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Abstract. Concurrent programs are difficult to debug due to the in-
herent concurrence and indeterminism. One of the problems is race con-
ditions. Previous work on dynamic race detection includes fast but im-
precise methods that report false alarms, and slow but precise ones that
never report false alarms. Some researchers have combined these two
methods. However, the overhead is still massive. This paper exploits the
insight that full record on detector is unnecessary in most cases. Even
prior sampling method has something to do to reduce overhead with pre-
cision guaranteed. That is, we can use a frequency-sensitive sampling ap-
proach. With our model on sampling dispatch, we can drop most unnec-
essary detection overhead. Experiment results on DaCapo benchmarks
show that our heuristic sampling race detector is performance-faster and
overhead-lower than traditional race detectors with no loss in precision,
while never reporting false alarms.
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1 Introduction

Multithreading is getting more and more popular in today’s software. In other
words, software must become more parallel to exploit hardware trends, which
are increasing the number of processors on each chip. Unfortunately, correc-
t and scalable multithread programming is quite difficult. The instructions in
different threads can be interleaved randomly. A data race occurs when two dif-
ferent threads access the same memory location without an ordering constraint
enforced between the accesses, and at least one of the accesses is a write [18].
Data races are not necessary errors in and of themselves, but they indicate a
variety of serious concurrency errors that are difficult to reproduce and debug
such as atomicity violations [13], order violations [12], and sequential consisten-
cy violations [14]. As some races occur only under certain inputs, environments,
or thread schedules, deploying low-overhead and precise-coverage race detection
tool is necessary to achieve highly robust deployed software.

There has been much effort to develop automatic tools for detecting data
races. Ultimately, the detection techniques are broadly categorized according to



the time they are applied to the program: static and dynamic. Static techniques
[11,17,21,22,24,29] provide maximum coverage by reasoning about data races on
all execution paths. However, they tend to make conservative assumptions that
lead to a large number of false data races alarm. On the other hand, dynamic
techniques [6, 7, 10, 20, 26, 30, 31] are more precise than static tools, but their
coverage is limited to the paths and thread interleaving explored at runtime. In
practice, the coverage of dynamic tools can be increased by running more tests.

Most dynamic data race detectors are not widely used due to their runtime
overhead. Data race detectors like RaceTrack [30] incurs about 2x to 3x slow-
down and Intel’s Thread Checker [23] takes performance overhead on the order
of 200x. Such large performance overhead leads to the lack of data race detec-
tors used in practice. The main reason for this very large performance overhead
is each memory operation executed by the program needs to be recorded and
analyzed. LiteRace [15] uses sampling to reduce the runtime overhead of data
race detector. It presents a sampling algorithm which based on the cold-region
hypothesis that data races are likely to occur when a thread is executing a “cold”
(infrequently accessed) region in the program. PACER [3] shows a “get what
you pay for” approach that provides scalable performance and scalable odds of
finding any race. It provides a qualitative improvement over prior approaches.

This paper presents a frequency-sensitive sampling-based approach called
FRESA. FRESA makes a precise and coverage guarantee: no matter what sam-
pling methods you used, it learns and updates its sampling strategy intelligently.
In other words, “get what you want but pay for less”.

FRESA collects and organizes historical sampling results for the next sam-
pling. In order to make the sampler more effective, it owns a finding density
table in each schedule path. Compared with previous table, FRESA computes
and creates a sampling probability interval, which helps making a more appro-
priate proportional sampling rate.

The rest of the paper is organized as follows: section 2 introduces our moti-
vation and section 3 describes our algorithm. In section 4, we show our exper-
imental results and performance. We list some related work in section 5. Then
we conclude our current work and future work in section 6.

