
HAL Id: hal-01513753
https://hal.inria.fr/hal-01513753

Submitted on 25 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

FRESA: A Frequency-Sensitive Sampling-Based
Approach for Data Race Detection

Neng Huang, Zhiyuan Shao, Hai Jin

To cite this version:
Neng Huang, Zhiyuan Shao, Hai Jin. FRESA: A Frequency-Sensitive Sampling-Based Approach for
Data Race Detection. 10th International Conference on Network and Parallel Computing (NPC), Sep
2013, Guiyang, China. pp.49-60, �10.1007/978-3-642-40820-5_5�. �hal-01513753�

https://hal.inria.fr/hal-01513753
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

FRESA: A Frequency-sensitive Sampling-based
Approach for Data Race Detection

Neng Huang, Zhiyuan Shao, and Hai Jin

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

{nenghuang,zyshao,hjin}@hust.edu.cn

Abstract. Concurrent programs are difficult to debug due to the in-
herent concurrence and indeterminism. One of the problems is race con-
ditions. Previous work on dynamic race detection includes fast but im-
precise methods that report false alarms, and slow but precise ones that
never report false alarms. Some researchers have combined these two
methods. However, the overhead is still massive. This paper exploits the
insight that full record on detector is unnecessary in most cases. Even
prior sampling method has something to do to reduce overhead with pre-
cision guaranteed. That is, we can use a frequency-sensitive sampling ap-
proach. With our model on sampling dispatch, we can drop most unnec-
essary detection overhead. Experiment results on DaCapo benchmarks
show that our heuristic sampling race detector is performance-faster and
overhead-lower than traditional race detectors with no loss in precision,
while never reporting false alarms.

Keywords: Concurrency, Data Race, Sampling, Bug Detection

1 Introduction

Multithreading is getting more and more popular in today’s software. In other
words, software must become more parallel to exploit hardware trends, which
are increasing the number of processors on each chip. Unfortunately, correc-
t and scalable multithread programming is quite difficult. The instructions in
different threads can be interleaved randomly. A data race occurs when two dif-
ferent threads access the same memory location without an ordering constraint
enforced between the accesses, and at least one of the accesses is a write [18].
Data races are not necessary errors in and of themselves, but they indicate a
variety of serious concurrency errors that are difficult to reproduce and debug
such as atomicity violations [13], order violations [12], and sequential consisten-
cy violations [14]. As some races occur only under certain inputs, environments,
or thread schedules, deploying low-overhead and precise-coverage race detection
tool is necessary to achieve highly robust deployed software.

There has been much effort to develop automatic tools for detecting data
races. Ultimately, the detection techniques are broadly categorized according to

the time they are applied to the program: static and dynamic. Static techniques
[11,17,21,22,24,29] provide maximum coverage by reasoning about data races on
all execution paths. However, they tend to make conservative assumptions that
lead to a large number of false data races alarm. On the other hand, dynamic
techniques [6, 7, 10, 20, 26, 30, 31] are more precise than static tools, but their
coverage is limited to the paths and thread interleaving explored at runtime. In
practice, the coverage of dynamic tools can be increased by running more tests.

Most dynamic data race detectors are not widely used due to their runtime
overhead. Data race detectors like RaceTrack [30] incurs about 2x to 3x slow-
down and Intel’s Thread Checker [23] takes performance overhead on the order
of 200x. Such large performance overhead leads to the lack of data race detec-
tors used in practice. The main reason for this very large performance overhead
is each memory operation executed by the program needs to be recorded and
analyzed. LiteRace [15] uses sampling to reduce the runtime overhead of data
race detector. It presents a sampling algorithm which based on the cold-region
hypothesis that data races are likely to occur when a thread is executing a “cold”
(infrequently accessed) region in the program. PACER [3] shows a “get what
you pay for” approach that provides scalable performance and scalable odds of
finding any race. It provides a qualitative improvement over prior approaches.

This paper presents a frequency-sensitive sampling-based approach called
FRESA. FRESA makes a precise and coverage guarantee: no matter what sam-
pling methods you used, it learns and updates its sampling strategy intelligently.
In other words, “get what you want but pay for less”.

