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A tensorial-based Mesh Adaptation
for a Poisson problem

Abstract
This paper discusses anisotropic mesh adaptation, addressing either a local interpola-
tion error, or the error on a functional, or the norm of the approximation error, the
two last options using an adjoint state. This is explained with a Poisson model prob-
lem. We focus on metric-based mesh adaptation usinga priori errors. Continuous-metric
methodswere developed for this purpose. They propose acontinuous statement of the
mesh optimisation problem, which need to be then discretised and solved numerically.
Tensorial-metric based methodsproduce directly adiscrete optimal metric for interpola-
tion error equirepartition. The novelty of the present paper is to extend the tensorial
discrete method to addressing (1)L1 errors and (2) adjoint-based analyses, two function-
alities already available with continuous metric. A �rst interest is to be able to compare
tensorial and continuous methods when they are applied to the reduction of approxima-
tion errors. Second, an interesting feature of the new formulation is a potentially sharper
analysis of the approximation error. Indeed, the resulting optimal metric has a di�er-
ent anisotropic component. The novel formulation is then compared with the continuous
formulation for a few test cases involving high gradient layers and gradient discontinuities.

Keywords
Poisson problem, goal-oriented mesh adaptation, anisotropic mesh adaptation, adjoint,
metric
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1. Introduction

Mesh adaptation is an important component in the research of a better control of
numerical error in Computational Mechanics. While the aim of our research is to propose
methods applying to the mesh adaption of various PDE's (Partial Di�erential Equations),
we start discussing here the case of a very simpli�ed model useful in Computational
Structural Mechanics (CSM) and Computational Fluid Dynamics (CFD), the Poisson
problem. The two main ingredients for this will be metric parametrization of mesh and
approximation error estimates.

We focus on methods which prescribe a somewhat anisotropic optimal mesh under
the form of a parametrization of it by a Riemannian metric. A Riemannian metric is a
continuous matrix �eld de�ned on the computational domain 
:

M : 
 � Rd ! Rd2
x 7! M (x)

whereM (x) is a symmetric matrix, in R2:

M (x) = R(x)t

 
1

� � (x )2

1
� � (x )2

!

R (x)

de�ning two mesh stretching directions by its eigen vectors and to mesh sizes �� (x); � � (x)
in those directions. Many mesh generators are able to build meshes in accordance to the
speci�cations (stretching and sizes) of a given metric �eld. The Riemannian metric should
be obtained from an error analysis. One option is the solution of a continuous optimization
problem based on a continuous extension of numerical error. This is proposed, among
other works, in [26, 27]. Another option de�nes a discrete equation for a discrete metric
on each vertex of the current mesh. It is proposed in [17, 18] and relies on edge-based
tensorial formalism. Both methods can be equally applied to CFD (see many references
in the sequel) and to CSM, we refer to two recent typical works in elasticity, [25] and for
fracture problems, [6].

Continuous and tensorial metrics both rely on the parametrization of the mesh by a
spatial �eld de�ning in any point of the computational domain a matrix giving information
on mesh size in all the spatial directions.

Both methods solve an optimality system. The continuous metric builds a continuous
optimality system which has, afterwards, to be discretised and solved, while the tensorial
metric builds a discrete optimality system to be solved directly. Also, the continuous
metric theory de�nes the ideal metric to be choosen. The resulting ideal mesh produced
by metric optimization is the so-calledunit mesh. It is de�ned from the optimal metric
as a mesh with all its edges of unit length with respect to the metric. In contrast, the
tensorial metric obtained from an optimization step in [17, 18, 12] is provided by the
modi�cation to apply to the current mesh in order to obtain the ideal mesh. Then the
way to parameterize the �nal mesh with the two metrics is di�erent, since the ideal mesh
is with edges of unit length for the continuous metric, while the tensorial metric de�nes
the ideal mesh from local directional ampli�cations of the background mesh. Further, the
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constraint imposing a prescribed number of nodes is formulated on a vertex by vertex
mode for the continuous metric and on an edge by edge mode for the tensorial method.

Let us consider now which error functional is chosen in the two methods. Both meth-
ods apply to the minimisation of theP1-interpolation error committed on one or several
sensorsdepending on the PDE solutionu, e.g.:

Find M opt which minimizes ju � � M uj

where � M is the P1-interpolation operator on the current mesh, parameterized byM . For
a representative sample of Hessian-based methods, cf. [15, 19, 2, 32, 22, 33, 24, 16, 3, 36].
Continuous and tensorial Hessian-based methods involve the equi-distribution method,
which turns out to �nding the metric which minimizes a L1 norm of the interpolation
error:

M opt = Arg min ju � � M ujL 1 :

The continuous Hessian-based methods also involves the multiscale method, de�ned as
minimizing the Lp interpolation error of the sensors forp 6= 1 .

M opt = Arg min ju � � M ujL p :

In order to minimize the interpolation error, it is replaced by an asymptotic equivalent
(when mesh get �ner), which is expressed in terms of the Hessian derivative of the sensor.
These methods are refered asfeature-basedor Hessian-based methods. While taking into
account some features of the solution of the PDE, they do not take into account the
features of the PDE itself. Also, when an interpolation-based adaptation is applied to a
system, it is not always easy to choose a set of sensors and their weights. However, if the
sensors are cleverly chosen, a good convergence of the whole approximate solution �eld
to the exact solution �eld is usually observed.

Goal-oriented methodsallow to take into account the PDE under study. A combination
with anisotropic Hessian-based adaption is proposed in [34]. Goal-oriented optimal meth-
ods [29, 10, 36], minimize with respect to the metric the approximation error committed
on the evaluation of a scalar functionalJ depending on the PDE solution:

Find M opt which minimizes jJ (u) � J (uM )j; uM approximate solution of PDE:

They do take into account the features of the PDE, typically through the use of an adjoint
state. Goal-oriented methods needs also to rely on an error estimate (and on its sensitivity
to mesh). Further, the goal-oriented adaptation criterion is mathematically derived from
the functional chosen, and this delivers from the di�cult task of choosing sensors as for
interpolation-based adaptation.

Several methods have been proposed for reducing the approximation error through an
estimate. A pioneering approach is the work of Becker and Rannacher [8] which relies, as
many estimate-based work, on ana posteriori estimate.

jJ (u) � J (uM )j � functionpost(M ; uM ):
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A good synthesis concerninga posteriori estimates is [35]. An interesting feature of ana
posteriori estimate is that it is directly expressed in terms of the approximate solution,
assumed to be available in a mesh adaption loop. A second interest is that it does
not require the use of higher order (approximate) derivatives, in contrast to truncation
analyses. However, these works do not address anisotropy. Adjoint-based and metric-
based anisotropic mesh adaption is a di�cult topic. Before going into deeper details of the
method we develop, let us mention that ana priori analysis relying on element-mapping
is proposed in [21]. In [36], a metric optimization is performed from local perturbation of
the mesh and of the solution.

