
HAL Id: hal-01513751
https://inria.hal.science/hal-01513751

Submitted on 25 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Partition-Based Hardware Transactional Memory for
Many-Core Processors

Yi Liu, Xinwei Zhang, Yonghui Wang, Depei Qian, Yali Chen, Jin Wu

To cite this version:
Yi Liu, Xinwei Zhang, Yonghui Wang, Depei Qian, Yali Chen, et al.. Partition-Based Hardware
Transactional Memory for Many-Core Processors. 10th International Conference on Network and
Parallel Computing (NPC), Sep 2013, Guiyang, China. pp.308-321, �10.1007/978-3-642-40820-5_26�.
�hal-01513751�

https://inria.hal.science/hal-01513751
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Partition-based Hardware Transactional Memory for
Many-core Processors

Yi Liu1, Xinwei Zhang1, Yonghui Wang1, Depei Qian1, Yali Chen2, Jin Wu2

1 Sino-German Joint Software Institute, Beihang University, Beijing 100191, China
2 Huawei Technologies Co., Ltd, Shenzhen 518129, China

yi.liu@jsi.buaa.edu.cn

Abstract. Transactional memory is an appealing technology which frees pro-
grammer from lock-based programming. However, most of current hardware
transactional memory systems are proposed for multi-core processors, and may
face some challenges with the increasing of processor cores in many-core sys-
tems, such as inefficient utilization of transactional buffers, unsolved problem
of transactional buffer overflow, etc. This paper proposes PM_TM, a hardware
transactional memory for many-core processors. The system turns transactional
buffers that are traditionally private to processor cores into shared by moving
them from L1-level to L2-level, and uses partition mechanism to provide logi-
cally independent and dynamically expandable transactional buffers to transac-
tional threads. As the result, the solution can utilize transactional buffers more
efficient and moderate the problem of transactional buffer overflow. The system
is simulated and evaluated using gems and simics simulator with STAMP
benchmarks. Evaluation results show that the system achieves better perfor-
mance and scalability than traditional solutions in many-core processors.

Keywords: Key words: Transactional Memory, Partition, Many-core

1 Introduction

Among works to improve programmability of parallel systems, transactional memory
is an attractive one. Compared to traditional lock-based programming models, trans-
actional memory can improve programmability, avoid deadlock and furthermore,
promote performance of concurrent programs.

Most of current hardware transactional memory (HTM[1]) systems are proposed for
multi-core processors, and may face some challenges with the increasing of processor
cores in many-core systems: firstly, utilization of transactional buffers are inefficient
since those buffers are private to processor cores while generally only part of cores
execute transactions simultaneously in many-core processors; secondly, the on-going
challenge of transactional buffer overflow for HTMs is still unsolved.

In this paper, we propose PM_TM, an architecture of hardware transactional
memory for many-core processors. The main idea consists of two points: firstly, turns
private transactional buffer into shared by moving them from L1-level to L2-level;
secondly, uses partition mechanism to provide logically independent and dynamically

expandable transactional buffers to transactional threads, and furthermore, to isolate
access-interferences among large number of processor cores. As the result, the system
can utilize transactional buffers more efficient and moderates the problem of transac-
tional buffer overflow in many-core processors.

The rest of this paper is organized as follows. Section 2 analyzes problems of tradi-
tional hardware transactional memory in many-core environment and then gives an
introduction to our solution. Section 3 presents the architecture of our proposed sys-
tem. Section 4 evaluates the system with benchmarks. Section 5 introduces related
works. And section 6 concludes the paper.

2 Challenges in many-core processors and our solution

2.1 Problem analysis

Most of current hardware transactional memory systems are proposed for multi-core
processors, and may face some challenges in many-core systems.

Firstly, transactional buffers are inefficiently utilized and resources are wasted.
Traditionally, transactional buffer is located inside processor cores in parallel with L1
data cache, which means it’s private for the core. Processor core accesses transaction-
al buffer only in transactional state, i.e. on executing transactions. However, in many-
core processors, there will be a large number of processor cores, and generally only
small part of them execute transactions simultaneously, while most of transactional
buffers are not used at all.

