) — R respec-
tively, the crossed-covariance C'y, y operator associated to the joint distribution
of (X, Y) is the linear operator defined for every fx, € Fj and gy € G by:

(fx.,Cx,.ygy)F. = Cov (fx,,9v)- (2)

Cx,,y generalizes the covariance matrix by representing higher order correla-
tions between X and Y through nonlinear kernels. The HSIC criterion is then



defined by the Hilbert-Schmidt norm of the cross-covariance operator:
HSIC(Xk,Y) 7.6 = ICklIs- (3)

From this, [2] introduces a normalized version of the HSIC which provides a
sensitivity index of Xk:

HSIC(Xk,Y)
VHSIC(X}, X3)HSIC(Y,Y)

(4)

2 _
Risicr =

[8] also propose a Monte Carlo estimator of HSIC(X}, Y) and a plug-in estimator
can be deduced for R%ISIC’ - Note that Gaussian kernel functions with empirical
estimations of the variance parameter are used in our application (see [8] for
details).

Then, from the estimated R¥g;, independence tests are performed for a
screening purpose. The objective is to separate the inputs into two sub-groups,
the significant ones and the non-significant ones. For a given input X, it aims
at testing the null hypothesis “’Hék): X and Y are independent”, against its al-

ternative “’Hgk): X}, and Y are dependent”. The significance level' of these tests
is hereinafter noted a. Several statistical hypothesis tests are available: asymp-
totic versions, spectral extensions and bootstrap versions for non-asymptotic
case. All these tests are described and compared in [4]; a guidance to use them
for a screening purpose is also proposed. At the end of the screening step, the
inputs selected as significant are also ordered by decreasing Rfg;c. This order
will be used for the sequential metamodel building in step 3.

4.2 Screening based on derivative-based global sensitivity
measure

The so-called Derivative-based Global Sensitivity Measures (DGSM) consist in
integrating the square derivatives of the model output (with respect to each of
the model input) over the domain of the inputs. This kind of indices have been
shown to be easily and efficiently estimated by sampling techniques (as Monte
Carlo or quasi-Monte Carlo). Several authors have shown the interest of DGSM
as a screening technique (see [12] for a review). Indeed, the DGSM interpretation
is made easy due to its inequality links with variance-based sensitivity indices,
which are easily interpretable [9]. Multiplied by an optimal Poincaré constant,
DGSM is a narrow upper bound of the total Sobol’ index [21], whatever the
input probability distribution.

One of the main issue for this technique in practical situations is to effi-
ciently estimate the model derivatives as the standard practice based on finite-
differences is relatively costly. Indeed, its cost linearly depends on the number
of inputs as most of the sensitivity analysis techniques [9]. However, if the re-
verse (adjoint) mode of the numerical model is available, computing all partial

IThe significance level of a statistical hypothesis test is the rate of the type I error which
corresponds to the rejection of the null hypothesis Ho when it is true.



derivatives of the model output has a cost independent on the number of input
variables. In this case, the screening step can be performed with a reasonable
cpu time cost (with a sample of 100 runs of the adjoint model typically) and is
therefore possible even for large-dimensional model. This potentiality has been
recently applied in [20] which studies a model with 40 inputs and uses auto-
matic differentiation in order to obtain the adjoint model (which has a cost of
two times the direct model). On this example, [21] have shown the relevance of
DGSM for a screening purpose, which also provides a quantitative interpretation
of sensitivity indices.

5 STEP 3: JOINT GP METAMODEL WITH
SEQUENTIAL BUILDING PROCESS

Among all the metamodel-based solutions (polynomials, splines, neural net-
works, etc.), we focus our attention on the Gaussian process (Gp) regression,
which extends the kriging principles of geostatistics to computer experiments by
considering the correlation between two responses of a computer code depend-
ing on the distance between input variables. The Gp-based metamodel presents
some real advantages compared to other metamodels: exact interpolation prop-
erty, simple analytical formulations of the predictor, availability of the mean
squared error of the predictions and the proved efficiency of the model [22].

However, for its application to complex industrial problems, developing a
robust implementation methodology is required. Indeed, fitting a Gp model
implies the estimation of several hyperparameters involved in the covariance
function. In complex situations (e.g. large number of inputs), some difficulties
can arise from the parameter estimation procedure (instability, high number
of hyperparameters, see [16] for example). To tackle this issue, we propose
a progressive estimation procedure which combines the result of the previous
screening step and a joint Gp approach [15].