FRESA collects and organizes historical sampling results for the next sam-
pling. In order to make the sampler more effective, it owns a finding density
table in each schedule path. Compared with previous table, FRESA computes
and creates a sampling probability interval, which helps making a more appro-
priate proportional sampling rate.

The rest of the paper is organized as follows: section 2 introduces our moti-
vation and section 3 describes our algorithm. In section 4, we show our exper-
imental results and performance. We list some related work in section 5. Then
we conclude our current work and future work in section 6.

2 Motivation

We motivate our work by a common program shown below.

public class Test{
int test1,test2,test3;
void func1(int x){

test1 += x;
}
void func2(int x){

test2 += x;
}

void func3(int x){
test3 += x;

}
}

public class TestTest{
Test test = new Test();
Thread t1 = new Thread(){ //thread t1

public void run(){
for(int i = 0; i < 10000; i++)

test.func1(1);
test.func2(1);
test.func3(1);
}

}
Thread t2 = new Thread(){ //thread t2

public void run(){
test.func1(1);
for(int i = 0; i < 100; i++)

test.func2(1);
test.func3(1);
}

}
Thread t3 = new Thread(){ //thread t3

public void run(){
test.func1(1);
test.func2(1);
test.func3(1);
}

}

public static void main(){
t1.start();
t2.start();
t3.start();
t1.join();
t2.join();
t3.join();

}
}

In the program the shared memory test1, test2, test3 are accessed 10002,
102, 3 times respectively, which shows an asymmetrically accessed distribution
by thread1, thread2 and thread3. The asymmetry like the above program is quite
common in real applications.

0 50 100 150 200
0

20

40

60

A
cc

es
s

Fr
eq

ue
nc

y

Memory Loacation

Fig. 1. A random selected 200 sequential accesses in DaCapo eclipse.

We have an instrumentation in DaCapo eclipse. Figure 1 lists a random
selected 200 sequential accesses frequency. Access frequency imbalance is quite
obviously as shown. Previous race detection methods based on sampling never
take it into account. Obviously, quite a lot overhead could be reduced through
asymmetrical sampling rate.

3 FRESA Algorithm

In order to leverage the asymmetry. This section presents our FRESA algorithm.
FRESA is a dynamic data race detection sampling method based on happen-
before relationship, which uses a frequency statistics for the next time’s sampling
based on asymmetrical access information.

FRESA starts at a user-given sampling rate r0 for every shared memory in
sampling areas. It collects shared memory access frequency at run time. With the
program execution, different shared memory’s access frequency appears different.
FRESA groups all the memories into different groups by considering their access
frequencies. As more and more different memories grouped, each group can have
a unique sampling rate based on user-given sampling rate. FRESA believes that
the more frequently the shared memory accessed, the lower proportion the shared
memory could have a data race. Since data races that occur in frequently accessed
memory of well-tested programs either have already been found or fixed.

3.1 Frequency Statistics

FRESA collects the frequency of a memory location accessed, with the aim
of grouping the memory of similar access frequency into the same group. By

this means, different memories can be partitioned into different groups. FRESA
assigns different sampling rates to different groups.

FRESA uses a hashtable to maintain variables access frequency information.
We define the memory location x in hashtable as a tuple (siteId, frequencyNum).
siteId refers to the call site at which x is allocated and frequencyNum stands
for the access frequency of x. We update the hashtable after every access using
the algorithm below.

Algorithm 1 Hashtable Update Algorithm

1: if hashtable.get(siteId)!=NULL then
2: frequencyNum()++
3: else
4: hashtable.put(siteId,1)
5: end if

With the program execution, the hashtable updates at run time. Assume
we get a hash map contains n different accesses x1, x2, x3 . . .xn and with the
relevant access frequencies f1, f2, f3 . . . fn. In a general way, we first simply
divide our n tuples into 5 groups.For an empirical practice, we set four group
frequency threshold as g1 = 20, g2 = 50, g3=100, g4 = 200. For each (xi,fi), we
dispatch it into a group in the following formula:

(xi, fi) ∈

G1 fi ≤ g1
G2 g1 < fi ≤ g2
G3 g2 < fi ≤ g3
G4 g3 < fi ≤ g4
G5 fi > g4

(1)

We only list a simple piecewise function above. The group threshold can be
different in practice due to the different frequency distribution.