Secondly, Problem of transactional buffer overflow is still unsolved. Generally,
size of transactional buffer is fixed in each processor cores, when a transaction
reads/writes too many data, buffer overflow will occur. This “buffer overflow prob-
lem” is one of ongoing challenges for hardware transactional memory. Despite some
solutions have been proposed, most of them rely on co-working between cache-level
transactional buffer and main memory or virtual memory, and need complex hard-
ware/software operations.

This problem will even cause some kind of contradictions in many-core processors.
On one hand, transactional buffers are inadequate in some processor cores that cause
transactional buffer overflows due to some “long transactions”, while on the other
hand, transactional buffers in other processor cores may not be used at all.

2.2 Our solution: an overview

Based on the above discussions, we propose an architecture of hardware transactional
memory, called PM_TM, for many-core processors. In our proposed solution, the
transactional buffer is “logically independent” because that the transactional cache is
partitioned into multiple partitions, each of them corresponds to one transactional
thread and can only be accessed by it. The transactional buffer is “dynamically ex-
pandable” because that each partition is initially allocated a buffer with basic size, and
can be expanded if the corresponding thread accesses excessive data speculatively in
a transaction.

The advantages of the proposed solution include:

(a) Transactional buffers can be utilized more efficiently. In many-core environ-
ment, generally only part of processor cores execute transactions at the same time,
that is, most of transactional buffers will be idle if they are private for cores. By turn-
ing them from private to shared, all of transactional buffers can be utilized by ongoing
transactions, and the waste of resources can be reduced greatly.

(b) The problem of transactional buffer overflow is moderated. Since the transac-
tional buffers are shared by all of the processor cores, and generally only part of cores
execute transactions simultanously, by managing transactional buffers with partition
mechanism and expanding partitions when necessary, a transaction can have much
bigger transactional buffer than traditional private buffer. As the result, the possibili-
ties of transactional buffer overflow are smaller.

In addition, from the implementation point of view, it is easier to integrate much
bigger L2-level transactional buffer into processors than L1-level.

(c) Context switch and migration of transactional threads are easier to implement.
For some long-transactions or transactions with system-calls, the operating system
will suspend the transactional thread inside a transaction and schedule other threads to
run on the core. After a while, the original transactional thread will be re-scheduled to
run on either the same or a different core. Traditionally, this is a problem for HTMs
since the transactional thread may face either a damaged or a totally new transaction
context. In our proposed solution, the transactional buffer are shared by all of the
cores and bound to transactional threads instead of cores, so the context switch and
migration of transactional threads can be easily supported.

3 Partition-based hardware transactional memory architecture

3.1 System architecture

Fig.1 shows the architecture of tile-based[2],[12] many-core processors with support of
our proposed hardware transactional memory. The system is composed of three types
of tiles: the first type is tiles of processor cores plus private L1 cache and routing
mechanism; the second is tiles of L2 cache banks; and the third is tiles of transactional
cache (TC). All of the tiles are connected with an on-chip network, and both L2 cache
and transactional cache are shared by all of the processor cores.

Fig. 1. System architecture

The transactional cache is used to buffer the data accessed by transactions specula-
tively, and as shown in Fig.2, its structure is similar to L2 cache and data is also
stored by line. The difference is that the transactional cache holds both old and new
version of data for each line, where the old version is the data that the transaction
started with, and the new version is the current version updated by the transaction
speculatively. Detailed introduction to consistency and conflict detection are given in
section 3.3.

In addition, to support efficient nesting of transactions, the system uses a partial
rollback mechanism which was proposed in our previous works [11]. The mechanism
uses n-bits read and write vector for each line to indicate whether the line has been
read or written speculatively, with each bit in the vector corresponding to one level of
nested transactions. By adding limited hardware, conditional partial rollback can be
implemented, that is, when a transaction needs to roll back due to a conflict, instead
of rolling back to the outermost transaction as in commonly-used flattening model,
the system can just rolls back to the conflicted transaction itself or one of its outer-
level transactions if given conditions are satisfied.

Fig. 2. Structure of transaction cache

In architecture level, transactional cache is in parallel with L2 cache. Commonly a
processor core accesses L2 cache, and once a transaction is started, it switches to
access transactional cache in order to guarantee that all the speculative accessed data
are buffered and not valid until commit of the transaction.

