
HAL Id: hal-01513751
https://inria.hal.science/hal-01513751

Submitted on 25 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Partition-Based Hardware Transactional Memory for
Many-Core Processors

Yi Liu, Xinwei Zhang, Yonghui Wang, Depei Qian, Yali Chen, Jin Wu

To cite this version:
Yi Liu, Xinwei Zhang, Yonghui Wang, Depei Qian, Yali Chen, et al.. Partition-Based Hardware
Transactional Memory for Many-Core Processors. 10th International Conference on Network and
Parallel Computing (NPC), Sep 2013, Guiyang, China. pp.308-321, �10.1007/978-3-642-40820-5_26�.
�hal-01513751�

https://inria.hal.science/hal-01513751
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


adfa, p. 1, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Partition-based Hardware Transactional Memory for 
Many-core Processors 

Yi Liu1, Xinwei Zhang1, Yonghui Wang1, Depei Qian1, Yali Chen2, Jin Wu2 

1 Sino-German Joint Software Institute, Beihang University, Beijing 100191, China 
2 Huawei Technologies Co., Ltd, Shenzhen 518129, China 

yi.liu@jsi.buaa.edu.cn 

Abstract. Transactional memory is an appealing technology which frees pro-
grammer from lock-based programming. However, most of current hardware 
transactional memory systems are proposed for multi-core processors, and may 
face some challenges with the increasing of processor cores in many-core sys-
tems, such as inefficient utilization of transactional buffers, unsolved problem 
of transactional buffer overflow, etc. This paper proposes PM_TM, a hardware 
transactional memory for many-core processors. The system turns transactional 
buffers that are traditionally private to processor cores into shared by moving 
them from L1-level to L2-level, and uses partition mechanism to provide logi-
cally independent and dynamically expandable transactional buffers to transac-
tional threads. As the result, the solution can utilize transactional buffers more 
efficient and moderate the problem of transactional buffer overflow. The system 
is simulated and evaluated using gems and simics simulator with STAMP 
benchmarks. Evaluation results show that the system achieves better perfor-
mance and scalability than traditional solutions in many-core processors. 
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1 Introduction 

Among works to improve programmability of parallel systems, transactional memory 
is an attractive one. Compared to traditional lock-based programming models, trans-
actional memory can improve programmability, avoid deadlock and furthermore, 
promote performance of concurrent programs. 

Most of current hardware transactional memory (HTM[1]) systems are proposed for 
multi-core processors, and may face some challenges with the increasing of processor 
cores in many-core systems: firstly, utilization of transactional buffers are inefficient 
since those buffers are private to processor cores while generally only part of cores 
execute transactions simultaneously in many-core processors; secondly, the on-going 
challenge of transactional buffer overflow for HTMs is still unsolved. 

In this paper, we propose PM_TM, an architecture of hardware transactional 
memory for many-core processors. The main idea consists of two points: firstly, turns 
private transactional buffer into shared by moving them from L1-level to L2-level; 
secondly, uses partition mechanism to provide logically independent and dynamically 



expandable transactional buffers to transactional threads, and furthermore, to isolate 
access-interferences among large number of processor cores. As the result, the system 
can utilize transactional buffers more efficient and moderates the problem of transac-
tional buffer overflow in many-core processors. 

The rest of this paper is organized as follows. Section 2 analyzes problems of tradi-
tional hardware transactional memory in many-core environment and then gives an 
introduction to our solution. Section 3 presents the architecture of our proposed sys-
tem. Section 4 evaluates the system with benchmarks. Section 5 introduces related 
works. And section 6 concludes the paper. 

2 Challenges in many-core processors and our solution 

2.1 Problem analysis 

Most of current hardware transactional memory systems are proposed for multi-core 
processors, and may face some challenges in many-core systems. 