3.2 Adaptive Sampling

FRESA does the same thing as PACER either in sampling periods or non-
sampling periods. During sampling periods, FRESA fully tracks the happen-
before relationship on all synchronization operations, and variable reads and
writes, using FASTTRACK algorithm. In non-sampling periods, FRESA also
reduces the space and time overheads of race detection by simplifying analysis
on synchronization operations and variable reads and writes. However, FRESA
adaptively changes its sampling rate using variable access frequency information.
As for one access x, sampling rate r is decided by variable group classification
as the following formula:

rxi = F (gj |r0) xi ∈ gj (2)

where rxi
indicates the proper sampling rate for access xi. F (gj |r0) defines the

sampling rate for group gj .
In our experiment, we use an exponential decline equation rxi = r0/2

j xi ∈ gj
(j = 1, 2, 3, 4) in our example.

3.3 Theoretical Accuracy and Slowdown

Table 1 summarizes the effect of FASTTRACK, PACER and FRESA have on
(1) the detection rate for any race and (2) program performance for sampling
rate r and data race occurrence rate o.

Table 1. Theoretical accuracy and slowdown

Det. race Slowdown

FASTTRACK o crw+csyncn
PACER o× r csampling(crw + csyncn)r + cnonsampling

FRESA
∑m

i=1 oi × ri
∑g

i=1 csampling(c
′
rw + csyncn)ri + cnonsampling

Constant crw is the slowdown due to analysis at reads and writes, and csyncn
is the linear slowdown in the number of threads n due to analysis at synchroniza-
tion operations. PACER essentially scales FASTTRACK’s overhead by r, as
well as a small constant factor csampling due to PACER’s additional complexity
(e.g., indirect metadata lookups). PACER adds a slowdown cnon-sampling during
non-sampling periods, which is small and near-constant in practice. In FRESA,
constant c

′

rw is a little bigger than that in PACER as shared memory’s access
frequency information update.

4 Performance Evaluation

4.1 Implementation

FRESA is implemented in Jikes RVM 3.1.01, a high-performance Java-in-Java
virtual machine [1]. FRESA is built on PACER’s source code2. We execute all
experiments on a Pentium Dual-Core CPU E5300 @2.6 GHz system with 2 GB
main memory running openSUSE Linux 3.4.6-2.10. We used the multithreaded
DaCapo benchmarks [2] (eclipse, hsqldb, and xalan; versions 2006-10-MR1). The
range of sampling rates we use in our experiments is [0.000625, 1], and we set the
minimum user given sampling rate rmin = 0.01. As data races occur infrequently
and sampling decreases the probability of observing a race, we do many trials
to evaluate accuracy.

1 http://dacapo.anu.edu.au/regression/perf/2006-10-MR2.html
2 http://www.jikesrvm.org/Research+Archive

4.2 Effectiveness of Data Race Detection

Figure 2(a) and 2(b) show FRESA’s detection rate versus sampling rate for each
benchmark. Figure 2(a) counts the average number of dynamic evaluation races
per run that FRESA detects. A race’s detection rate is the ratio of (1) average
dynamic races per run at sampling rate r to (2) average dynamic races per run
with r = 100%. Each point is the average of all evaluation races’ detection rates.
The plot shows that FRESA reports races at a somewhat better rate than the
sampling rate. However, this may have some different observations in different
executions.

1% 10% 100%

1%

10%

100%

D
et

ec
tio

n
R

at
e

Target Sampling Rate

 eclipse
 xalan
 hsqldb

(a) FRESA’s accuracy on dynamic races.

1% 10% 100%

1%

10%

100%

D
et

ec
tio

n
R

at
e

Target Sampling Rate

 eclipse
 xalan
 hsqldb

(b) FRESA’s accuracy on distinct races.

Fig. 2. FRESA’s accuracy on dynamic and distinct races.

Figure 2(b) shows the detection rate for distinct races. If a static race occurs
multiple times in one trial, this plot counts it only once. The detection rate
is much higher because FRESA’s main concept of memory access frequency-
sensitive, which means infrequent accesses have more sampling cost.