3.2 Partition mechanism

(1) Overview
Partition mechanism is a method to manage hardware resources in multi-/many-

core processors. In our proposed system, partition mechanism is used to establish
multiple logically independent transactional buffers, i.e. partitions, in shared transac-
tional cache, furthermore, to make these transactional buffers dynamically expanda-
ble. In the system, transactional caches are allocated to partitions in partition-unit
(PU) which corresponds to multiple successive lines in the transactional cache. Each
partition corresponds to one transactional thread, and is created with one PU initially
that can expand to multiple successive PUs if it is needed.

Partitions are created only for threads that execute transactions, called transactional
thread. Once a thread executes a transaction at the first time, a partition is created with
only one PU, and along with the increasing of read/write data set of a transaction,
more PUs can be allocated to the partition dynamically if its transactional buffer over-
flows. After the commit of the first transaction, the partition is reserved and used by
subsequent transactions of the thread, and finally released when the thread is finished.

It is noted that the owner of a partition is transactional thread rather than processor
core. The reason is that transactional threads may be suspended during its execution

and scheduled to run in another core after it is waked up later. In other words, migra-
tion of transactional threads can be supported by binding partitions with transactional
threads instead of cores.

(2) Partition access
When a thread starts to execute a transaction, it switches to access its transactional

buffer (i.e. partition) instead of L2 cache. As Fig.3 shows, an associative buffer is
used to store information of partitions including starting address, partition size and
owner thread, with each entry corresponding to one partition. Based on this hardware
infrastructure, the transactional buffer of a thread can be located quickly by means of
the thread ID.

Fig. 3. Structure of transaction cache

(3) Partition management
As mentioned above, a partition starts with one PU and may expand along with the

execution of the transactional thread if excessive data are accessed in a transaction
speculatively, and to simplify the management of partitions, it is limited that all of the
PUs of a partition must be successive in transactional cache. In order to leave spaces
at the end of partitions for potential expansions in the future, it’s better to allocate
partitions dispersedly in transactional cache.

According to above discussions, the system allocates the first partition from the be-
ginning of transactional cache, and subsequent partitions are allocated in the follow-
ing policy: searching for the biggest free area in the transactional cache, and allocat-
ing the PU in the middle of the area to the new partition.

Table.1 shows the addresses that will be allocated to partitions one by one, where B
is the total size of transactional cache in lines, N is the number of processor cores, and
the size of partition unit PU=B/N.

Table 1. Address allocation of partitions

Seq. of creation Start address Initial end address
0 0 PU - 1
1 B/2 B/2 + PU - 1
2 B/4 B/4 + PU - 1
3 3B/4 3B/4 + PU - 1
4 B/8 B/8 + PU - 1
...

A partitioning example is shown in Fig.4. In Fig.4(a), four partitions are created
one by one for transactional thread T0--T3, and T0 has successfully expanded its
partition in 1 PU; in Fig.4(b), thread T0 and T3 finish their execution and partitions
are released, after that, a new partition is created for thread T4.

In additio
created a
cases, the
some lon
cache per
this time,
release th
LRU poli
main mem
partition

3.3 Co

The syste
that is, al
and invis
memory
transactio

(1) Co
When

cache and
sistency.
into trans

To ach
data cach
directory
cache dir
which L1
as shown

Once a
rectory th
ceived by
dependin

on, it is neces
and maintained
ere may be to
ng-running tra
rmanently, so
, a LRU-like (
he partition tha
icy is that, to m
mory as in LR
later, a new p

onsistency an

em uses lazy
ll of the data m
sible to other
access of a t

ons.
onsistency and

a processor c
d L2 cache to
In addition, w

sactional buffe
hieve scalabili
he and transa
. As Fig.5(a)

rectory except
1 cache but als
n in Fig.5(b).
a line of L1 c
hat stores a c
y directory of

ng on the num

B

B

3

0

B

Fig. 4.

ssary to consi
d for transact
oo many tran
ansactional th
the associativ

(Least Recentl
at was not acc
make things s

RU. If the own
artition will b

nd conflict de

data version
modified in a t
r processor c
transaction is

d directory
core starts to

o lower level a
write-through
er.
ity in many-co
actional buffe
 shows, struc

t that the share
so which trans

ache is updat
copy of the up
f transactiona

mber of partiti

B

T0

T0

B T3

T1

T2
3

0

B
(a)