2 Motivation

We motivate our work by a common program shown below.

public class Test{
int test1,test2,test3;
void func1(int x){

test1 += x;
}
void func2(int x){

test2 += x;
}



void func3(int x){
test3 += x;

}
}

public class TestTest{
Test test = new Test();
Thread t1 = new Thread(){ //thread t1

public void run(){
for(int i = 0; i < 10000; i++)

test.func1(1);
test.func2(1);
test.func3(1);
}

}
Thread t2 = new Thread(){ //thread t2

public void run(){
test.func1(1);
for(int i = 0; i < 100; i++)

test.func2(1);
test.func3(1);
}

}
Thread t3 = new Thread(){ //thread t3

public void run(){
test.func1(1);
test.func2(1);
test.func3(1);
}

}

public static void main(){
t1.start();
t2.start();
t3.start();
t1.join();
t2.join();
t3.join();

}
}

In the program the shared memory test1, test2, test3 are accessed 10002,
102, 3 times respectively, which shows an asymmetrically accessed distribution
by thread1, thread2 and thread3. The asymmetry like the above program is quite
common in real applications.
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Fig. 1. A random selected 200 sequential accesses in DaCapo eclipse.

We have an instrumentation in DaCapo eclipse. Figure 1 lists a random
selected 200 sequential accesses frequency. Access frequency imbalance is quite
obviously as shown. Previous race detection methods based on sampling never
take it into account. Obviously, quite a lot overhead could be reduced through
asymmetrical sampling rate.

3 FRESA Algorithm

In order to leverage the asymmetry. This section presents our FRESA algorithm.
FRESA is a dynamic data race detection sampling method based on happen-
before relationship, which uses a frequency statistics for the next time’s sampling
based on asymmetrical access information.

FRESA starts at a user-given sampling rate r0 for every shared memory in
sampling areas. It collects shared memory access frequency at run time. With the
program execution, different shared memory’s access frequency appears different.
FRESA groups all the memories into different groups by considering their access
frequencies. As more and more different memories grouped, each group can have
a unique sampling rate based on user-given sampling rate. FRESA believes that
the more frequently the shared memory accessed, the lower proportion the shared
memory could have a data race. Since data races that occur in frequently accessed
memory of well-tested programs either have already been found or fixed.

3.1 Frequency Statistics

FRESA collects the frequency of a memory location accessed, with the aim
of grouping the memory of similar access frequency into the same group. By



this means, different memories can be partitioned into different groups. FRESA
assigns different sampling rates to different groups.

FRESA uses a hashtable to maintain variables access frequency information.
We define the memory location x in hashtable as a tuple (siteId, frequencyNum).
siteId refers to the call site at which x is allocated and frequencyNum stands
for the access frequency of x. We update the hashtable after every access using
the algorithm below.

Algorithm 1 Hashtable Update Algorithm

1: if hashtable.get(siteId)!=NULL then
2: frequencyNum()++
3: else
4: hashtable.put(siteId,1)
5: end if

With the program execution, the hashtable updates at run time. Assume
we get a hash map contains n different accesses x1, x2, x3 . . .xn and with the
relevant access frequencies f1, f2, f3 . . . fn. In a general way, we first simply
divide our n tuples into 5 groups.For an empirical practice, we set four group
frequency threshold as g1 = 20, g2 = 50, g3=100, g4 = 200. For each (xi,fi), we
dispatch it into a group in the following formula:

(xi, fi) ∈


G1 fi ≤ g1
G2 g1 < fi ≤ g2
G3 g2 < fi ≤ g3
G4 g3 < fi ≤ g4
G5 fi > g4

(1)

We only list a simple piecewise function above. The group threshold can be
different in practice due to the different frequency distribution.

3.2 Adaptive Sampling

FRESA does the same thing as PACER either in sampling periods or non-
sampling periods. During sampling periods, FRESA fully tracks the happen-
before relationship on all synchronization operations, and variable reads and
writes, using FASTTRACK algorithm. In non-sampling periods, FRESA also
reduces the space and time overheads of race detection by simplifying analysis
on synchronization operations and variable reads and writes. However, FRESA
adaptively changes its sampling rate using variable access frequency information.
As for one access x, sampling rate r is decided by variable group classification
as the following formula:

rxi = F (gj |r0) xi ∈ gj (2)



where rxi
indicates the proper sampling rate for access xi. F (gj |r0) defines the

sampling rate for group gj .
In our experiment, we use an exponential decline equation rxi = r0/2

j xi ∈ gj
(j = 1, 2, 3, 4) in our example.