Firstly, transactional buffers are inefficiently utilized and resources are wasted. 
Traditionally, transactional buffer is located inside processor cores in parallel with L1 
data cache, which means it’s private for the core. Processor core accesses transaction-
al buffer only in transactional state, i.e. on executing transactions. However, in many-
core processors, there will be a large number of processor cores, and generally only 
small part of them execute transactions simultaneously, while most of transactional 
buffers are not used at all. 

Secondly, Problem of transactional buffer overflow is still unsolved. Generally, 
size of transactional buffer is fixed in each processor cores, when a transaction 
reads/writes too many data, buffer overflow will occur. This “buffer overflow prob-
lem” is one of ongoing challenges for hardware transactional memory. Despite some 
solutions have been proposed, most of them rely on co-working between cache-level 
transactional buffer and main memory or virtual memory, and need complex hard-
ware/software operations. 

This problem will even cause some kind of contradictions in many-core processors. 
On one hand, transactional buffers are inadequate in some processor cores that cause 
transactional buffer overflows due to some “long transactions”, while on the other 
hand, transactional buffers in other processor cores may not be used at all. 

2.2 Our solution: an overview 

Based on the above discussions, we propose an architecture of hardware transactional 
memory, called PM_TM, for many-core processors. In our proposed solution, the 
transactional buffer is “logically independent” because that the transactional cache is 
partitioned into multiple partitions, each of them corresponds to one transactional 
thread and can only be accessed by it. The transactional buffer is “dynamically ex-
pandable” because that each partition is initially allocated a buffer with basic size, and 
can be expanded if the corresponding thread accesses excessive data speculatively in 
a transaction. 

The advantages of the proposed solution include: 



(a) Transactional buffers can be utilized more efficiently. In many-core environ-
ment, generally only part of processor cores execute transactions at the same time, 
that is, most of transactional buffers will be idle if they are private for cores. By turn-
ing them from private to shared, all of transactional buffers can be utilized by ongoing 
transactions, and the waste of resources can be reduced greatly. 

(b) The problem of transactional buffer overflow is moderated. Since the transac-
tional buffers are shared by all of the processor cores, and generally only part of cores 
execute transactions simultanously, by managing transactional buffers with partition 
mechanism and expanding partitions when necessary, a transaction can have much 
bigger transactional buffer than traditional private buffer. As the result, the possibili-
ties of transactional buffer overflow are smaller. 

In addition, from the implementation point of view, it is easier to integrate much 
bigger L2-level transactional buffer into processors than L1-level. 

(c) Context switch and migration of transactional threads are easier to implement. 
For some long-transactions or transactions with system-calls, the operating system 
will suspend the transactional thread inside a transaction and schedule other threads to 
run on the core. After a while, the original transactional thread will be re-scheduled to 
run on either the same or a different core. Traditionally, this is a problem for HTMs 
since the transactional thread may face either a damaged or a totally new transaction 
context. In our proposed solution, the transactional buffer are shared by all of the 
cores and bound to transactional threads instead of cores, so the context switch and 
migration of transactional threads can be easily supported. 

3 Partition-based hardware transactional memory architecture 

3.1 System architecture 

Fig.1 shows the architecture of tile-based[2],[12] many-core processors with support of 
our proposed hardware transactional memory. The system is composed of three types 
of tiles: the first type is tiles of processor cores plus private L1 cache and routing 
mechanism; the second is tiles of L2 cache banks; and the third is tiles of transactional 
cache (TC). All of the tiles are connected with an on-chip network, and both L2 cache 
and transactional cache are shared by all of the processor cores. 

 
Fig. 1. System architecture 



The transactional cache is used to buffer the data accessed by transactions specula-
tively, and as shown in Fig.2, its structure is similar to L2 cache and data is also 
stored by line. The difference is that the transactional cache holds both old and new 
version of data for each line, where the old version is the data that the transaction 
started with, and the new version is the current version updated by the transaction 
speculatively. Detailed introduction to consistency and conflict detection are given in 
section 3.3. 