. Partitioning ex

ider some ext
tional threads
nsactional thre
hreads that oc
ve table or tran
ly Used) disca
cessed for the
simple, the par
ner thread of t
be created for i

etection

management
transaction ar

cores until co
checked to i

execute a tra
and main mem
policy is use

ore processors
ers(partitions)
cture of the d
er list in each
sactional buffe

ted, an invalid
updated line. I
al cache, one
ions that store

B/

B/

3

0

B

xample

treme situation
instead of pr

eads in the sy
ccupy large a
nsactional cac
ard policy can
 longest time,
rtition is disca
the discarded
it.

and eager co
re buffered in
ommit of the
identify if the

ansaction, it f
mory in order
d for L1 cach

s, the consiste
is maintaine

directory is th
h entry is exten
fer(partition) s

date message
If such an inv
or more conf

e copy of the

T1

T2

T2

T4

(b

ns. Since part
rocessor cores
ystem, or ther
amount of tran
che may be us
n be used to di
 the differenc

arded instead o
partition re-ac

onflict detectio
the transactio
transaction;

ere is a confli

flushes data in
r to guarantee
he to write dat

ncy among m
d by distribu
he same with
nded to record
tores a copy o

will be sent to
validate mess
flicts will be
line. As the r

b)

rtitions are
s, in some
re may be

ansactional
sed out. At
iscard and

ce with the
of swap to
ccesses its

on policy,
onal buffer

and each
ict among

in L1 data
 data con-
ta directly

multiple L1
uted cache
h ordinary
d not only
of the line,

to each di-
sage is re-

triggered,
result, the

corresponding transactions will abort their execution and roll back. Similarly, there
also is a directory with the same structure in transactional cache. Once a line of trans-
actional buffer is updated, an invalidate message is also sent to other sharers.

(a) cache directory (a) sharer list

Fig. 5. Structure of cache directory

 (2) Conflict Detection
Method to detect conflicts among transactions is: when a processor P reads/writes

address A in a transaction, the cache controller sends a share-/exclusive-request to
transactional cache directory, once the reply is received, it sets status of the transac-
tional cache line to shared or exclusive; meanwhile, if another processor Q accesses
address A too, the request is forwarded to processor P to identify if there is a write-
write or read-write conflict, and consequently, to approve or reject the request.

 Fig.6 shows examples of conflict detection:
(a) Transaction startup: processor P starts a transaction and switches to access

transactional buffer.
(b) Writing data: P writes address A0 which is not in its transactional buffer, firstly

it sends a get-exclusive request to directory, which is approved with the requested
data, then P stores the data to its transactional buffer and sets write-flag, finally it
replies an ACK to directory.

(c) Reading data: P reads address A1 which is not in its transactional buffer, the
procedure is the similar to (b) except that the request is get-shared instead of get-
exclusive.

(d) Transaction conflict: processor Q reads the address A0 which was just written
by P, firstly it sends a get-shared request to directory, which is forwarded to P and
identified as a read-write conflict, then a NACK is sent back to Q; Q deals with the
conflict after receiving the NACK and replies a NACK to directory.

(e) Successful shared reading: processor Q reads the address A1 which was just
read by P, the request is identified as conflict-free and approved.

Fig. 6. Examples of Conflict Detection

… …

which L1 cache
stores a copy of the line

which TM partition
stores a copy of the line

3.4 Execution of Transactions

When a processor core starts to execute a transaction, it flushes data in L1 data cache
and L2 cache to lower level and main memory, and switches to access transactional
buffer instead of L2 cache.

During execution of a transaction, all of the data accessed by the transaction are
buffered temporarily in its transactional buffer(partition). When a data is accessed for
the first time in the transaction, it is loaded to both old and new version of the line in
transactional buffer, subsequent updates to the data are just stored to new version, and
R/W status are set at the same time.

Once the read/write-set of a transaction exceeds the partition size, a transactional
buffer overflow occurs. At this time, the system tries to expand the partition by allo-
cating one more PU in transactional cache. If the successive PU at the end of the par-
tition is free, the partition can be successfully expanded and memory accesses are
continued, otherwise it stalls for a short period of time and tries again. If there is still
no free PU, the expanding operation fails and a global lock is set, the overflowed
transaction continues exclusively without conflict until its commit. Of couse, the per-
formance will be suffered in this situation.