A priori estimates depend on the exact solution:

jJ (u) � J (uM )j � functionprio (M ; u):

They rely quasi-systematically on Taylor series, either through divided di�erences, or
through polynomial approximation of functions. Then approximations of higher order
derivatives of solution need berecoveredfrom the approximate solution, typically:

j
@2u
@x2

j � D M
2 (uM ):

This is a delicate job since nothing ensures that a higher order derivative of the approxi-
mate solution is a good approximation of the corresponding higher order derivative of the
exact solution, see [37] for a fundamental paper on the question. Assuming that we have
such a good recovery, Taylor series can be easily used for proposing a somewhat optimal
mesh. Further, a priori estimates can also providecorrectors u0

M , which are numerically
computable �elds close to the approximation erroru � uM :

u0
M � u � uM :

In the present work, we use a corrector de�ned in [13]. In the present paper we use the
tensorial formulation in order to build a novela priori estimate for the Poisson equation
which does not explicitly require the evaluation of higher-order derivatives.

Thanks to the goal-oriented formulation, the metric-based mesh adaptation becomes
a well-posed optimization problem for the reduction of a genuine approximation error.
However, goal-oriented optimal methods are specialized to a given scalar output. Features
of the solution �eld which are not related to this output may be neglected by the automatic
mesh improvement. As a consequence, these methods do not systematically provide a
globally convergent solution �eld.

In the present paper, we study anorm-oriented formulation (according to [13]). In
this third mesh adaptation method, the user can prescribe a norm of errorju � uh j which
the algorithm will minimize with respect to the metric parametrization of the mesh.

Find M opt which minimizes ju � uM j; uM approximate solution of PDE:

As a consequence, with an adequate choice of the norm, the norm-oriented mesh adapta-
tion produces convergent solution �elds.
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The continuous approach for Hessian-based, goal-oriented, and norm-oriented has been
de�ned in papers like [29, 10, 13].

The purpose of this paper is to analyse the possible novelties which can be derived from
the extension and application of a tensorial method toL1 Hessian-based, to goal-oriented,
and to norm-oriented problematics.

The main feature of tensorial approach which we shall exploit is the derivation of
the optimal metric thanks to a inversion using the tensorial calculus in the main error
term. In order to adapt this feature to L1-Hessian, to goal-oriented, to norm-oriented
problematics, we unify the parametrization by choosing the unit-mesh formulation and
by measuring the number of nodes on a vertex basis.

Although the proposed method is a rather general method extending to complex CFD
or CSM models, see for example [30] for CFD, we consider in this paper a 2D Poisson
problem discretized by the usual linear �nite-element method. This choice is motivated
�rst by the rather complete set of theoretical works available for the �nite-element approx-
imation of a Poisson problem. This amount of theoretical background reduces as much as
possible (although far from completely) the heuristics to introduce in building the mesh
adaptation analysis. A second motivation is the easy availability of exact solutions de-
�ned in a simple way. This allows to build a kind of benchmark allowing to compare
mesh adaptation methods. The proposed approach extends naturally from the Poisson
problem to the standard elasticity models. On the other hand, the Poisson problem with
variable coe�cient is a central equation in CFD, and in particular for two-uid models
(see [23] for a mesh-adaptive example). Let us �nally mention that the proposed method
extends naturally to systems, which can be useful in case where the choice of sensors of
an interpolation-based adaptation is delicate.

Paper overview:in Section 2 we de�ne the Poisson problem under study and propose
a simple corrector for the discrete solution, which will be used in Sec.6. Section 3 recall
the main features of the continuous metric adaptation. This assume that mesh and
approximation errors are converted into continuous �elds, namely a continuous metric,
and a continuous approximate solution. Then it is possible to formulate a continous
optimization problem, which we shall solve analytically. The optimality conditions are
then discretized and approximately solved by introducing the mesh generator. Section 4
introduces the discrete context for tensorial metric optimization. A discrete erro �eld is
de�ned on each edge of the mesh. The optimization of the dicrete metric is formulated
edge-by edge and solved and put as parameter in the mesh generator. In Section 5, we
focalise on a particular family of errors, the edge-based second-order errors. Three types of
second-order errors are introduced: interpolation error, goal-oriented error, norm-oriented
error. Section 6 gives the optimal metric for the family of errors. Numerical examples are
presented in Section 7 and the paper is concluded by Section 8.
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2. Poisson problem approximation

Let us introduce some notations: letV = H 1
0 (
), 
 being a smooth enough computa-

tional domain of R2 or R3. The continuous PDE system is written in short:

u 2 V; Au = f or u 2 V; 8 � 2 V; a(u; � ) = ( f; � ): (1)

To �x the ideas and simplify notations,

A = �
X @

@xk

@
@xk

, a(u; � ) =
Z



r u � r �d x:

But the extension to a coercive general case whereA = �
P @

@xk
(ak` (x) @

@x̀ )+ a0(x) (where
ak` ; a0 are scalar, possibly discontinuous, �elds) is not di�cult. Let 
 h = 
 for simplicity,
� h a triangulation of 
 h, and Vh be the usualP1-continuous �nite-element approximation
space related to� h:

Vh = f � h 2 C0( �
) \ V; � h jT is a�ne 8T 2 � hg:

We denote by � h the usual interpolation operator:

� h : C0( �
) ! Vh � h � (x i ) = � (x i )8x i ; vertex of � h:

The �nite-element discretisation of (1) is written:

uh 2 Vh and 8 � h 2 Vh ; a(uh; � h) = ( f h; � h) (2)

with f h = � hf . We are interested �rst in getting estimates of the approximation error
uh � u. Let N be the dimension ofVh, that is the number of vertices in� h. We observe
that (2) is equivalent to computing the array uh of the degrees of freedom of the discrete
solution:

uh 2 RN ; A huh = fh: (3)

From the above array we deriveuh by

uh =
X

i =1 ;N

uh;i N i (x)

where theN i are the canonic �nite-element basis ofVh:

N i 2 Vh; N i (x j ) = 1 if i = j; 0 else:

We also introduce the interpolation operator �h:

for v 2 V \ H 2(
) ; � hv 2 Vh; (� hv � v)(x i ) = 0 8x i vertex of � h:

Let us now study the approximation erroru � uh. We start from the discrete above
statement

a(uh; � h) = ( f h; � h) 8� h 2 Vh:
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and observe that for the exact solution satis�es:

a(u; � h) = ( f; � h) 8� h 2 Vh:

Then
a(uh; � h) = a(u; � h) + ( f h � f; � h) 8� h 2 Vh:

Assuming that the solutionu is su�ciently smooth, we get:

a(� hu � uh; � h) = a(� hu � u; � h) + ( f � f h; � h) 8� h 2 Vh: (4)

We call � hu � uh the implicit error . It di�ers from the approximation error by an inter-
polation error:

u � uh = u � � hu + � hu � uh:

The rest of the section is devoted to �nding acorrector, i.e. a discrete �eld u0
prio which

would be rather easy to compute and would be an approximate of the implicit error:

u0
prio � � hu � uh:

Let us evaluate the RHS of (4). The second term of (4)'s RHS is easy to evaluate (we
know f and f h). The �rst term of (4)'s RHS can be transformed as follows:

a(� hu � u; � h) =
X

T

Z

T
r � hr (� hu � u) dxdy

=
X

T

Z

@T
(� hu � u)r � h � n d�:

Then we get:

a(� hu � u; � h) = K (�; u h) with

K (�; u h) = =
X

@Tij

r (� h jTi � � h jTj ) � n ij

Z

@Tij

(� hu � u) d� (5)

where the last sum is taken for all edgesij = @Tij (2D case) separating trianglesT+
ij and

T �
ij of the triangulation. The unit vector n ij normal to @Tij is pointing outward Ti .