In addition, to support efficient nesting of transactions, the system uses a partial 
rollback mechanism which was proposed in our previous works [11]. The mechanism 
uses n-bits read and write vector for each line to indicate whether the line has been 
read or written speculatively, with each bit in the vector corresponding to one level of 
nested transactions. By adding limited hardware, conditional partial rollback can be 
implemented, that is, when a transaction needs to roll back due to a conflict, instead 
of rolling back to the outermost transaction as in commonly-used flattening model, 
the system can just rolls back to the conflicted transaction itself or one of its outer-
level transactions if given conditions are satisfied. 

 
Fig. 2. Structure of transaction cache 

In architecture level, transactional cache is in parallel with L2 cache. Commonly a 
processor core accesses L2 cache, and once a transaction is started, it switches to 
access transactional cache in order to guarantee that all the speculative accessed data 
are buffered and not valid until commit of the transaction. 

3.2 Partition mechanism 

(1) Overview 
Partition mechanism is a method to manage hardware resources in multi-/many-

core processors. In our proposed system, partition mechanism is used to establish 
multiple logically independent transactional buffers, i.e. partitions, in shared transac-
tional cache, furthermore, to make these transactional buffers dynamically expanda-
ble. In the system, transactional caches are allocated to partitions in partition-unit 
(PU) which corresponds to multiple successive lines in the transactional cache. Each 
partition corresponds to one transactional thread, and is created with one PU initially 
that can expand to multiple successive PUs if it is needed. 

Partitions are created only for threads that execute transactions, called transactional 
thread. Once a thread executes a transaction at the first time, a partition is created with 
only one PU, and along with the increasing of read/write data set of a transaction, 
more PUs can be allocated to the partition dynamically if its transactional buffer over-
flows. After the commit of the first transaction, the partition is reserved and used by 
subsequent transactions of the thread, and finally released when the thread is finished. 

It is noted that the owner of a partition is transactional thread rather than processor 
core. The reason is that transactional threads may be suspended during its execution 



and scheduled to run in another core after it is waked up later. In other words, migra-
tion of transactional threads can be supported by binding partitions with transactional 
threads instead of cores. 

(2) Partition access 
When a thread starts to execute a transaction, it switches to access its transactional 

buffer (i.e. partition) instead of L2 cache. As Fig.3 shows, an associative buffer is 
used to store information of partitions including starting address, partition size and 
owner thread, with each entry corresponding to one partition. Based on this hardware 
infrastructure, the transactional buffer of a thread can be located quickly by means of 
the thread ID. 

 
Fig. 3. Structure of transaction cache 

(3) Partition management 
As mentioned above, a partition starts with one PU and may expand along with the 

execution of the transactional thread if excessive data are accessed in a transaction 
speculatively, and to simplify the management of partitions, it is limited that all of the 
PUs of a partition must be successive in transactional cache. In order to leave spaces 
at the end of partitions for potential expansions in the future, it’s better to allocate 
partitions dispersedly in transactional cache. 

According to above discussions, the system allocates the first partition from the be-
ginning of transactional cache, and subsequent partitions are allocated in the follow-
ing policy: searching for the biggest free area in the transactional cache, and allocat-
ing the PU in the middle of the area to the new partition. 

Table.1 shows the addresses that will be allocated to partitions one by one, where B 
is the total size of transactional cache in lines, N is the number of processor cores, and 
the size of partition unit PU=B/N. 

Table 1. Address allocation of partitions 

Seq. of creation Start address Initial end address
0 0 PU - 1 
1 B/2 B/2 + PU - 1 
2 B/4 B/4 + PU - 1 
3 3B/4 3B/4 + PU - 1 
4 B/8 B/8 + PU - 1 
... ... ... 

A partitioning example is shown in Fig.4. In Fig.4(a), four partitions are created 
one by one for transactional thread T0--T3, and T0 has successfully expanded its 
partition in 1 PU; in Fig.4(b), thread T0 and T3 finish their execution and partitions 
are released, after that, a new partition is created for thread T4. 
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corresponding transactions will abort their execution and roll back. Similarly, there 
also is a directory with the same structure in transactional cache. Once a line of trans-
actional buffer is updated, an invalidate message is also sent to other sharers. 