If a transaction needs to roll back in case of conflict, data in transactional buffer are
copied from old to new line by line, at the same time, R/W status are cleared, after
that, all of the lines in L1 data cache are set to invalidate.

When a transaction finishes its execution and commit, all of the updated data in
transactional buffer(partition) are written to main memory.

3.5 ISA extensions and programming interface

As a hardware transactional memory, PM_TM supports transparent execution of
transactions with no restriction on programming languages. Only two instructions are
extended to specify the start and end of a transaction, as shown in Table.2. Program-
mers just need to identify program statements that must be executed atomically in
their applications, and define them as transactions by inserting appropriate API at the
beginning and the end of each transaction.

Table 2. Address allocation of partitions

Instruction Description Programming interface
XB Trans. start BEGIN_TRANSACTION()
XC Trans. end COMMIT_TRANSACTION()

4 Experiments and Evaluation

4.1 Experimental environment

The proposed system is simulated in GEMS[13] and Simics[14], and by extending the
simulator, our partition mechanism and consistency protocol are implemented on
SPARC-architecture processors in the simulator.

We evaluate PM_TM system using Stanford STAMP[15] benchmark, and experi-
mental results are compared with LogTM[5] and a native HTM, called NativeTM, in
which transactional buffers are in L1-level and private to each processor core.

Table 3 summarizes parameters of the simulated target system.

Table 3. Configuration of target system

Processors Ultrasparc-iii-plus, 1GHz
Cache size L1: 64KB L2: 4MB
Size of cache line 64 bytes
Memory 1GB 80-cycle latency
Cache coherence protocol MESI_CMP_filter_directory
Interconnection network Tiled NoC; X-latency:1, Y-latency:2
Transactional cache PM_TM: 1/2/4 MB; NativeTM: 8KB/core
Operation System Solaris 10

The evaluation uses 4 applications that vary in size of read/write data set, length of
transactions and contention degree among transactions, as in Table 4.

Table 4. Applications from STAMP benchmark

Application R/W Set Len. of transactions Contention
intruder medium short high
kmeans small short low
vacation large medium low

bayes large long high

4.2 Results and analysis

(1) Performance
Fig.7 shows average execution time of applications in PM_TM, LogTM and Na-

tiveTM with 4--128 processor cores. Each application is executed with number of
threads equaling to processor cores.

We can see from Fig.7 that PM_TM behaves not very well in less processor cores.
The main reason is that access latency of transactional buffers in PM_TM is longer
than others due to its L2-level location. Along with the increasing of processor cores,
PM_TM achieves better performance than two other systems, since that less transac-
tional buffer overflow occur in PM_TM, and contentions among transactions are also
handled more efficient in PM_TM.

Fig.7 also shows that results of different applications are not quite the same due to
their characteristics. Kmeans has not only less transactions but also small read/write
data set, so there is few transactional buffer overflows during the execution. As the
result, the performance of Kmeans in PM_TM is not improved by the partition mech-
anism, instead, the performance is influenced by the long access latency of transac-
tional buffers. Compared with kmeans, the intruder application has bigger read/write
data set and higher contentions among transaction. So PM_TM achieves better per-
formance along with the increasing of processor cores. Vacation has almost the same
size of read/write data set with intruder, but vacation has some long transactions and
contention in vacation is lower than intruder. Compared to other applications, the

bayes has bigger read/write data set and longer transactions. Contention is also higher
than the others.

(a) kmeans (b) intruder

(c) vacation (d) bayes

Fig. 7. Average execution time of applications

Table 5. Transaction overflows

Application System Transactional
buffer size

Number of processor cores
4 8 16 32 64 128

kmeans

NativeTM 8KB/core 0 0 0 0 0 0

PM_TM
1MB 0 0 3 5 6 8
2MB 0 0 2 3 5 6
4MB 0 0 0 0 2 5

intruder

NativeTM 8KB/core 12 24 48 96 192 384

PM_TM
1MB 0 0 4 8 29 52
2MB 0 0 3 4 9 31
4MB 0 0 0 0 3 7

vacation

NativeTM 8KB/core 19 33 56 131 263 477

PM_TM
1MB 0 6 13 18 45 104
2MB 0 0 7 11 18 47
4MB 0 0 0 5 9 21

bayes

NativeTM 8KB/core 361 733 1307 1891 3249 4811

PM_TM
1MB 173 267 661 1081 2033 4795
2MB 30 181 277 649 1213 2258
4MB 0 24 190 307 636 1309

(2) Transactional buffer overflows
Table 5 gives transaction overflow statistics of applications in NativeTM and