Our corrector is de�ned by:

a(u0
prio ; � h) = K (� h; uh) + ( f � f h; � h) with

K (� h; uh) =
X

@Tij

(r � h jTi � r � h jTj ) � n ij

Z

@Tij

(� huh � uh) d� (6)

where the term � huh � uh is built on the edgeTij as a quadratic function vanishing at
both extremities ofTij , and of second derivative in directionTij equal to the approximate
second derivative in same direction ofuh. The corrector u0

prio will be used in Sec.6.3.
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3. Continuous metric parametrization

3.1 Mesh parametrization

We recall the continuous mesh framework, introduced in [26, 27]. The main idea of
this framework is to model discrete meshes by Riemannian metric �elds. It allows us to
de�ne a di�erentiable optimization problem [1, 5], i.e., to apply on the class continuous
metrics a calculus of variations which cannot be applied on the class of discrete meshes.
This framework lies in the class of metric-based methods. A continuous meshM of the
computational domain 
 is identi�ed to a Riemannian metric �eld [11] M = ( M (x))x 2 
 .
For all x of 
, M (x) is a symmetric 3� 3 (in 3D, 2� 2 in 2D) matrix having (� i (x)) i =1 ;3 as
eigenvalues along the principal directionsR(x) = ( v i (x)) i =1 ;3. Sizes along these directions

are denoted (hi (x)) i =1 ;3 = ( �
� 1

2
i (x)) i =1 ;3 and the threeanisotropy quotientsr i are de�ned

by: r i = h3
i (h1h2h3)� 1. The diagonalisation ofM (x) writes:

M (x) = d
2
3 (x) R(x)

0

B
B
@

r
� 2

3
1 (x)

r
� 2

3
2 (x)

r
� 2

3
3 (x)

1

C
C
A

tR(x); (7)

The vertex densityd is equal to: d = ( h1h2h3)� 1 = ( � 1� 2� 3)
1
2 =

p
det(M ). By integrating

it, we de�ne the total number of verticesC:

C(M ) =
Z



d(x) dx =

Z




p
det(M (x)) dx: (8)

Given a continuous meshM , we shall say, following [26, 27], that a discrete meshH
with edgesx ij = x j x i of the same domain 
 is a unit mesh with respect to M , if
each edgex ij of H veri�es:

8i 2 [1; 3]; `M (x ij ) 2
�

1
p

2
;
p

2
�

;

in which the length of an edgè M (x ij ) is de�ned as follows:

`M (x ij ) =
Z 1

0

q
tx ij M (x i + t x ij ) x ij dt:

We want to emphasize that the set of all the discrete meshes that are unit meshes
with respect to a uniqueM contains an in�nite number of meshes, but these meshes
produce approximates solutions of (1) which are su�ciently close to each others, so that
we consider these meshes as an equivalence class of meshes. We henceforward denote by
xM a unit mesh for metricM . The unit edge property of unit mesh writes in short:

For a unit meshxM , any edgexM
ij satis�es

�
xM

ij ; M xM
ij

�
= 1:
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3.2 Optimal continuous metric

We recall, following [26, 27], the main features of the metric-based analysis initiated in
several papers like [19, 15, 2]. The continuous interpolation error of a functionu de�ned
on the computational domain is denoted now:

u � � M u = jtr (M � 1
2 jHu jM � 1

2 )j (9)

where Hu is the Hessian ofu. Let denote alsoM a unit mesh for metric M . We shall
use the estimate

ju � � M uj �
1
8

ju � � M uj: (10)

Once we have a continuous tensorial error kernel, we consider minimizing:

j p(M ) = ku � � M ukL p (
 h ) (11)

and we de�ne as optimal metric the one which minimizes the right hand side under the
constraint of a total number of vertices equal to a parameterN . In the case of a bounded
p, after solving analytically this optimization problem, we get -without using the fact that
H is anything but a positive symmetric matrix- the unique optimal (M L p (x))x 2 
 as:

M L p = Kp(1; H ) (12)

where we use (throughout this paper) the following notation de�ned for a scalar �eldk
and for 1< p � 1 :

Kp(k; H ) = DL p (det(kH ))
� 1

2p+2 kH and DL p = N
2
2

� Z



(det(kH ))

p
2p+2

� � 2
2

; (13)

In this formulation, DL p is a real number imposing that the continuous mesh has a com-
plexity N . The scalar �eld (det(H ))

� 1
2p+2 is a local normalization term accounting for the

sensitivity of the L p norm. A particular case: L1 -norm/iso-distribution It is important
to remark that error iso-distribution is taken into account by settingp = 1 , a limiting
case for which we get:

(det(H ))
� 1

21 +2 = 1:

and
M L 1 = K1 (1; H ) with K1 (1; H ) = DL 1 H

whereDL 1 is de�ned from the speci�cation of the number of nodes of the mesh.
Another way to see it is to write that the error is uniform, indeed:

M L 1 (x) = const.(indep. of x) H

implies that:

trace
�
M

� 1
2

L 1 (x)H (x)M
� 1

2
L 1 (x)

�
= const.(indep. of x):
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Main case under study:L1-norm optimisation The rest of the paper concentrates with
the case:

p = 1:

Replacing the optimal metricM L 1 in the L1 norm shows that second-order convergence
is obtained for smooth contexts. This can also be extended to non-smooth ones, cf. [28].

Let k a su�ciently smooth scalar function de�ned on 
. We shall be, in the sequel,
interested in minimizing the right-hand side of:

j(k; u � � M u)
 j �
Z



trace

�
M � 1

2 (x)jk(x)H (x)jM � 1
2 (x)

�
dx: (14)

The optimum metric is given by:

M 1;k
opt = K1(k; H ) with Kp(k; H ) de�ned in (13): (15)

It is interesting to compare this result with the result of equidistribution, at least for
the particular case of an interpolation error. We observe that:

M 1;k
opt = const. jkj

3
4 j(det jH j)� 1

4 jH j = const. jHk j

Hk = jkj
3
4 j(det jH j)� 1

4 H: (16)

This means that the error minimisation in L1 weighted by k is equivalent to an equi-
distribution process with a matrix H corrected by a scalar factorjkj

3
4 j(det jH j)� 1

4 :

M 1;k
opt = const. K1 (jkj

3
4 j(det jH j)� 1

4 ; H ):

In order to evaluate approximatively H , it is necessary to numercally di�erentiate the
approximate solution by using a recovery as introduced in [37]. The precise recovery
which we use in this paper is described in [4].

