Analyzing Complex Data in Motion at Scale with Temporal Graphs

Abstract : Modern analytics solutions succeed to under- stand and predict phenomenons in a large diversity of software systems, from social networks to Internet-of-Things platforms. This success challenges analytics algorithms to deal with more and more complex data, which can be structured as graphs and evolve over time. However, the underlying data storage systems that support large-scale data analytics, such as time-series or graph databases, fail to accommodate both dimensions, which limits the integration of more advanced analysis taking into account the history of complex graphs, for example. This paper therefore introduces a formal and practical definition of temporal graphs. Temporal graphs provide a compact representation of time-evolving graphs that can be used to analyze complex data in motion. In particular, we demonstrate with our open-source implementation, named GreyCat, that the performance of temporal graphs allows analytics solutions to deal with rapidly evolving large-scale graphs.
Type de document :
Communication dans un congrès
Xudong He; Oscar Pereira; Angelo Perkusich. The 29th International Conference on Software Engineering & Knowledge Engineering (SEKE'17), Jul 2017, Pittsburgh, United States. KSI Research, pp.6, Proceedings of the 29th International Conference on Software Engineering & Knowledge Engineering (SEKE'17). 〈http://ksiresearchorg.ipage.com/seke/seke17.html〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01511636
Contributeur : Romain Rouvoy <>
Soumis le : vendredi 5 mai 2017 - 10:30:40
Dernière modification le : vendredi 13 avril 2018 - 01:28:37
Document(s) archivé(s) le : dimanche 6 août 2017 - 12:37:11

Fichier

seke2017-submitted_08032017.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01511636, version 1

Collections

Citation

Thomas Hartmann, Francois Fouquet, Matthieu Jimenez, Romain Rouvoy, Yves Le Traon. Analyzing Complex Data in Motion at Scale with Temporal Graphs. Xudong He; Oscar Pereira; Angelo Perkusich. The 29th International Conference on Software Engineering & Knowledge Engineering (SEKE'17), Jul 2017, Pittsburgh, United States. KSI Research, pp.6, Proceedings of the 29th International Conference on Software Engineering & Knowledge Engineering (SEKE'17). 〈http://ksiresearchorg.ipage.com/seke/seke17.html〉. 〈hal-01511636〉

Partager

Métriques

Consultations de la notice

306

Téléchargements de fichiers

210