PM_TM. LogTM is not included in this table because transactional data of LogTM is
stored in the memory directly. From the table we can see that most applications over-
flow less in PM_TM than in NativeTM except kmeans, which has not only less trans-
actions but also small read/write data set. Furthermore, with the increasing of L2-level
transactional cache, the overflow times reduce significantly. As discussed in section
2.2, from the implementation point of view, it is easier to integrate much bigger L2-
level transactional buffer into processors than L1-level buffer.

 (3) Conflict and rollback
Fig.8 shows transaction rollbacks of applications. LogTM uses bloom filter[16] to

store transaction read/write data set, that may produce false-conflicts, and further-
more, the cost of abort in LogTM is much higher due to its eager version manage-
ment. Compared to LogTM, PM_TM uses bit-set to record data set of transactions so
that there is no false-conflict in it. And due to this reason, the number of conflicts in
NativeTM is the same with PM_TM, and omitted in the figure.

(a) kmeans (b) intruder

(c) vacation (d) bayes

Fig. 8. Transaction rollbacks

In kmeans, transactions are small and shared data among transactions are few, so
frequency of conflict is much lower than other programs. Transactions in intruder are
slightly larger than kmeans, but frequency of conflict is much higher. Although vaca-
tion has some large transactions, competition between transactions in vacation is low-

er than intruder. As for bayes, PM_TM system is much better than LogTM in rollback
test. Bayes has the largest R/W set among the four programs, so overflow times of
bayes is the most.

5 Related Works

Transactional memory was firstly proposed in [1], since then, lots of hardware trans-
actional memory (HTM) systems have been proposed that support atomicity of trans-
actions by hardware, and achieves high performance. On the other hand, HTMs are
often bounded by space and time constraints, i.e. transactional buffer overflow and
transaction migration.

Some solutions have been proposed to deal with transactional buffer overflow. The
simplest solution is partial-commit or in-place commit which uses a global lock or
things like that to prevent other transactions to commit, until commit of the over-
flowed transaction [2],[7],[8]. Beside partial-committing, some solutions deal with over-
flows by co-working between transactional buffer and memory[5],[6]; some solutions
support unbounded transactions by means of complex hardware mechanism[4],[10];
hybrid transactional memory[9] has also been proposed, which integrates both hard-
ware and software transactional memory, and switches to software mode in case of
buffer overflow.

TM systems for many-core processors have also been proposed. TM2C[17] is a
software TM system which provides two services: the application service and the
Distributed TM service. The former connects transaction with the application and
controls the transactional runtime. The latter grants a data access to the requesting
transactions through distributed locking. The main contribution of TM2C lies in guar-
anteeing starvation-freedom with low overhead.

LogTM[5] is a log-based HTM system. It saves old values in a log and puts new
values in target address. When transaction commits, values in target address become
visible and log is abandoned directly. This will accelerate the process of transaction
committing. When rollback occurs, it simply copies old values in the Log to the target
address. LogTM uses directory-based Cache consistency protocol to guarantee data
consistency and eager conflict detection to find conflict between transactions.

6 Conclusion

Transactional memory is an appealing technology to improve programmability of
multi-core and many-core processors. However, most of current hardware transac-
tional memory systems are proposed for multi-core processors, and may face some
challenges with the increasing of processor cores in many-core systems: firstly, utili-
zation of transactional buffers are inefficient since those buffers are private to proces-
sor cores while generally only part of cores execute transactions simultaneously in
many-core processors; secondly, the on-going challenge of transactional buffer over-
flow for HTMs is still unsolved.