 
(a) cache directory                                                (a) sharer list 

Fig. 5. Structure of cache directory 

 (2) Conflict Detection 
Method to detect conflicts among transactions is: when a processor P reads/writes 

address A in a transaction, the cache controller sends a share-/exclusive-request to 
transactional cache directory, once the reply is received, it sets status of the transac-
tional cache line to shared or exclusive; meanwhile, if another processor Q accesses 
address A too, the request is forwarded to processor P to identify if there is a write-
write or read-write conflict, and consequently, to approve or reject the request. 

    Fig.6 shows examples of conflict detection: 
(a) Transaction startup: processor P starts a transaction and switches to access 

transactional buffer. 
(b) Writing data: P writes address A0 which is not in its transactional buffer, firstly 

it sends a get-exclusive request to directory, which is approved with the requested 
data, then P stores the data to its transactional buffer and sets write-flag, finally it 
replies an ACK to directory. 

(c) Reading data: P reads address A1 which is not in its transactional buffer, the 
procedure is the similar to (b) except that the request is get-shared instead of get-
exclusive. 

(d) Transaction conflict: processor Q reads the address A0 which was just written 
by P, firstly it sends a get-shared request to directory, which is forwarded to P and 
identified as a read-write conflict, then a NACK is sent back to Q; Q deals with the 
conflict after receiving the NACK and replies a NACK to directory. 

(e) Successful shared reading: processor Q reads the address A1 which was just 
read by P, the request is identified as conflict-free and approved. 

 
Fig. 6. Examples of Conflict Detection 

… …

which L1 cache 
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3.4 Execution of Transactions  

When a processor core starts to execute a transaction, it flushes data in L1 data cache 
and L2 cache to lower level and main memory, and switches to access transactional 
buffer instead of L2 cache. 

During execution of a transaction, all of the data accessed by the transaction are 
buffered temporarily in its transactional buffer(partition). When a data is accessed for 
the first time in the transaction, it is loaded to both old and new version of the line in 
transactional buffer, subsequent updates to the data are just stored to new version, and 
R/W status are set at the same time. 

Once the read/write-set of a transaction exceeds the partition size, a transactional 
buffer overflow occurs. At this time, the system tries to expand the partition by allo-
cating one more PU in transactional cache. If the successive PU at the end of the par-
tition is free, the partition can be successfully expanded and memory accesses are 
continued, otherwise it stalls for a short period of time and tries again. If there is still 
no free PU, the expanding operation fails and a global lock is set, the overflowed 
transaction continues exclusively without conflict until its commit. Of couse, the per-
formance will be suffered in this situation. 

If a transaction needs to roll back in case of conflict, data in transactional buffer are 
copied from old to new line by line, at the same time, R/W status are cleared, after 
that, all of the lines in L1 data cache are set to invalidate. 

When a transaction finishes its execution and commit, all of the updated data in 
transactional buffer(partition) are written to main memory.  

3.5 ISA extensions and programming interface 

As a hardware transactional memory, PM_TM supports transparent execution of 
transactions with no restriction on programming languages. Only two instructions are 
extended to specify the start and end of a transaction, as shown in Table.2. Program-
mers just need to identify program statements that must be executed atomically in 
their applications, and define them as transactions by inserting appropriate API at the 
beginning and the end of each transaction. 

Table 2. Address allocation of partitions 

Instruction Description Programming interface 
XB Trans. start BEGIN_TRANSACTION() 
XC Trans.  end COMMIT_TRANSACTION()

4 Experiments and Evaluation 

4.1 Experimental environment 

The proposed system is simulated in GEMS[13] and Simics[14], and by extending the 
simulator, our partition mechanism and consistency protocol are implemented on 
SPARC-architecture processors in the simulator. 



We evaluate PM_TM system using Stanford STAMP[15] benchmark, and experi-
mental results are compared with LogTM[5] and a native HTM, called NativeTM, in 
which transactional buffers are in L1-level and private to each processor core. 

