P. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, 2008.
DOI : 10.1515/9781400830244

URL : http://hdl.handle.net/1885/17178

A. Agouzal, K. Lipnikov, and Y. Vasilevskii, Adaptive generation of quasioptimal tetrahedral meshes, East-West Journal, vol.7, issue.4, pp.223-244, 1999.

F. Alauzet, Adaptation de maillage anisotrope en trois dimensions Application aux simulations instationnaires en Mécanique des Fluides, 2003.

F. Alauzet and A. Loseille, High-order sonic boom modeling based on adaptive methods, Journal of Computational Physics, vol.229, issue.3, pp.561-593, 2010.
DOI : 10.1016/j.jcp.2009.09.020

V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, Log-Euclidean metrics for fast and simple calculus on diffusion tensors, Magnetic Resonance in Medicine, vol.52, issue.2, pp.411-421, 2006.
DOI : 10.1002/mrm.20965

URL : https://hal.archives-ouvertes.fr/inria-00502678

M. Artina, M. Fornasier, S. Micheletti, and S. Perotto, Benefits of Anisotropic Mesh Adaptation for Brittle Fractures Under Plane-Strain Conditions. Pages 43?67 of, Proceedings of Tetrahedron IV in New Challenges in Grid Generation and Adaptivity for Scientific Computing, 2013.

J. P. Aubin, Behaviour of the error of the approximate solution of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods, Ann. Scuola Norm. Sup. Pisa, vol.21, pp.599-637, 1967.

R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples, East-West J. Numer. Math, vol.4, pp.237-264, 1996.
URL : https://hal.archives-ouvertes.fr/inria-00343044

A. Belme, Aérodynamique instationnaire et méthode adjointe, 2011.

A. Belme, A. Dervieux, and F. Alauzet, Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows, Journal of Computational Physics, vol.231, issue.19, pp.6323-6348, 2012.
DOI : 10.1016/j.jcp.2012.05.003

URL : https://hal.archives-ouvertes.fr/hal-00940095

M. Berger, A panoramic view of Riemannian geometry, 2003.
DOI : 10.1007/978-3-642-18245-7

L. Billon, Y. Mesri, and E. Hachem, Anisotropic boundary layer mesh generation for immersed complex geometries, Engineering with Computers, vol.12, issue.4, pp.1-12, 2016.
DOI : 10.1016/j.proeng.2014.10.400

URL : https://hal.archives-ouvertes.fr/hal-01353694

G. Brèthe and A. Dervieux, Anisotropic Norm-Oriented Mesh Adaptation for a Poisson problem, J. Comp. Phys, vol.322, issue.804, p.826, 2016.

G. Brèthes, Algorithmes multigrilles adaptatifs et scalables, 2015.

M. J. Castro-díaz, F. Hecht, B. Mohammadi, and O. Pironneau, Anisotropic unstructured mesh adaption for flow simulations, International Journal for Numerical Methods in Fluids, vol.59, issue.4, pp.475-491, 1997.
DOI : 10.1002/(SICI)1097-0363(19970830)25:4<475::AID-FLD575>3.0.CO;2-6

L. Chen, P. Sun, and J. Xu, Optimal anisotropic meshes for minimizing interpolation errors in $L^p$-norm, Mathematics of Computation, vol.76, issue.257, pp.179-204, 2007.
DOI : 10.1090/S0025-5718-06-01896-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, Journal of Computational Physics, vol.230, issue.7, pp.2391-2405, 2011.
DOI : 10.1016/j.jcp.2010.11.041

URL : https://hal.archives-ouvertes.fr/hal-00579536

T. Coupez, G. Jannoun, N. Nassif, H. C. Nguyen, H. Digonnet et al., Adaptive time-step with anisotropic meshing for incompressible flows, Journal of Computational Physics, vol.241, pp.195-211, 2013.
DOI : 10.1016/j.jcp.2012.12.010

URL : https://hal.archives-ouvertes.fr/hal-01470576

J. Dompierre, M. G. Vallet, M. Fortin, Y. Bourgault, and W. G. Habashi, Anisotropic mesh adaptation - Towards a solver and user independent CFD, 35th Aerospace Sciences Meeting and Exhibit, 1997.
DOI : 10.2514/6.1997-861