To synthetize, the continuous metric method yields the mesh adaptation solution under
the form of a continuous optimality system involving:
- the continuous initial PDE,
- its continuous adjoint, and
- a stationarity condition explicitly solved by (15).
In practice, this optimality system is discretized and then numerically solved.

4. Edge-based tensorial approach

This section recalls in short the main features of the length distribution tensor method
using edge-based errors. This method is introduced in [17]. We concentrate on the more
recent formulation of [18]. Let us consider a meshx described by its edgesx ij between

11



vertex i and vertex j . We call aunit metric of this arbitrary mesh a metricM 1(x) de�ned
on each vertex of the meshx which measures the meshx as a unit mesh, in other words
which satis�es (approximatively in practice) the relation:

8 (i; j )
�
M 1(x)x ij ; x ij

�
= 1:

Let �( i ) be the set of vertices which are neigbors if vertexi . We can write at vertex i :
X

j 2 �( i )

�
M 1(x)x ij ; x ij

�
=

X

j 2 �( i )

1 ) M 1(x) :
� X

j 2 �( i )

x ij 
 x ij
�

= j�( i )j;

where j�( i )j is the cardinality of �( i ). When there exists at leastd non-aligned edges
around i we can solve for the valueM i of unit metric M 1(x) at vertex i as follows:

M i = M 1(x) i =
1
d

� X

j 2 �( i )

1
j�( i )j

x ij 
 x ij
� � 1

:

This metric, when applied for transforming the initial meshx ij into a new mesh, gives a
new mesh with uniform edge lengthjj fx ij jj = 1.

An second-order approximation with local edge error

ejx ij = eij

equal to eij on the edge of lengthjjx ij jj would have its error changed as follows if the
length of x ij is changed:

cx ij = sij x ij ) ej cx ij = s2
ij eij :

Looking for a uniform error ej cx ij = 1 we have to imposesij = (1 =eij )1=2, that is to
transform the initial mesh with the metric:

M i =
1
d

� X

j 2 �( i )

1
j�( i )j

e� 1
ij x ij 
 x ij

� � 1
: (17)

Then it remains to multiply the metric by a constant allowing to control the total number
of vertices in the new mesh (see [18]).

When comparing this formulation with the previous one, we observe a couple of dif-
ferences.

- Formulation (17) is a discrete one while the continuous metric (12) is not.

- Formulation (17) takes into account errors which are de�ned along mesh edges while
continuous metric (12) takes into account error �elds which can then be integrated into
Lp norms.

12



- Formulation (17) provides a corrected mesh from the initial oneinstead of, like the
continuous metric method (12), giving the novel mesh as the unit mesh of an optimal
metric.

In the sequel, we show that edge-based errors can also model error �elds, and we unify
the mesh parametrization to an optimal metric formulation.

5. Approximation of metric properties

The optimality system of the tensorial formulation relies on an edge-based error mod-
elling. Then most of the important discrete �elds need to be cast in anedge-based format.
We introduce a few notations for this.

5.1 Generic mesh notations

Given a meshH x , we can de�ne the following partitions.

- A mesh-vertexis a vertex of numeroi and coordinatesx i of an element of the mesh.

- When there is anedgebetween vertexi and vertex j , we denotex ij = x j � x i .

- Two tetrahedra m and n having a common face have facemn or facenm as common
face.

- Elements : triangles (i; j; k ) or tetrahedra (i; j; k; l ). Elements are divided insub-
elements: 6 subtrianglesusing medians and 24subtetrahedrausing median plans. The
vertices of a subtetrahedron are : a mesh-vertexi , a centerI ij of an edgeij having i as
extremity, the centroid gijk of a faceijk containing verticesi and j , the element centroid
Gijkl . The measure of a subtetrahedron of the tetrahedronT is 1=24 meas(T).

- Cell i : for a vertex i of the mesh, celli is union of sub-elements havingi as vertex
of the sub-element. A cell measure is de�ned as

measx (i ) = 1
dim +1

P
Tx 3 i meas(Tx )

whereTx are elements ofH x containing vertex i .

- 2D-diamondD ij : union of the 4 subtriangles (of trianglesijk and ijl ) having a side
included in edgeij .

- Face-diamond �Dmn , wherem and n are two tetrahedra having a common faceijk :
union of 6 subtetrahedra having a subtriangle of the common faceijk as face.

- Edge-diamondD ij : union of subtetrahedra having having a side included in edgeij .

13



The integral of a function eij de�ned on the edges can be approximated by:

err L 1 =
X

i

measx (i )�( i )� 1
X

j

eij

where the sum is taken over vertices(=cells), or introducing the diamond partition 
 =
[ �Dmn wherem and n are elements with a common face:

err L 1 =
1
3

X

�D mn

measx ( �Dmn ) (eij + eik + ejk ):

wherei; j; k are vertices of the facemn.

5.2 Discretizing an arbitrary continuous metric on a background mesh
In order to �nd the optimal metric we are given a background meshx . We assume

that the unknown metric M is de�ned on the verticesM (x i ) = M i of the background
mesh and that it is P1-continuously interpolated. The total number of nodes can be
approximated on the meshx by a quadrature of (8) as follows:

C(M ) =
P

i measx (i )
p

det(M i ).

To simplify, we assume that the unit mesh is a deformation ofx, and that xM
ij and

x ij are colinear. Then we can derive from the unit-mesh property a relation between the
edge lengths of unknown mesh and the edge lengths of the background mesh:

(xM
ij ; M xM

ij ) = 1 = ( x ij
jxM

ij j

jx ij j
; M x ij

jxM
ij j

jx ij j
) = ( x ij ; M x ij )

jxM
ij j2

jx ij j2

) xM
ij � x ij (x ij ; M x ij )� 1

2 :

In order now to evaluate the approximation error provoked by the application of the
unit-mesh, we need to de�ne ageneric error model.

6. Second-order error of a metric on a background mesh

To any given metric, i.e. to any given mesh, should correspond a numerical error �eld.
Let us de�ne a generic family of error �eld with values on mesh edges. We restrict to
second-orderi.e. quadratic errors, on the model ofP1-interpolation error.