5.1 Successive inclusion of explanatory variables

At the end of the screening step, the inputs selected as significant are ordered
by decreasing influence. The sorted inputs thus obtained are successively in-
cluded in the group of explanatory inputs. At the j iteration, only the j first
sorted inputs are considered as explanatory input variables while all the remain-
ing inputs are included in a single macro-parameter. This macro-parameter is
considered as an uncontrollable parameter (i.e. a stochastic parameter, notion
detailed in section 5.2).

At this stage, a joint Gp metamodel is then built with the j explanatory
inputs, following the procedure described in [15] and summarized in the next
subsection. A numerical optimization is performed to estimate the parameters of
the joint metamodel (covariance and variance parameters). In order to improve
the robustness of the optimization process, the estimated hyperparameters ob-
tained at the (j — 1)*" iteration are used, as starting points for the optimization



algorithm. This procedure is repeated until the inclusion of all the significant
input variables. Note that this sequential process is directly adapted from the
one proposed by [16].

5.2 Joint Gp metamodel

In the framework of stochastic computer codes, [26] proposed to model the mean
and dispersion of the code output by two interlinked Generalized Linear Models
(GLM), called “joint GLM”. [15] extends this approach to several nonparametric
models and obtains the best results with two interlinked Gp models, called
“joint Gp”. In this case, the stochastic input is considered as an uncontrollable
parameter denoted X, (i.e. governed by a seed variable).

We extend this approach to a group of non-explanatory variables. More
precisely, the input variables X = (X,...,Xy) are divided in two subgroups:
the explanatory ones denoted Xexp and the others denoted X.. The output is
thus defined by y = g(Xexp, X<). Under this hypothesis, the joint metamodeling
approach yields building two metamodels, one for the mean Y,, and another for
the dispersion component Yy:

Ym(XeXP) = E(Y|Xexr>) (5)

Ya(Xexp) = Var(Y [Xexp) = E [(Y — Yin (Xexp))?| Xexp] - (6)

To fit these mean and dispersion components, we propose to use the method-
ology proposed by [15]. First, an initial Gp denoted Gpy, 1 is estimated for the
mean component with homoscedastic nugget effect. A nugget effect is required
to relax the interpolation property of the Gp metamodel, which would yield zero
residuals for the whole learning sample. Then, a second Gp, denoted Gp, 1, is
built for the dispersion component with, here also, an homoscedastic nugget
effect. Gp,,1 is fitted on the squared residuals from the predictor of Gp,, 1. Its
predictor is considered as an estimator of the dispersion component. The pre-
dictor of Gp,,1 provides an estimation of the dispersion at each point. It is thus
considered as the value of the heteroscedastic nugget effect: the homoscedastic
hypothesis is removed. A new Gp, Gpy, 2, is fitted on data, with the estimated
heteroscedastic nugget. Finally, the Gp on the dispersion component is updated
from Gpy, 2 following the same methodology as the one Gp,, 1.

Remark: Note that some parametric choices are made for all the Gp meta-
models: a constant trend and a Matérn stationary anisotropic covariance are
chosen. All the hyperparameters (covariance parameters) and the nugget effect
(when homoscedastic hypothesis is done) are estimated by mazimum likelihood
optimization process.



5.3 Assessment of metamodel accuracy

To evaluate the accuracy of the metamodel, we use the predictivity coefficient
2,

Q% AR

st (v —g)

2
S (49— o S o)

Ntest

Q*=1- (7)

where (2(")1<i<n,... is a test sample, (y?)1<;<p,... are the corresponding ob-
served outputs and (§?));<i<n,... are the metamodel predictions. Q2 corre-
sponds to the coefficient of determination in prediction and can be computed
on a test sample independent from the learning sample or by cross-validation
on the learning sample. The closer to one the Q2, the better the accuracy of
the metamodel. Note that, in our sequential building process (cf. Section 5.1),
the Q? coefficient metamodel is computed at each iteration.

In the case where the model provides the adjoint code (see Section 4.2), the
gradient evaluations could be integrated in the metamodel building. For this,
the co-kriging principle could be adapted to the joint metamodel approach.

6 APPLICATION TO A THERMAL-HYDRAULIC
COMPUTER CODE

6.1 Description of the use-case

Our use-case consists in thermal-hydraulic computer experiments, typically used
in support of regulatory work and nuclear power plant design and operation.
Indeed, some safety analysis considers the so-called “Loss Of Coolant Acci-
dent” (LOCA), which takes into account a double-ended guillotine break with
a specific size piping rupture. It is modeled with code CATHARE 2.V2.5 which
simulated the thermalhydraulic responses during a LOCA in a Pressurized water
Reactor [17].