3.3 Theoretical Accuracy and Slowdown

Table 1 summarizes the effect of FASTTRACK, PACER and FRESA have on
(1) the detection rate for any race and (2) program performance for sampling
rate r and data race occurrence rate o.

Table 1. Theoretical accuracy and slowdown

Det. race Slowdown

FASTTRACK o crw+csyncn
PACER o× r csampling(crw + csyncn)r + cnonsampling

FRESA
∑m

i=1 oi × ri
∑g

i=1 csampling(c
′
rw + csyncn)ri + cnonsampling

Constant crw is the slowdown due to analysis at reads and writes, and csyncn
is the linear slowdown in the number of threads n due to analysis at synchroniza-
tion operations. PACER essentially scales FASTTRACK’s overhead by r, as
well as a small constant factor csampling due to PACER’s additional complexity
(e.g., indirect metadata lookups). PACER adds a slowdown cnon-sampling during
non-sampling periods, which is small and near-constant in practice. In FRESA,
constant c

′

rw is a little bigger than that in PACER as shared memory’s access
frequency information update.

4 Performance Evaluation

4.1 Implementation

FRESA is implemented in Jikes RVM 3.1.01, a high-performance Java-in-Java
virtual machine [1]. FRESA is built on PACER’s source code2. We execute all
experiments on a Pentium Dual-Core CPU E5300 @2.6 GHz system with 2 GB
main memory running openSUSE Linux 3.4.6-2.10. We used the multithreaded
DaCapo benchmarks [2] (eclipse, hsqldb, and xalan; versions 2006-10-MR1). The
range of sampling rates we use in our experiments is [0.000625, 1], and we set the
minimum user given sampling rate rmin = 0.01. As data races occur infrequently
and sampling decreases the probability of observing a race, we do many trials
to evaluate accuracy.

1 http://dacapo.anu.edu.au/regression/perf/2006-10-MR2.html
2 http://www.jikesrvm.org/Research+Archive



4.2 Effectiveness of Data Race Detection

Figure 2(a) and 2(b) show FRESA’s detection rate versus sampling rate for each
benchmark. Figure 2(a) counts the average number of dynamic evaluation races
per run that FRESA detects. A race’s detection rate is the ratio of (1) average
dynamic races per run at sampling rate r to (2) average dynamic races per run
with r = 100%. Each point is the average of all evaluation races’ detection rates.
The plot shows that FRESA reports races at a somewhat better rate than the
sampling rate. However, this may have some different observations in different
executions.
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(a) FRESA’s accuracy on dynamic races.
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(b) FRESA’s accuracy on distinct races.

Fig. 2. FRESA’s accuracy on dynamic and distinct races.

Figure 2(b) shows the detection rate for distinct races. If a static race occurs
multiple times in one trial, this plot counts it only once. The detection rate
is much higher because FRESA’s main concept of memory access frequency-
sensitive, which means infrequent accesses have more sampling cost.

4.3 Time and Space Overheads

Time overhead. Figures 3 shows the slowdown incurred by FRESA on each
benchmark for r ranging over [0, 100%]. The graphs show that FRESA has
overheads that scale roughly linearly with the target sampling rate, although
the slowdown factors on different benchmarks vary a lot. The slowdown factor
in this experiment includes the execution time of the program, the overhead
incurred by the JikesRVM platform, the overhead incurred by dynamic memory
access and synchronization instrumentation and the overhead incurred by the
sampling algorithms. FRESA incurs slowdowns by a factor less than 3x on three
benchmarks (eclipse, hsqldb, xalan) at a target sampling rate of 1%, and can
detect races with a relatively higher probability (80%) than PACER. When
working at a target sampling rate of 100%, FRESA has no sampling effort and
is functionally equivalent to FASTTRACK[21]. In this scenario, FRESA slows
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Fig. 3. Slowdown vs. sampling rates

down the three programs by a factor of 10x on average, compared with 8x by
FASTTRACK and 12x by PACER. Though FRESA uses hashtable leading to
little more access time, it still incurs less time overhead than PACER due to the
saving of sampling cost.