De�nition : An edge-based second-order (or quadratic) errorproduced by the use of the
unit mesh xM of metric M has an intensity de�ned on edgexM

ij by:

eM
ij = �eij jxM

ij j2:

in which �eij depends only on location and direction ofxM
ij , and is O(1) when mesh be-

comes �ner. Typically:

eM
ij = jxM

ij j2 �eij ( 1
2(xM

i + xM
j );

x M
ij

jx M
ij j ):�

14



Since wea priori know neither the optimal metric nor its mesh, it is useful to evaluate
this error on a given background meshx. We use that the unit mesh is a deformation of
x in such a way that xM

ij and x ij are colinear. Then the intensityeM
ij of the error with

the unit mesh evaluated at middle ofx ij of the background mesh writes:

eM
ij = jx ij j2 (x ij ; M ij x ij )� 1 �eij (

1
2

(x i + x j );
x ij

jx ij j
) (18)

where M ij is evaluated on1
2(x i + x j ). The mesh adaptation problem will be set as the

research of the discrete metric, de�ned on mesh vertices and linearly interpolated, of a
given number of nodes N

C(M ) = N;

and minimizing the discrete error norm:

j (M ) =
X

i

measx (i )
1

�( i )

X

ij 3 i

eM
ij : (19)

In Section 7.6 we determine the optimal mesh for this type of error, as far as �eij is
identi�ed. The rest of the present section is devoted to the description of three examples
of quadratic errors.

6.1 First example: interpolation error

The error committed in interpolating a smooth function on aP1 mesh is a quadratic
error. Indeed, the weightedP1-interpolation error of a smooth functionu on xM

ij can be
estimated similarly to (9),(10) as follows:

R

 jgjju � � hujd
 � 1

8

X

i

measx (i )�( i )� 1
X

j

eM ;g;u
ij (x ij )

with:

eM ;g;u
ij = jxM

ij j2 jgij j jH ij j �
x M

ij

jx M
ij j �

x M
ij

jx M
ij j ;

and whereH ij = H ( 1
2(xM

i + xM
j )), H (x) being the Hessian ofu at point x, and gij =

g( 1
2(xM

i + xM
j )). Here � holds for an inequality applying for a su�ciently �ne mesh, with

a multiplicative constant close to 1. The error can be evaluated on a background mesh
as follows:

eM ;g;u
ij (x ij ) = jxM

ij j2 �eij (x ij ) = ( x ij ; M x ij )� 1 jx ij j2 �eij (x ij )

with:

�eij (x ij ) = jgij (x ij )j jH ij (x ij )j �
x M

ij

jx M
ij j �

x M
ij

jx M
ij j = jgij (x ij )j jH ij (x ij )j � x ij

jx ij j � x ij

jx ij j :

We observe that �eij (x ij ) is O(1) when mesh gets �ner. Then this �rst example of error
takes place into the context of (18)(19).
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6.2 Goal-oriented error
Let u be the solution of (1) anduM the discrete solution of (2) where the mesh is an

unit mesh for metric M . A typical goal-oriented analysis relies on the minimization of
the error �j goal(M ) committed in the evaluation of the scalar output j = ( g; u) , error
which we write as follows:

�j goal(M ) = j(g; u � uM )j = j(g;� M u � uM + u � � M u)j: (20)

According to the Aubin-Nitsche analysis ([7, 31]), this error is second-order with respect
to mesh size. Let us de�ne the discrete adjoint stateu�

goal:

8 M 2 VM ; a( M ; u�
goal) = (  M ; g): (21)

In the sequel, we use a �xed-point in which the adjoint is frozen with respect to the metric
M . Injecting (21) in (20) we get:

(g;� M u � uM + u � � M u) = a(� M u � uM ; u�
goal) + ( g; u � � M u)

and, using (4),

(g;� M u � uM + u � � M u) = a(� M u � u; u�
goal) + ( f � � M f; u �

goal) + ( g; u � � M u)

thus

�j goal(M ) � j a(� M u � u; u�
goal) + ( f � � M f; u �

goal) + ( g; u � � M u)j

or:

�j goal(M ) � j a(� M u � u; u�
goal)j + j(f � � M f; u �

goal)j + jgjju � � M uj (22)

The RHS of (22) involves three terms. Thesecondand third terms give Hessian-like

quadratic errorse
M ;u �

goal ;f
ij and eM ;g;u

ij :

j(f � � M f; u �
goal)j + jgjj � M uM � uM j

�
X

i

measx (i )�( i )� 1
X

ij 3 i

�
e

M ;u �
goal ;f

ij + eM ;g;u
ij

�

�
X

i

measx (i )�( i )� 1
X

ij 3 i

(x ij ; M x ij )� 1 jx ij j2
�

�eij
u �

goal ;f + �eij
g;u

�

with

�eij
u �

goal ;f (x ij ) = ju�
goal;ij j jH f

ij j �
x ij

jx ij j
�

x ij

jx ij j
; �eij

g;u(x ij ) = jgij j jH u
ij j �

x ij

jx ij j
�

x ij

jx ij j

and
u�

goal;ij = u�
goal(

x i + x j

2
)
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gij = g(
x i + x j

2
) ; H f

ij = H f (
x i + x j

2
) ; H u

ij = H u(
x i + x j

2
):

The �rst term of (22)'s RHS is more complex. It can be estimated in a di�erent way
from the continuous method presented in [9] and used in [13]. Indeed,

ja(� M u � u; u�
goal)j = j

Z



r (� M u � u)r � M u�

g;M dxj

�
X

@Tmn

j [ r u�
goaljTm � r u�

goaljTn ] � nmn j
Z

@Tmn

j� M u � uj d�: (23)

Study of the 2D case . In the 2D case,@Tmn is exactly an edgeij . We introduce the
interpolation error estimate onij , and its measure . We get from (23):

ja(� M u � u; u�
goal)j �

X

ij

� ij (u�
goal) jx ij j3(x ij ; M x ij )�eu

ij

where the sum is taken over the edges and with, for any edgeij

� ij (u�
goal) = j [ r u�

goaljTij � r u�
goaljTji ] � n ij j

in which Tij and Tji are the triangles havingij as common edge andn ij is the normal to
edgeij . We need know to identify thelocal intensity of the error termby comparing the
RHS with an integral over the computational domain. This integral is taken as a sum
over the diamond cellsD ij around each edgeij :

ja(� M u � u; u�
goal)j �

X

ij

jD ij jjD ij j � 1� ij (u�
goal) jx ij j3(x ij ; M x ij )�eu

ij

which shows that jD ij j � 1� ij (u�
goal) jx ij j3(x ij ; M x ij )�eu

ij is the local error intensity. The
cellwise error integral then writes:

EM ;a =
X

i

1
�( i )

X

ij 3 i

jx ij j2(x ij ; M x ij )�ea
ij

with
�ea

ij = jx ij jjD ij j � 1� ij (u�
goal)�e

u
ij :

We observe that for a Cartesian mesh of mesh size �x, term jx ij j is O(� x), term jD ij j � 1

is O(� x)� 2, term � ij (u�
goal) is O(� x) (non divided di�erence of normal gradient), and �eu

ij ,
which is a directional second derivative, isO(1). The error intensity �ea

ij is then O(1) when
mesh size gets �ner.