L. Formaggia and S. Perotto, Anisotropic error estimates for elliptic problems, Numerische Mathematik, vol.94, issue.1, pp.67-92, 2003.
DOI : 10.1007/s00211-002-0415-z

L. Formaggia, S. Micheletti, and S. Perotto, Anisotropic mesh adaptation in computational fluid dynamics: Application to the advection???diffusion???reaction and the Stokes problems, Applied Numerical Mathematics, vol.51, issue.4, pp.511-533, 2004.
DOI : 10.1016/j.apnum.2004.06.007

C. Gruau and T. Coupez, 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.48-49, pp.48-49, 2005.
DOI : 10.1016/j.cma.2004.11.020

URL : https://hal.archives-ouvertes.fr/hal-00517639

D. Guégan, O. Allain, A. Dervieux, and F. Alauzet, An L???-Lp mesh-adaptive method for computing unsteady bi-fluid flows, International Journal for Numerical Methods in Engineering, vol.229, issue.1, pp.84-1376, 2010.
DOI : 10.1002/nme.2954

W. Huang, Metric tensors for anisotropic mesh generation, Journal of Computational Physics, vol.204, issue.2, pp.633-665, 2005.
DOI : 10.1016/j.jcp.2004.10.024

K. E. Jensen, Anisotropic Mesh Adaptation and Topology Optimization in Three Dimensions, Journal of Mechanical Design, vol.138, issue.6, p.61401, 2016.
DOI : 10.1115/1.4032266

A. Loseille and F. Alauzet, Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error, SIAM Journal on Numerical Analysis, vol.49, issue.1, pp.38-60, 2011.
DOI : 10.1137/090754078

A. Loseille and F. Alauzet, Continuous Mesh Framework Part II: Validations and Applications, SIAM Journal on Numerical Analysis, vol.49, issue.1, pp.61-86, 2011.
DOI : 10.1137/10078654X

A. Loseille, A. Dervieux, P. J. Frey, and F. Alauzet, Achievement of Global Second Order Mesh Convergence for Discontinuous Flows with Adapted Unstructured Meshes, 18th AIAA Computational Fluid Dynamics Conference, 2007.
DOI : 10.2514/6.2007-4186

A. Loseille, A. Dervieux, and F. Alauzet, A 3D Goal-Oriented Anisotropic Mesh Adaptation Applied to Inviscid Flows in Aeronautics, 48th AIAA Aerospace Sciences Meeting and Exhibit. AIAA-2010-1067, 2010.

A. Loseille, A. Dervieux, and F. Alauzet, Anisotropic Norm-Oriented Mesh Adaptation for Compressible Flows, 53rd AIAA Aerospace Sciences Meeting, p.2015, 2015.
DOI : 10.2514/6.2015-2037

URL : https://hal.archives-ouvertes.fr/hal-01256131

J. Nitsche, Ein Kriterium fr die quasi-optimalitat des Ritzschen Verfohrens, Numer. Math, vol.11, issue.346, p.348, 1968.
DOI : 10.1007/bf02166687

Y. V. Vasilevski and K. N. Lipnikov, An adaptive algorithm for quasi-optimal mesh generation, Comput. Math. Math. Phys, vol.39, issue.9, pp.1468-1486, 1999.

Y. V. Vasilevski and K. N. Lipnikov, Error bounds for controllable adaptive algorithms based on a Hessian recovery, Computational Mathematics and Mathematical Physics, issue.8, pp.45-1374, 2005.

D. A. Venditti and D. L. Darmofal, Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows, Journal of Computational Physics, vol.187, issue.1, pp.22-46, 2003.
DOI : 10.1016/S0021-9991(03)00074-3

R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, 2013.
DOI : 10.1093/acprof:oso/9780199679423.001.0001

M. Yano and D. Darmofal, An optimization-based framework for anisotropic simplex mesh adaptation, Journal of Computational Physics, vol.231, issue.22, pp.7626-7649, 2012.
DOI : 10.1016/j.jcp.2012.06.040

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique, International Journal for Numerical Methods in Engineering, vol.31, issue.7, pp.33-1331, 1992.
DOI : 10.1002/nme.1620330702