Space overhead. Figure 4 shows the maximum live memory space overhead
incurred by FRESA with various FRESA configurations. The measurement in-
cludes application, VM, PACER, and FRESA memory. For each target sampling
rate shown, we take the mean overhead over all executions. Base shows the max
memory used by eclipse running on unmodified Jikes RVM. OM only adds two
words per object and a few percent all-the-time overhead. The other configura-
tions (except LITERACE) are PACER and FRESA at various sampling rates.
At a sampling rate of 100%, FRESA takes no differences as PACER. At other
sampling rates, FRESA uses significantly less memory than PACER. The result
shows that FRESA can scale well with the sampling rate in terms of memory
space used, and with a low sampling rate of r = 1%, its space overhead appears
to be very low.

5 Related Work

A large part of researches [4–11,16, 17, 19–22,24–31] focus on dynamic or static
race detection. Dynamic race detection techniques are either based on lockset or
on happen-before or hybrid of them. Lockset based dynamic techniques could
predict data races that does not happen in a concurrent execution which leads to
report many false warnings. Happen-before based techniques detect races that
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actually happen in an execution. Therefore, these techniques lack of good cov-
erage though precise. On the other hand, happens-before based race detectors
cannot predict races that could happen on a different schedule or they cannot
create a schedule that could reveal a real race. In practice, the coverage can
be increased by running more tests. Recently happens-before race detection has
been successfully extended to classify harmful races with sampling. Hybrid tech-
niques combine lockset with happens-before to make dynamic race detection
both precise and predictive. But these techniques also report many false warn-
ings. Static race detection techniques provide maximum coverage by reasoning
about data races on all execution paths. However, they tend to make conservative
assumptions that lead to a large number of false data races.

In general, the traditional methods using vector clocks takes O(n) time and
space overhead, n is the number of threads. The FASTTRACK algorithm re-
places most O(n) analysis with O(1) analysis with precise guaranteed. However,
these methods still incurs significant overhead.

A novel approach that explores the above tradeoff is sampling. LITERACE
uses a sampling dispatch to decide whether to sample synchronization events only
or together with all memory access of a function. On the other hand, PACER
uses a more effective sampling strategy. It divides an execution into a scenario of
sampling or non-sampling periods. PACER can detect race in a magic shortest
data race way and with a probability of r. This significantly reduces the slowdown
overheads.

A common limitation of the above techniques is that although existing pre-
cise sampling-based data race detectors such as PACER and LITERACE can
effectively reduce overheads so that lightweight precise race detection can be



performed efficiently in testing or post-deployment environments, they are inef-
fective in detecting races with much unnecessary repeated sampling cost. Our
insight is that along an execution trace, a program may sample some race-
infrequently variable in high sampling rate. These unnecessary sampling cost
potentially indicate a saving cost degree in a sampling region. Intuitively, they
may perform redundant memory access sampling, which lowers the chance of
detecting rare data races and costs more unnecessary sampling overhead.

Recently, a couple of random testing techniques for concurrent programs
have been proposed. These techniques randomly seed a program under test at
shared memory accesses and synchronization events. Although these techniques
have successfully detected bugs in many programs, they have two limitations.
These techniques are not systematic or reproducible. Many researchers look for
effective sampling method to solve this problem.

6 Conclusions and Future Work

Data race is a common problem in multithreaded program. It often indicates
serious concurrency errors which are easy to introduce but difficult to repro-
duce, discover, and fix. Prior approaches reduce overhead by sampling. But they
waste too many cost on repeated checking which can be omitted or reduced.
In other words, frequency statistical sampling strategy could be more effective
with detection precise guaranteed. This paper presents a data race detection
method that provides a detection rate for each memory location that has inverse
relationship with access frequency, and adds less time and a little more space
overheads than PACER. FRESA achieves a qualitative improvement over prior
work: its access frequency based sampling strategy suits more comfortable for
performance and accuracy sensitive program, which makes it more suitable for
all-the-time use in a variety of deployed environments. Our future work should
simplify happen-before relationship and optimize the instrumentation with a
lower cost level. In addition, we could generalize the approach to deal with d-
ifferent types of bugs caused by frequently access and develop new methods to
further refine the approach.
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