Study of the 3D case . The intersection@Tmn of two elementsTm and Tn is a common
face with verticesi; j; k and an areaarea(mn). The following quantity is again known:

� mn (u�
goal) = j

�
r u�

goal

�
jTm � nmn �

�
r u�

goal

�
jTn � nmn j:
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The remaining expression can be expressed in terms of interpolation errors:
Z

@Tmn

j� M u � uj �
1
3

area(mn)(eM ;u
ij + eM ;u

ik + eM ;u
kj )

with (for �� = ij ,ik and kj ):

eM ;u
�� = ( x �� ; M x �� )� 1 jx �� j2 �eu

��

and:
�eu

�� (x �� ) = jH u
�� j �

x ��

jx �� j
�

x ��

jx �� j
:

We get:

ja(� M u � u; u�
goal)j �

X

�D mn

area(mn)
3

(eM ;u
ij + eM ;u

ik + eM ;u
jk ) � mn (u�

goal)

Let us convert the RHS into an edge-by-edge sum:

ja(� M u � u; u�
goal)j �

X

�D mn

X

�� = ij;ik;jk

area(mn)
1
3

eM ;u
�� � mn (u�

goal)

=
X

edgesij

X

�D mn 3 ij

area(mn)
1
3

eM ;u
ij � mn (u�

goal) =
X

edgesij

eM ;a
ij jD ij j

where we recognize the edge-by-edge integral of a �eldeM ;a
ij de�ned on edges, with the

notation:

eM ;a
ij =

1
3

1
jD ij j

eM ;u
ij

X

�D mn 3 ij

area(mn) � mn (u�
goal): (24)

Equivalently (at the second order) we get the(18)(19) format:

ja(� M u � u; u�
goal)j �

X

i

measx (i )
1

�( i )

X

ij 3 i

eM ;a
ij :

We can then de�ne:

�ea
ij = ( x ij ; M x ij ) jx ij j � 2 eM ;a

ij =
1
3

1
jD ij j

�eu
ij

X

�D mn 3 ij

area(mn) � mn (u�
goal)

which does not depend onM .

Synthesis. Finally, gathering the estimate of the three RHS, we get:

�j goal(M ) �
X

i

measx (i )�( i )� 1
X

ij 3 i

(x ij ; M x ij )� 1 jx ij j2
�

�ea
ij + �e

u �
goal ;f

ij + �eg;u
ij

�
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which takes place in the context of (18)(19).

Remark: The a priori estimates at the starting of this analysis relies on edge-based
terms which are essentially products of :� mn (u�

goal); a second-order directional derivative,
normal to edge in 2D, of the adjoint, times �eu

ij ; a second-order directional derivative in
edge direction (in 2D). In the analysis proposed in [9] and used in [13], the majoration
of the directional adjoint derivative consists in using the largest eigenvalue� (Hu � ) of its
Hessian. Further, the demonstration is obtained thanks to the assumption that the mesh
stretching is bounded. In the present study, the second directional derivative ofu�

goal
is directly taken into account, and gives without any extra assumption a more accurate
estimate.

6.3 Norm-oriented error
The norm-oriented analysis is de�ned in details in the case of the continuous metric

method in [14]. In short, this method focusses on the minimization of the following norm
with respect to the meshM :

�j (M ) = jju � uM jj 2
L 2 (
) : (25)

Introducing gM = u � uM , we get a formulation similar to the goal-oriented formulation:

�j (M ) = ( gM ; u � uM ): (26)

But in the practical application u � uM is not known. We approximate it by a function
close to it, which we call a corrector. Let us de�ne:

gM = �u0
prio; M � (� M uM � uM )

in which � M uM � uM is a Hessian-based approximation of the interpolation error and in
which �u0

prio; M is the solution of:

a(�u0
prio; M ; � ) =

X

@Tij

(r � jTi � r � jTj ) � n ij

Z

@Tij

(� M uM � uM ) d� � (�; � M f M � f M ): (27)

Another example with a RHS evaluated on a two-times �ner grid is given in [14].
Let us de�ne the discrete adjoint stateu�

norm :

8 M 2 VM ; a( M ; u�
norm ) = (  M ; gM ): (28)

Then, similarly to previous section we shall minimize:

�j norm (M ) � j a(� M u � u; u�
norm ) + ( f � � M f; u �

norm ) + ( gM ; u � � M u)j:

Turning now to the tensorial formulation, we minimize:

E(M ) =
X

i

measx (i )�( i )� 1
X

ij 3 i

(x ij ; M x ij )� 1 jx ij j2
�

�eij
M ;a + �eu �

norm ;f
ij + �eg;u

ij

�
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with

�eij
u �

norm ;f = ju�
norm;ij j jH f

ij j �
x ij

jx ij j
�

x ij

jx ij j

�eij
g;u = jgij j jH u

ij j �
x ij

jx ij j
�

x ij

jx ij j

�eij
M ;a = jx ij j jD ij j � 1� ij (u�

norm ) �eu
ij (29)

and with � mn (u�
norm ) = j (r u�

norm ) jTm � nmn � (r u�
norm ) jTn � nmn j. The error intensities

�eij
u �

norm ;f ; �eij
g;u; �eij

M ;a areO(1) when mesh gets �ner. This again takes place in the context
of (18)(19).

7. Optimal metric

The purpose is to minimize with respect to the metric for a given number of vertices
N a functional of the form:

E(M ) =
X

i

measx (i )�( i )� 1
X

x ij

(x ij )2(x ij ; M x ij )� 1 �eij

which is a discrete model for theL1 norm of a generic quadratic error. We solve this in
two steps as in [26, 27]: �rst we minimize the functional in a point of the computational
domain and get a �rst property of the optimal solution, second we �nish determining the
optimum by solving a sub-problem on the whole domain.

7.1 Pointwise optimal metric
The purpose of the pointwise metric optimisation is to look for the optimal stretching of

the metric, independantly of mesh density. The number of vertices is �xed. We consider
metric M 0 such that the determinant, or product of eigenvalues is equal to unity, i.e.
� 1� 2� 2 = 1 or, equivalently det(M 0) = 1 : We know that:

(x ij )2 (x ij ; M x ij )� 1 �eij = eM
ij 8j:

In that expression, (x ij )2 and (x ij ; M x ij )� 1 are not vanishing for any couple of neighboring
vertices i and j , which implies

eM
ij = 0 , �eij = 0:

Now, for any i and any j belonging to �( i ) such that �eij 6= 0,

(x ij )� 2 (x ij ; M x ij ) (�eij )� 1 = ( eM
ij )� 1:

Summing around the vertexi , it gives:
X

j 2 �( i )
j �eij 6=0

(x ij )� 2 (�eij )� 1 (x ij ; M x ij ) =
X

j 2 �( i )
j �eij 6=0

(eM
ij )� 1
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For the sake of simplicity, let us denote:D i =
P

j 2 �( i )
j �eij 6=0

(eM
ij )� 1.