In this use-case, 27 scalar input variables of CATHARE are uncertain. In
our problem, they are defined by their minimum and maximum. They corre-
spond to various system parameters as initial conditions, boundary conditions,
some critical flowrates, interfacial friction coefficients, condensation coefficients,
... The output variable of interest is a single scalar which is the maximal peak
cladding temperature during the accident transient. Our objective with this
use-case is to provide a good metamodel to the safety engineers. Indeed, the
cpu-time cost of this computer code is too important to develop all the sta-
tistical analysis required in a safety study only using direct calculations of the
computer code. A metamodel would allow to develop more complete and robust
demonstration.

1000 CATHARE simulations of this test case have been provided following
a space-filling LHS with good projection properties (see Section 3) as the design
of experiments. In this test case, the adjoint model is not available and the
derivatives of the model output are therefore not computed because of their



costs. The screening step will then be based on HSIC, obtained from the inputs-
output sample.

In order to test it, our overall methodology is applied with different sizes of
the learning sample: n = 200, 400, 600 and 800. In each case, the remaining
simulations (from the 1000 we have) are used as a test sample in order to
compute the metamodel predictivity.

6.2 Screening step with HSIC

The normalized HSIC coefficients are computed for the different learning sample
sizes. Similar results are obtained. Four variables are identified as the most
influential: X10 (HSIC ~ 30%), X12 and X13 (HSIC ~ 14%) and X22 (HSIC ~
9%). X14, X715 and X5 have also a significant but lower influence (HSIC around
5%). Thus, statistical significance tests (asymptotic version with o = 10%)
have selected these 7 inputs. The estimated HSIC and the results of significant
tests are relatively stable and independent from the learning sample size, only
one or two additional variables with a very low HSIC (< 2%) are selected for
the smallest sample size. This confirms the robustness of the HSIC indices and
the associated significance tests for qualitative sorting and screening purpose.

For each learning sample size, the significant inputs are considered as the
explanatory variables in the joint metamodel and will be successively included
in the building process. The other variables are joined in the uncontrollable
parameter.

6.3 Joint Gp

From the HSIC-based screening results, the joint Gp metamodel is built follow-
ing the sequential process described in Section 5. The simple Gp metamodel
with all the 27 inputs as explanatory variables is also built, without any se-
quential approach. To assess the accuracy of the different metamodels, the
predictivity coefficient @Q? is computed by cross-validation (leave-one-out pro-
cess) and on the test sample composed of the remaning simulations. The @Q?
obtained with the different metamodels are presented in Table 1. Note that the
same optimizer is used to estimate the hyperparameters by maximum likelihood,
in order to allow for a fair comparison.

Joint Gp with sequential approach || Simple Gp without sequential approach
Q* Q? Q? Q*
on test sample by cross-validation on test sample by cross-validation
n = 200 0.82 0.81 0.75 0.78
n = 400 0.82 0.85 0.78 0.85
n = 600 0.86 0.89 0.83 0.86
n = 600 0.87 0.88 0.82 0.84

Table 1: Comparison of Gp metamodel predictivity for different sizes n of learn-
ing sample and different building processes.




The joint Gp with a sequential building process outperforms the simple Gp
directly built with the 27 input variables, especially for the lower learning sample
sizes. On average, the Q? is improved between 3% to 9%. Thus, the proposed
methodology allows a more robust metamodel building with a high-dimensional
vector of inputs, even with small sample sizes. Moreover, even if it is not
used and illustrated in this application, the dispersion component of the joint
metamodel takes into account the uncertainty due to the non-significant inputs.
This residual uncertainty, although low, is kept by using the joint metamodel
technique. It appears in the mean squared error of the metamodel predictions
and could be integrated in subsequent sensitivity or uncertainty propagation
studies.

6.4 Work continuation and prospects

Using the fitted joint Gp metamodel, several statistical analysis, not feasible
with the numerical model due to its computational cost, are now accessible.
First, variance-based sensitivity analysis using Sobol’ indices can be fully ex-
pressed using a Gp model [16, 13]. This would provide a fine determination of
the critical parameters whose uncertainty has to be reduced.

Second, we are particularly interested by the estimation of high quantile (at
the order of 95% to 99%) of the model output temperature. In nuclear safety,
methods of conservative computation of quantiles [19] have been largely studied.
However, several complementary information are often useful and are not ac-
cessible in a high-dimensional context. Then, we expect the Gp metamodel can
help to access this information. For instance, quantile-based sensitivity analysis
[1] and quantile robustness analysis (using the sensitivity indices called PLI [23])
are fully devoted to quantile. Their relevance to support safety analysis seems
promising.
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