Table 3 summarizes parameters of the simulated target system. 

Table 3. Configuration of target system 

Processors Ultrasparc-iii-plus, 1GHz 
Cache size L1: 64KB  L2: 4MB 
Size of cache line 64 bytes 
Memory 1GB 80-cycle latency 
Cache coherence protocol MESI_CMP_filter_directory  
Interconnection network Tiled NoC; X-latency:1, Y-latency:2 
Transactional cache PM_TM: 1/2/4 MB; NativeTM: 8KB/core 
Operation System Solaris 10 

The evaluation uses 4 applications that vary in size of read/write data set, length of 
transactions and contention degree among transactions, as in Table 4. 

Table 4. Applications from STAMP benchmark 

Application R/W Set Len. of transactions Contention 
intruder medium short high 
kmeans small short low 
vacation large medium low 

bayes large long high 

4.2 Results and analysis 

(1) Performance 
Fig.7 shows average execution time of applications in PM_TM, LogTM and Na-

tiveTM with 4--128 processor cores. Each application is executed with number of 
threads equaling to processor cores. 

We can see from Fig.7 that PM_TM behaves not very well in less processor cores. 
The main reason is that access latency of transactional buffers in PM_TM is longer 
than others due to its L2-level location. Along with the increasing of processor cores, 
PM_TM achieves better performance than two other systems, since that less transac-
tional buffer overflow occur in PM_TM, and contentions among transactions are also 
handled more efficient in PM_TM.  

Fig.7 also shows that results of different applications are not quite the same due to 
their characteristics. Kmeans has not only less transactions but also small read/write 
data set, so there is few transactional buffer overflows during the execution. As the 
result, the performance of Kmeans in PM_TM is not improved by the partition mech-
anism, instead, the performance is influenced by the long access latency of transac-
tional buffers. Compared with kmeans, the intruder application has bigger read/write 
data set and higher contentions among transaction. So PM_TM achieves better per-
formance along with the increasing of processor cores. Vacation has almost the same 
size of read/write data set with intruder, but vacation has some long transactions and 
contention in vacation is lower than intruder. Compared to other applications, the 



bayes has bigger read/write data set and longer transactions. Contention is also higher 
than the others. 

 
(a) kmeans                       (b) intruder 

 
(c) vacation                               (d) bayes 

Fig. 7. Average execution time of applications 

Table 5. Transaction overflows 

Application System Transactional 
buffer size 

Number of processor cores 
4 8 16 32 64 128 

kmeans 

NativeTM 8KB/core 0 0 0 0 0 0 

PM_TM 
1MB 0 0 3 5 6 8 
2MB 0 0 2 3 5 6 
4MB 0 0 0 0 2 5 

intruder 

NativeTM 8KB/core 12 24 48 96 192 384 

PM_TM 
1MB 0 0 4 8 29 52 
2MB 0 0 3 4 9 31 
4MB 0 0 0 0 3 7 

vacation 

NativeTM 8KB/core 19 33 56 131 263 477 

PM_TM 
1MB 0 6 13 18 45 104 
2MB 0 0 7 11 18 47 
4MB 0 0 0 5 9 21 

bayes 

NativeTM 8KB/core 361 733 1307 1891 3249 4811 

PM_TM 
1MB 173 267 661 1081 2033 4795 
2MB 30 181 277 649 1213 2258 
4MB 0 24 190 307 636 1309 



(2) Transactional buffer overflows 
Table 5 gives transaction overflow statistics of applications in NativeTM and 

PM_TM. LogTM is not included in this table because transactional data of LogTM is 
stored in the memory directly. From the table we can see that most applications over-
flow less in PM_TM than in NativeTM except kmeans, which has not only less trans-
actions but also small read/write data set. Furthermore, with the increasing of L2-level 
transactional cache, the overflow times reduce significantly. As discussed in section 
2.2, from the implementation point of view, it is easier to integrate much bigger L2-
level transactional buffer into processors than L1-level buffer. 