We note that eacheM
ij is positive and therefore so isD i . This implies:

D i =
X

j 2 �( i )

(M �e
� 1

2
ij jx ij jx ij ; �e

� 1
2

ij jx ij jx ij ) = M :
X

j 2 �( i )

�e
� 1

2
ij jx ij jx ij 
 �e

� 1
2

ij jx ij jx ij :

Now, remembering that A : B = tr (tA:B ), it is interesting to choose (among other
solutions):

M i =
D i

dim

0

@
X

j 2 �( i )

�e� 1
ij jx ij j � 2x ij 
 x ij

1

A

� 1

: (30)

The optimal pointwise metric is then de�ned as:

M i
0 = ( det(M i )) � 1

2 M i : (31)

7.2 Global optimal metric
The global optimal metric will be obtained by multiplying the pointwise metric by a

scalar �eld Ci de�ned on any vertex i and which remains to be determined:

M i
opt = Ci M i

0:

We search (Ci ) i which minimizes

err L 1 =
X

i

measx (i )�( i )� 1
X

x ij

(x ij )2(x ij ; Ci M i
0x ij )� 1 �eij

or

err L 1 =
X

i

� i C � 1
i ; with � i = measx (i )�( i )� 1

X

x ij

(x ij )2(x ij ; M i
0x ij )� 1 �eij

while satisfying to the constraint:
P

i measx (i )
p

det(Ci M i
0) = N or:

X

i

� i C
dim

2
i = N with � i = measx (i )

q
det(M i

0):

This can be simply solved by applying the variable changedi = � i C
dim

2
i , which gives:

Min
X

i

� i d
� 2

dim
i under the constraint

X

i

di = N; (32)

with � i = � i �
2

dim
i . The solution of (32) writes:

di =

 
X

j

�
dim

2+ dim
j

! � 1

�
dim

2+ dim
i N:
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Lemma: The optimal metric is de�ned by:

M i = Ci M i
0

with

M i
0 = ( det(M i

1)) � 1
2 M i

1; M i
1 =

1
dim

0

@
X

j 2 �( i )

�e� 1
ij jx ij j � 2x ij 
 x ij

1

A

� 1

;

Ci = �
� 2

dim
i

 
X

j

�
dim

2+ dim
j

! � 2
dim

�
2

2+ dim
i N

2
dim ;

� i = � i �
2

dim
i ; � i =

measx (i )
�( i )

X

x ij

(x ij )2

(x ij ; M i
0x ij )

�eij ; � i = measx (i )
q

det(M i
0):�

8. Numerical examples

The analysis developed in this paper gives a purely discrete answer to the same mesh
adaptation problems as in [13] in which the continuous approach were introduced and a
series of test cases were presented for its evaluation. Our evaluation of the new method
will apply it to recompute these test cases and compare the results with the results of
[13]. We refer to [13] for a more detailed presentation of each test case.

8.1 A 2D boundary layer test case
This test case is taken from [20]. We solve the Poisson problem� � u = f in ]0; 1[� ]0; 1[

with Dirichlet boundary conditions and a right-hand sidef chosen for having:

u(x; y) = [1 � e� �x � (1 � e� � )x]4y(1 � y):

The coe�cient � is chosen equal to 100. The graph of the solution is depicted in Figure
1. We study the 2D boundary layer test case for �ve di�erent methods: uniformly-re�ned
Full-Multi-Grid (FMG), continuous Hessian-based adaptative FMG, tensorial Hessian-
based adaptative FMG, continuous norm-oriented adaptative FMG and tensorial norm-
oriented adaptative FMG. We can �rst compare the meshes obtained with the four dif-
ferent adaptative methods. At the begining, we have the uniform mesh given by Figure
2, right. Using this mesh, we compute an approximate solution and we use it to create an
adapted mesh with the four methods:
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Figure 1: Fully 2D Boundary layer test case : sketch of the solution.

� continuous Hessian-based adaptation gives Figure 2, center,

� tensorial Hessian-based adaptation gives Figure 2, right,

� continuous norm-oriented adaptation gives Figure 3, right,

� tensorial norm-oriented adaptation gives Figure 3, left.

Figure 2: 2D boundary layer test case: initial uniform mesh (left), adapted mesh obtained bycontinuous
Hessian-based adaptation (center) andtensorial Hessian-based adaptation (right).
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Figure 3: 2D boundary layer test case: adapted mesh obtained withcontinuous norm-oriented adaptation
(left)and tensorial norm-oriented adaptation (right).

Figure 4: 2D boundary layer test case, Hessian-based methods: error convergence in terms of number of
vertices.

We have computed the results for the continuous case and for the tensorial case. For
both options, 5 FMG phases corresponding to 5 numbers of nodes, from 128 to 20; 000
are applied. During each FMG phase, the number of nodes is �xed, and 10 mesh adapta-
tions are applied interleaved with a few MG cycles. The approximation error convergence
curves of the di�erent methods are depicted in Figures 4 and 5 in function of the number
of nodes. We can observe the uniform case in red, the Hessian-based continuous and ten-
soriel respectively in green and dark blue and the norm-oriented continuous and tensorial
respectively in pink and clear blue, the black line being simply the order 2 (legends with
symbols are also given in �gures). The two Hessian-based cases are very similar and, in
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Figure 5: 2D boundary layer test case, norm-oriented methods: approximation error convergence in terms
of number of vertices.

the same way, the two norm-oriented cases are very similar too. This tends to indicate
that our tensorial method is good, at least for this test case.

8.2 Bubble-like test case with thick interface
We are interested by a Poisson problem the solution of which is a functionu equal

to 1 on a disk and to 0 in the rest of the domain. This function is the prototype of
the pressure in a multi-uid ow involving capillary forces. The source term is a Dirac
derivative. We smooth this computation by de�ning a thickness" for de�ning an annular
region separating the two subdomains (outside the disk, inside the disk) and in whichu is
smoothly varying from 0 to 1: if (x; y) is located inside the annular region,u(x; y) is given
by the formula: u(x; y) = 1

2 + 1
2sin( � 

" ) with  = 0:25�
p

(xC � x)2 + ( yC � y)2. From
this solution, a right-hand sidef is computed. Given a mesh, vertex values off h(x i ) are
prescribed as the analytic valuesf (x i ). As a result, for rather coarse meshes, the zone
wheref is not zero can be simply missed andf h can be zero even in the neighborhood of
the high values off . We consider �rst a quite large thickness of" = 0:1. An approximate
solution uh is shown in as shown in Figure 6. Applying the four above methods give
convergence curves which are depicted in Figures 7 and 8. Like in the previous test case,
we observe that the tensorial version and the continuous version produce very similar
results.

8.3 Bubble-like test case with thin interface
In order to evaluate the robustness of the methods with respect to steeper gradients,

we consider the same test case with a thinner transition:" = 0:02. Figures 9 and 10 give
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Figure 6: Circular-test-case-domain: sketch of the solutionu.