4.3 Time and Space Overheads

Time overhead. Figures 3 shows the slowdown incurred by FRESA on each
benchmark for r ranging over [0, 100%]. The graphs show that FRESA has
overheads that scale roughly linearly with the target sampling rate, although
the slowdown factors on different benchmarks vary a lot. The slowdown factor
in this experiment includes the execution time of the program, the overhead
incurred by the JikesRVM platform, the overhead incurred by dynamic memory
access and synchronization instrumentation and the overhead incurred by the
sampling algorithms. FRESA incurs slowdowns by a factor less than 3x on three
benchmarks (eclipse, hsqldb, xalan) at a target sampling rate of 1%, and can
detect races with a relatively higher probability (80%) than PACER. When
working at a target sampling rate of 100%, FRESA has no sampling effort and
is functionally equivalent to FASTTRACK[21]. In this scenario, FRESA slows

0% 20% 40% 60% 80% 100%

0

5

10

15

20

S
lo

w
do

w
n

Fa
ct

or

Target Sampling Rate

FRESA eclipse PACER eclipse
 xalan xalan
 hsqldb hsqldb

Fig. 3. Slowdown vs. sampling rates

down the three programs by a factor of 10x on average, compared with 8x by
FASTTRACK and 12x by PACER. Though FRESA uses hashtable leading to
little more access time, it still incurs less time overhead than PACER due to the
saving of sampling cost.

Space overhead. Figure 4 shows the maximum live memory space overhead
incurred by FRESA with various FRESA configurations. The measurement in-
cludes application, VM, PACER, and FRESA memory. For each target sampling
rate shown, we take the mean overhead over all executions. Base shows the max
memory used by eclipse running on unmodified Jikes RVM. OM only adds two
words per object and a few percent all-the-time overhead. The other configura-
tions (except LITERACE) are PACER and FRESA at various sampling rates.
At a sampling rate of 100%, FRESA takes no differences as PACER. At other
sampling rates, FRESA uses significantly less memory than PACER. The result
shows that FRESA can scale well with the sampling rate in terms of memory
space used, and with a low sampling rate of r = 1%, its space overhead appears
to be very low.

5 Related Work

A large part of researches [4–11,16, 17, 19–22,24–31] focus on dynamic or static
race detection. Dynamic race detection techniques are either based on lockset or
on happen-before or hybrid of them. Lockset based dynamic techniques could
predict data races that does not happen in a concurrent execution which leads to
report many false warnings. Happen-before based techniques detect races that

r =
 1%

r =
 1%

r =
 5%

r =
 5%

r =
 25

%

r =
 25

%

r =
 10

0%

r =
 10

0%

Lit
eR

ac
e

Bas
e

OM on
ly

0

200

400

600 FRESA
 PACER

M
ax

 L
iv

e
M

em
or

y
(M

B
)

Fig. 4. Max live memory for eclipse

actually happen in an execution. Therefore, these techniques lack of good cov-
erage though precise. On the other hand, happens-before based race detectors
cannot predict races that could happen on a different schedule or they cannot
create a schedule that could reveal a real race. In practice, the coverage can
be increased by running more tests. Recently happens-before race detection has
been successfully extended to classify harmful races with sampling. Hybrid tech-
niques combine lockset with happens-before to make dynamic race detection
both precise and predictive. But these techniques also report many false warn-
ings. Static race detection techniques provide maximum coverage by reasoning
about data races on all execution paths. However, they tend to make conservative
assumptions that lead to a large number of false data races.

In general, the traditional methods using vector clocks takes O(n) time and
space overhead, n is the number of threads. The FASTTRACK algorithm re-
places most O(n) analysis with O(1) analysis with precise guaranteed. However,
these methods still incurs significant overhead.

A novel approach that explores the above tradeoff is sampling. LITERACE
uses a sampling dispatch to decide whether to sample synchronization events only
or together with all memory access of a function. On the other hand, PACER
uses a more effective sampling strategy. It divides an execution into a scenario of
sampling or non-sampling periods. PACER can detect race in a magic shortest
data race way and with a probability of r. This significantly reduces the slowdown
overheads.