 (3) Conflict and rollback 
Fig.8 shows transaction rollbacks of applications. LogTM uses bloom filter[16] to 

store transaction read/write data set, that may produce false-conflicts, and further-
more, the cost of abort in LogTM is much higher due to its eager version manage-
ment. Compared to LogTM, PM_TM uses bit-set to record data set of transactions so 
that there is no false-conflict in it. And due to this reason, the number of conflicts in 
NativeTM is the same with PM_TM, and omitted in the figure.  

 
(a) kmeans                                (b) intruder 

 
(c) vacation                                      (d) bayes 

Fig. 8. Transaction rollbacks 

In kmeans, transactions are small and shared data among transactions are few, so 
frequency of conflict is much lower than other programs. Transactions in intruder are 
slightly larger than kmeans, but frequency of conflict is much higher. Although vaca-
tion has some large transactions, competition between transactions in vacation is low-



er than intruder. As for bayes, PM_TM system is much better than LogTM in rollback 
test. Bayes has the largest R/W set among the four programs, so overflow times of 
bayes is the most. 

5 Related Works 

Transactional memory was firstly proposed in [1], since then, lots of hardware trans-
actional memory (HTM) systems have been proposed that support atomicity of trans-
actions by hardware, and achieves high performance. On the other hand, HTMs are 
often bounded by space and time constraints, i.e. transactional buffer overflow and 
transaction migration. 

Some solutions have been proposed to deal with transactional buffer overflow. The 
simplest solution is partial-commit or in-place commit which uses a global lock or 
things like that to prevent other transactions to commit, until commit of the over-
flowed transaction [2],[7],[8]. Beside partial-committing, some solutions deal with over-
flows by co-working between transactional buffer and memory[5],[6]; some solutions 
support unbounded transactions by means of complex hardware mechanism[4],[10]; 
hybrid transactional memory[9] has also been proposed, which integrates both hard-
ware and software transactional memory, and switches to software mode in case of 
buffer overflow. 

TM systems for many-core processors have also been proposed. TM2C[17] is a 
software TM system which provides two services: the application service and the 
Distributed TM service. The former connects transaction with the application and 
controls the transactional runtime. The latter grants a data access to the requesting 
transactions through distributed locking. The main contribution of TM2C lies in guar-
anteeing starvation-freedom with low overhead.  

LogTM[5] is a log-based HTM system. It saves old values in a log and puts new 
values in target address. When transaction commits, values in target address become 
visible and log is abandoned directly. This will accelerate the process of transaction 
committing. When rollback occurs, it simply copies old values in the Log to the target 
address. LogTM uses directory-based Cache consistency protocol to guarantee data 
consistency and eager conflict detection to find conflict between transactions. 

6 Conclusion 

Transactional memory is an appealing technology to improve programmability of 
multi-core and many-core processors. However, most of current hardware transac-
tional memory systems are proposed for multi-core processors, and may face some 
challenges with the increasing of processor cores in many-core systems: firstly, utili-
zation of transactional buffers are inefficient since those buffers are private to proces-
sor cores while generally only part of cores execute transactions simultaneously in 
many-core processors; secondly, the on-going challenge of transactional buffer over-
flow for HTMs is still unsolved. 

This paper proposes an architecture of hardware transactional memory for many-
core processors, called PM_TM. The main idea consists of two points: firstly, turns 



private transactional buffer into shared by moving them from L1-level to L2-level; 
secondly, uses partition mechanism to provide logically independent and dynamically 
expandable transactional buffers to transactional threads, and furthermore, to isolate 
access-interferences among large number of processor cores. As the result, the system 
can utilize transactional buffers more efficient and moderates the problem of transac-
tional buffer overflow in many-core processors. The system is simulated and evaluat-
ed using gems and simics simulator with STAMP benchmarks. Evaluation results 
show that the system achieves better performance and scalability than traditional solu-
tions in many-core processors. 
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