Figure 7: Bubble-like test case with thick interface, Hessian-based methods: approximation error conver-
gence in terms of number of vertices.

us the results. In this case, the tensorial version and the continuous version perform
with very similar e�ciency. Hessian-based methods give now a notable improvement
with respect to uniform re�ning. Norm-oriented are much better, but adaptation phases
appear still rather noisy, since the adaptation stabilizes only after 10 remeshings. For both
norm-oriented algorithms, the improvement is of two orders of magnitude with the 30; 000
nodes calculations. Some di�erences appear when the resulting meshes are compared, see
Figures 11. On global mesh views, we observe that the quasi-uniform inner and outer
regions contain much more vertices with the tensorial version, in particular close to the
boundary. This can be related to the fact that for one case, the non-re�ned region took
about 2000 nodes from the total of 30; 000 while the other option tooks only 700. On
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Figure 8: Bubble-like test case with thick interface, norm-oriented methods: approximation error con-
vergence in terms of number of vertices.

Figure 9: Bubble-like test case with thin interface, Hessian-based methods: approximation error conver-
gence in terms of number of vertices.

the annular region of high variation, the behavior of both method are very similar, and
produce stretched meshes with streching ratios both of order 10.
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Figure 10: Bubble-like test case with thin interface, norm-oriented methods: approximation error con-
vergence in terms of number of vertices.
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Figure 11: Bubble-like test case with thin interface, norm-oriented methods, sketch of meshes: top, global
viewsof continuous option, left and tensorial option, right. Bottom, zooms near the point of discontinuity
of maximal abscissa, of continuous option (left) and tensorial option (right).

8.4 Poisson problem with discontinuous coe�cient [13]

This test case exempli�es the singularity which is met in the simulation of multi-uid
ows with a large deviation between the densities� 1 and � 2 of each phase. In the case
where a projection algorithm is applied to solve the Navier-Stokes equations for incom-
pressible ow, a Poisson problem with discontinuous coe�cients has to be solved. An
example can be found in [23]. The present case does not satisfy the smoothness as-
sumptions introduced for deriving our method. However, a usual expectation in mesh
adaptation is that the methods should also apply well on non-smooth contexts. We con-
sider the equation of Poisson� div( 1

� r u) = rhs with a discontinuous coe�cient taking
two di�erent values 1=� 1 and 1=� 2 on two sub-domains 
1 and 
 2 separated by an in-
terface which is a su�ciently smooth curve for having a normal vector. This PDE is
mathematically referred as a transmission problem and the solution is continuous across
the interface but of discontinuous normal derivatives since:

1=� 1r u1 � n = 1=� 2r u2 � n
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Figure 12: Poisson problem with discontinuous coe�cient: view of the solution.

whereu1 and u2 are the restrictions of the solutionu on 
 1 and 
 2. In our example, we
de�ne them as follows

uj 
 i = ui = � i + � i (x2 + y2) i = 1; 2:

Further, 
 2 is the disk of center (0:5; 0:5) and of radius 0:2 in the computational domain
]0; 1[� ]0; 1[ and we have:

1=� 1 = 1000: ; � 1 = 1:23579::: ; � 1 = � 2:47158:::

1=� 2 = 1: ; � 2 = 100: ; � 2 = � 2471:58::: (33)

This is sketched in Figure 12. In the discrete model, the interface appears only as values
of 1=� evaluated on the vertices of each grid.

Results of Figure 13 are also good but Figure 14 shows results which are disappointing.
The two Hessian-based cases and the continuous norm-oriented cases present very good
results, of order two. Unfortunately, the tensorial norm-oriented case present a result
very di�erent, of order one, whereas it should look very much like the continuous norm-
oriented. An examination of the meshes generated and displayed in Figures 15 shows that
while the continuous option keeps a good anisotropy in the generated meshes, anisotropy is
completely lost by the tensorial option. Note however that in practical applications related
to level set calculations, the Heaviside coe�cient is generally replaced by a smoother one,
see for example [23].
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Figure 13: Poisson problem with discontinuous coe�cient, Hessian-based methods: approximation error
convergence in terms of number of vertices.

Figure 14: Poisson problem with discontinuous coe�cient, norm-oriented methods: approximation error
convergence in terms of number of vertices.

8.5 A 1D boundary layer test case
Figures 16 and 17 give us the results in the case of the 1D boundary layer. The two

Hessian-based results are similar but we can observe an important di�erence bewteen the
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Figure 15: Poisson problem with discontinuous coe�cient, sketch of meshes: top, global views of contin-
uous option, left and tensorial option, right. Bottom, zooms near the point of discontinuity of maximal
abscissa, of continuous norm oriented option (left) and tensorial norm oriented option, right.

two norm-oriented results. The continuous norm-oriented gives a bad convergence which
loses the order two at the end of the computation whereas the tensorial norm-oriented
remains of order two. Because of that, the tensorial norm-oriented is better than the
continuous norm-oriented.

9. Conclusion

We have proposed several extensions of the discrete tensorial metric method for the
metric-based mesh adaptation of a Poisson problem.

The choice of a simpli�ed model, the Poisson equation, allows to analyse in details the
di�erent steps in adaptation and to rely on a well-established set of solution-smooothness
and approximation-error analyses.

The extensions done here concern �rst its formulation in terms of an equation de�ning
an intrinseque optimal metric, giving the optimal adapted mesh as a unit mesh of the
optimal metric. Second, the method is extended to the minimization ofLp norms. Third,
it is extended to anisotropic goal-oriented mesh adaptation. It is also extended to the
norm-oriented analysis.
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Figure 16: 1D boundary layer, Hessian-based methods: approximation error convergence in terms of
number of vertices.

Figure 17: 1D boundary layer, norm-oriented methods: approximation error convergence in terms of
number of vertices.

The proposed novel tensorial approach assumes, like the initial tensorial formulations,
that the iterated mesh is locally of same edge directions as the background mesh while
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the continuous metric never uses this assumption, but this assumption is just a way of
reasoning and not a constraint in adaptation. This is illustrated by the fact that the
tensorial method produces optimality systems which are essentially discretisations of the
optimality systems given by the continuous metric method.

The novel tensorial method shows di�erent features from the continuous metric method.
In the continuous metric method, discrete �elds are theoretically mapped into a continu-
ous one in order to de�ne a continuous optimality system for the metric. In the tensorial
treatment of Hessian-based, goal-oriented, and norm-oriented error analysis, no continu-
ous context needs to be invoked. Further, the error analysis in the tensorial case does not
require any anisotropy bound while the continuous analysis does (at least in theoretical
arguments).

Two-dimensional numerical experiments on a benchmark already used for continuous
Hessian-based, goal-, and norm-oriented adaptation show that both continuous approach
and tensorial approach behave similarly on smooth test cases. In particular, both methods
produce anisotropic meshes. The tensorial method appears just slightly less smooth than
the continuous one. The comparison will in the next future be continued with strongly
anisotropic mesh adaptation test cases (shape aspect ratio much larger than 100) by
introducing new versions of the mesh generator. In contrast, when applied to a strictly
discontinuous context, the tensorial method looses its anisotropy. We have not found yet
a simple parameter-free improvement to this defect, and further studies are necessary.

This work also proposes a 3D analysis. 3D experiments will soon be produced.
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