This paper proposes an architecture of hardware transactional memory for many-
core processors, called PM_TM. The main idea consists of two points: firstly, turns

private transactional buffer into shared by moving them from L1-level to L2-level;
secondly, uses partition mechanism to provide logically independent and dynamically
expandable transactional buffers to transactional threads, and furthermore, to isolate
access-interferences among large number of processor cores. As the result, the system
can utilize transactional buffers more efficient and moderates the problem of transac-
tional buffer overflow in many-core processors. The system is simulated and evaluat-
ed using gems and simics simulator with STAMP benchmarks. Evaluation results
show that the system achieves better performance and scalability than traditional solu-
tions in many-core processors.

7 Acknowledgements

This work was supported by National Science Foundation of China under grant No.
61073011, 61133004, and National Hi-tech R&D program(863 program) under grant
No. 2012AA01A302.

8 References

1. Maurice Herlihy, J.Eliot B.Moss, Transactional Memory Architectural Support for Lock-
Free Data Structure, 20th International Symposium on Computer Architecture, IEEE,
1993, 289-300.

2. Thomas Moscibroda and Onur Mutlu, A Case for Bufferless Routing in On-Chip Net-
works, 36th International Symposium on Computer Architecture, IEEE, 2009. 196-207

3. Lance Hammond, Vicky Wong, Mike Chen, et.al, Transactional Memory Coherence and
Consistency, 31th International Symposium on Computer Architecture (ISCA2004), IEEE
CS Press, 2004. pp. 53-65

4. C. Scott Ananian, Krste Asanovic and Bradley C. Kuszmaul, et.al, Unbounded Transac-
tional Memory, 11th International Symposium on High-Performance Computer Architec-
ture (HPCA2005), IEEE CS Press, 2005. pp. 316-327

5. Moore Kevin E, Bobba Jayaram, and Moravan Michelle J, et.al, LogTM: log-based trans-
actional memory, 12th International Symposium on High-Performance Computer Archi-
tecture (HPCA2006), IEEE CS Press, 2006. pp. 258-269

6. Luis Ceze, James Tuck, et al. Bulk Disambiguation of Speculative Threads in Multiproces-
sors, 33rd International Symposium on Computer Architecture, 2006, 227-238.

7. Arrvindh Shriraman, Michael F. Spear, et al. An Integrated Hardware-Software Approach
to Flexible Transactional Memory, 34th Annual International Symposium on Computer
Architecture, ACM, 2007, pp. 104-115.

8. Arrvindh Shriraman, Sandhya Dwarkadas, Michael L.Scott, Flexible Decoupled Transac-
tional Memory Support, 35th International Symposium on Computer Architecture, IEEE &
ACM, 2008, pp. 139-150.

9. Sanjeev Kumar, Michael Chu, Christopher J. Hughes, et.al, Hybrid Transactional Memory,
11th ACM SIGPLAN symposium on Principles and practice of parallel programming,
ACM Press, 2006. pp. 209-220

10. Ravi Rajwar, Maurice Herlihy and Konrad Lai, Virtualizing Transactional Memory, 32th
International Symposium on Computer Architecture, IEEE CS Press, 2005. pp. 495-505.

11. Yi Liu, Yangming Su, Cui Zhang, et.al. Efficient Transaction Nesting in Hardware Trans-
actional Memory, 23rd International Conference on Architecture of Computing Systems
(ARCS), Germany, Feb 2010.

12. Michael Bedford Taylor, Walter Lee, Jason Miller, et.al, Evaluation of the raw micropro-
cessor: An exposed-wire-delay architecture for ILP and streams, 31st Annual International
Symposium on Computer Architecture, 2004. pp. 2-13

13. Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, et.al, Multifacet’s General
Execution-driven Multiprocessor Simulator (GEMS) Toolset, SIGARCH computer Archi-
tecture News, Nov. 2005. pp. 92-99

14. Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, et.al, Simics: A full system
simulation platform, IEEE Computer Society, Feb. 2002, 35(2):50-58

15. Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis,et al., STAMP: Stanford Transac-
tional Applications for Multi-Processing, 2008 IEEE International Symposium on Work-
load Characterization, IEEE CS Press, 2008. pp. 35-46

16. Burton H. Bloom, Space/time trade-offs in hash coding with allowable errors, Communi-
cations of the ACM, 1970, pp. 422-426.

17. Vincent Gramoli, Rachid Guerraoui, Vasileios Trigonakis, TM2C: a Software Transac-
tional Memory for Many-Cores, ACM European Conference on Computer Systems (Eu-
roSys2012), 2012, pp. 351-364.

