T. Browne, J. Fort, B. Iooss, and L. L. Gratiet, Estimate of quantileoriented sensitivity indices, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01450891

S. and D. Veiga, Global sensitivity analysis with dependence measures, Journal of Statistical Computation and Simulation, vol.20, issue.1, pp.1283-1305, 2015.
DOI : 10.1007/s00477-006-0093-y

URL : https://hal.archives-ouvertes.fr/hal-00903283

G. Damblin, M. Couplet, and B. Iooss, Numerical studies of space-filling designs: optimization of Latin Hypercube Samples and subprojection properties, Journal of Simulation, vol.82, issue.2, pp.276-289, 2013.
DOI : 10.1016/j.cpc.2012.07.002

URL : https://hal.archives-ouvertes.fr/hal-00848240

M. , D. Lozzo, and A. Marrel, New improvements in the use of dependence measures for sensitivity analysis and screening, Journal of Statistical Computation and Simulation, vol.86, pp.3038-3058, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01090475

N. Durrande, D. Ginsbourger, O. Roustant, and L. Carraro, ANOVA kernels and RKHS of zero mean functions for model-based sensitivity analysis, Journal of Multivariate Analysis, vol.115, pp.57-67, 2013.
DOI : 10.1016/j.jmva.2012.08.016

URL : https://hal.archives-ouvertes.fr/hal-00601472

K. Fang, R. Li, and A. Sudjianto, Design and modeling for computer experiments, 2006.
DOI : 10.1201/9781420034899

A. Forrester, A. Sobester, and A. Keane, Engineering design via surrogate modelling: a practical guide, 2008.
DOI : 10.1002/9780470770801

G. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, Measuring Statistical Dependence with Hilbert-Schmidt Norms, Proceedings Algorithmic Learning Theory, pp.63-77, 2005.
DOI : 10.1007/11564089_7

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.477

B. Iooss and P. Lema??trelema??tre, A Review on Global Sensitivity Analysis Methods, Uncertainty management in Simulation-Optimization of Complex Systems: Algorithms and Applications, 2015.
DOI : 10.1007/978-1-4899-7547-8_5

URL : https://hal.archives-ouvertes.fr/hal-00975701

R. Jin, W. Chen, and A. Sudjianto, An efficient algorithm for constructing optimal design of computer experiments, Journal of Statistical Planning and Inference, vol.134, issue.1, pp.268-287, 2005.
DOI : 10.1016/j.jspi.2004.02.014

V. R. Joseph, E. Gul, and S. Ba, Maximum projection designs for computer experiments, Biometrika, vol.102, issue.2, pp.371-380, 2015.
DOI : 10.1093/biomet/asv002

S. Kucherenko and B. Iooss, Derivative-Based Global Sensitivity Measures, 2017.
DOI : 10.1007/978-3-319-11259-6_36-1

URL : https://hal.archives-ouvertes.fr/hal-01079358

L. , L. Gratiet, C. Cannamela, and B. Iooss, A Bayesian approach for global sensitivity analysis of (multifidelity) computer codes, SIAM/ASA Journal of Uncertainty Quantification, vol.2, pp.336-363, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00842432

J. L. Loeppky, J. Sacks, and W. J. Welch, Choosing the Sample Size of a Computer Experiment: A Practical Guide, Technometrics, vol.51, issue.4, pp.366-376, 2009.
DOI : 10.1198/TECH.2009.08040

A. Marrel, B. Iooss, S. D. Veiga, and M. Ribatet, Global sensitivity analysis of stochastic computer models with joint metamodels, Statistics and Computing, vol.44, issue.1, pp.833-847, 2012.
DOI : 10.1007/s11222-011-9274-8

URL : https://hal.archives-ouvertes.fr/hal-00232805

A. Marrel, B. Iooss, F. Van-dorpe, and E. Volkova, An efficient methodology for modeling complex computer codes with Gaussian processes, Computational Statistics & Data Analysis, vol.52, issue.10, pp.4731-4744, 2008.
DOI : 10.1016/j.csda.2008.03.026

URL : https://hal.archives-ouvertes.fr/hal-00239492

P. Mazgaj, J. Vacher, and S. Carnevali, Comparison of CATHARE results with the experimental results of cold leg intermediate break LOCA obtained during ROSA-2/LSTF test 7, EPJ Nuclear Sciences & Technologies, vol.2, issue.1, p.2016
DOI : 10.1051/epjn/e2015-50020-7

T. Muehlenstaedt, O. Roustant, L. Carraro, and S. Kuhnt, Data-driven Kriging models based on FANOVA-decomposition, Statistics and Computing, vol.34, issue.4, pp.723-738, 2012.
DOI : 10.1007/s11222-011-9259-7

URL : https://hal.archives-ouvertes.fr/hal-00537781

W. T. Nutt and G. B. Wallis, Evaluation of nuclear safety from the outputs of computer codes in the presence of uncertainties, Reliability Engineering & System Safety, vol.83, issue.1, pp.57-77, 2004.
DOI : 10.1016/j.ress.2003.08.008

S. Petit, C. Goeury, N. Goutal, A. Popelin, and F. Zaoui, Couplage entre indicesàindicesà base de dérivées et mode adjoint pour l'estimation d'indices de Sobol. Application sur le code Mascaret, 2016.

O. Roustant, F. Barthe, and B. Iooss, Poincaré inequalities on intervals -application to sensitivity analysis. submitted, https, 2017.

T. Santner, B. Williams, and W. Notz, The design and analysis of computer experiments, 2003.
DOI : 10.1007/978-1-4757-3799-8

R. Sueur, N. Bousquet, B. Iooss, and J. Bect, Perturbed-law based sensitivity indices for sensitivity analysis in structural reliability, Proceedings of the 8th International Conference on Sensitivity Analysis of Model Output, 2016.

W. J. Welch, R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell et al., Screening, Predicting, and Computer Experiments, Technometrics, vol.34, issue.1, pp.15-25, 1992.
DOI : 10.2307/1269548

D. Woods and S. Lewis, Design of Experiments for Screening, 2017.
DOI : 10.1007/978-3-319-11259-6_33-1

I. Zabalza, J. Dejean, and D. Collombier, Prediction and Density Estimation of a Horizontal Well Productivity Index Using Generalized Linear Models, ECMOR VI, 6th European Conference on the Mathematics of Oil Recovery, 1998.
DOI : 10.3997/2214-4609.201406664