A common limitation of the above techniques is that although existing pre-
cise sampling-based data race detectors such as PACER and LITERACE can
effectively reduce overheads so that lightweight precise race detection can be

performed efficiently in testing or post-deployment environments, they are inef-
fective in detecting races with much unnecessary repeated sampling cost. Our
insight is that along an execution trace, a program may sample some race-
infrequently variable in high sampling rate. These unnecessary sampling cost
potentially indicate a saving cost degree in a sampling region. Intuitively, they
may perform redundant memory access sampling, which lowers the chance of
detecting rare data races and costs more unnecessary sampling overhead.

Recently, a couple of random testing techniques for concurrent programs
have been proposed. These techniques randomly seed a program under test at
shared memory accesses and synchronization events. Although these techniques
have successfully detected bugs in many programs, they have two limitations.
These techniques are not systematic or reproducible. Many researchers look for
effective sampling method to solve this problem.

6 Conclusions and Future Work

Data race is a common problem in multithreaded program. It often indicates
serious concurrency errors which are easy to introduce but difficult to repro-
duce, discover, and fix. Prior approaches reduce overhead by sampling. But they
waste too many cost on repeated checking which can be omitted or reduced.
In other words, frequency statistical sampling strategy could be more effective
with detection precise guaranteed. This paper presents a data race detection
method that provides a detection rate for each memory location that has inverse
relationship with access frequency, and adds less time and a little more space
overheads than PACER. FRESA achieves a qualitative improvement over prior
work: its access frequency based sampling strategy suits more comfortable for
performance and accuracy sensitive program, which makes it more suitable for
all-the-time use in a variety of deployed environments. Our future work should
simplify happen-before relationship and optimize the instrumentation with a
lower cost level. In addition, we could generalize the approach to deal with d-
ifferent types of bugs caused by frequently access and develop new methods to
further refine the approach.

7 Acknowledgements

Thanks to the anonymous reviewers for feedback on this work. This work is sup-
ported in part by the National High-tech R&D Program of China (863 Program)
under grant No.2012AA010905.

References

1. Alpern, B., Attanasio, C.R., Cocchi, A., Lieber, D., Smith, S., Ngo, T., Barton,
J.J., Hummel, S.F., Sheperd, J.C., Mergen, M.: Implementing jalapeño in java. In:
Proceedings of the 14th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications. pp. 314–324. ACM (1999)

2. Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M.,
Hosking, A., Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D.,
VanDrunen, T., von Dincklage, D., Wiedermann, B.: The dacapo benchmarks: Ja-
va benchmarking development and analysis. In: Proceedings of the 21st annual
ACM SIGPLAN conference on Object-oriented programming systems, languages,
and applications. pp. 169–190. ACM (2006)

3. Bond, M.D., Coons, K.E., McKinley, K.S.: Pacer: proportional detection of data
races. In: Proceedings of the 2010 ACM SIGPLAN conference on Programming
language design and implementation. pp. 255–268. ACM (2010)

4. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Pre-
venting data races and deadlocks. SIGPLAN Not. 37(11), 211–230 (2002)

5. Christiaens, M., De Bosschere, K.: Trade, a topological approach to on-the-fly race
detection in java programs. In: Proceedings of the 2001 Symposium on Java TM
Virtual Machine Research and Technology Symposium. vol. 1, pp. 15–15. USENIX
Association (2001)

6. Dinning, A., Schonberg, E.: Detecting access anomalies in programs with criti-
cal sections. In: Proceedings of the 1991 ACM/ONR workshop on Parallel and
distributed debugging. pp. 85–96. ACM (1991)

7. Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: a race and transaction-aware java
runtime. In: Proceedings of the 2007 ACM SIGPLAN conference on Programming
language design and implementation. pp. 245–255. ACM (2007)

8. Engler, D., Ashcraft, K.: Racerx: effective, static detection of race conditions and
deadlocks. SIGOPS Oper. Syst. Rev. 37(5), 237–252 (2003)

9. Flanagan, C., Freund, S.N.: Type-based race detection for java. ACM SIGPLAN
Notices 35(5), 219–232 (2000)

10. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection.
In: Proceedings of the 2009 ACM SIGPLAN conference on Programming language
design and implementation. pp. 121–133. ACM (2009)

11. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference.
In: Proceedings of the ACM SIGPLAN 2004 conference on Programming language
design and implementation. pp. 1–13. ACM (2004)

12. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive s-
tudy on real world concurrency bug characteristics. In: Proceedings of the 13th
international conference on Architectural support for programming languages and
operating systems. pp. 329–339. ACM (2008)

13. Lu, S., Tucek, J., Qin, F., Zhou, Y.: Avio: detecting atomicity violations via access
interleaving invariants. In: Proceedings of the 12th international conference on
Architectural support for programming languages and operating systems. pp. 37–
48. ACM (2006)

14. Manson, J., Pugh, W., Adve, S.V.: The java memory model. In: Proceedings of
the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages. pp. 378–391. ACM (2005)

15. Marino, D., Musuvathi, M., Narayanasamy, S.: Literace: effective sampling for
lightweight data-race detection. In: Proceedings of the 2009 ACM SIGPLAN con-
ference on Programming language design and implementation. pp. 134–143. ACM
(2009)

16. Min, S.L., Choi, J.D.: An efficient cache-based access anomaly detection scheme.
In: Proceedings of the fourth international conference on Architectural support for
programming languages and operating systems. pp. 235–244. ACM (1991)

17. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for java. In: Pro-
ceedings of the twentieth ACM symposium on Operating systems principles. pp.
308–319. ACM (2006)

18. Netzer, R.H., Miller, B.P.: What are race conditions?: Some issues and formaliza-
tions. ACM Lett. Program. Lang. Syst. 1, 74–88 (1992)

19. O’Callahan, R., Choi, J.D.: Hybrid dynamic data race detection. ACM Lett. Pro-
gram. Lang. Syst. 38(10), 167–178 (2003)

20. Pozniansky, E., Schuster, A.: Efficient on-the-fly data race detection in multithread-
ed c++ programs. In: Proceedings of the ninth ACM SIGPLAN symposium on
Principles and practice of parallel programming. pp. 179–190. ACM (2003)

21. Pratikakis, P., Foster, J.S., Hicks, M.: Locksmith: context-sensitive correlation
analysis for race detection. In: Proceedings of the 2006 ACM SIGPLAN conference
on Programming language design and implementation. pp. 320–331. ACM (2006)

22. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. In: Proceedings of the ACM
SIGPLAN 2004 conference on Programming language design and implementation.
pp. 14–24. ACM (2004)

23. Sack, P., Bliss, B.E., Ma, Z., Petersen, P., Torrellas, J.: Accurate and efficient
filtering for the intel thread checker race detector. In: Proceedings of the 1st work-
shop on Architectural and system support for improving software dependability.
pp. 34–41. ACM (2006)

24. Sasturkar, A., Agarwal, R., Wang, L., Stoller, S.D.: Automated type-based anal-
ysis of data races and atomicity. In: Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming. pp. 83–94. ACM
(2005)

25. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A dy-
namic data race detector for multithreaded programs. ACM Trans. Comput. Syst.
15(4), 391–411 (1997)

26. Schonberg, E.: On-the-fly detection of access anomalies. SIGPLAN Not. 39(4)
(1989)

27. Sterling, N.: Warlock: A static data race analysis tool. In: USENIX Winter. pp.
97–106 (1993)

28. Von Praun, C., Gross, T.R.: Object race detection. In: Proceedings of the 16th
ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications. vol. 36, pp. 70–82. ACM (2001)

29. Voung, J.W., Jhala, R., Lerner, S.: Relay: static race detection on millions of lines
of code. In: Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering. pp. 205–214. ACM (2007)

30. Yu, Y., Rodeheffer, T., Chen, W.: Racetrack: efficient detection of data race con-
ditions via adaptive tracking. In: Proceedings of the twentieth ACM symposium
on Operating systems principles. pp. 221–234. ACM (2005)

31. Zhai, K., Xu, B., Chan, W., Tse, T.: Carisma: a context-sensitive approach to race-
condition sample-instance selection for multithreaded applications. In: Proceedings
of the 2012 International Symposium on Software Testing and Analysis. pp. 221–
231. ACM (2012)

