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Abstract. Galois Field arithmetic is the basis of LRC, RS and many
other erasure coding approaches. Traditional implementations of Galois
Field arithmetic use multiplication tables or discrete logarithms, which
limit the speed of its computation. The Intel Many Integrated Core
(MIC) Architecture provides 60 cores on chip and very wide 512-bit
SIMD instructions, attractive for data intensive applications. This paper
demonstrates how to leverage SIMD instructions and shared memory
multiprocessing on MIC to perform Galois Field arithmetic. The exper-
iments show that the performance of the computation is signi�cantly
enhanced.
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1 Introduction

From disk arrays [1], cloud platforms [2] to archival systems [3] storage systems
must have fault tolerance to protect themselves from data loss. Erasure codes
provide the basic technology for the fault tolerance of a storage system. The
classic Reed-Solomon code [4] organizes a storage system as a set of linear e-
quations whose arithmetic is Galois Field arithmetic, termed GF(2w). W is the
length of a word, the basic computing unit. Encoding and decoding of a storage
system for fault tolerance are implemented by computing these linear equations
by multiplying large regions of bytes by various w -bit constants in GF(2w) and
combining the products using bitwise exclusive-or (XOR).

Traditional implementations of Galois Field arithmetic use multiplication
tables or discrete logarithms, which limit the speed of its computation. The
performance using multiplication is at least four times slower than using XOR [5].
James S. Plank et al. fast Galois Field arithmetic using 128-bit SIMD instruction
[6].

? This work is supported by the National Natural Science Foundation of China under
Grant No. 61100020.



In late 2012, Intel released its commercial products based on the Many Inte-
grated Core (MIC) architecture [7], targeting to High Performance Computing
�eld for the PetaFLOPS era. It is based on the streamlined x86 core and similar
to the architecture of the existing CPUs. Since its architectural compatibility,
it can utilize existing parallelization software tools, including OpenMP [8], etc.
and specialized versions of Intel’s Fortran, C++ and math libraries [9]. Its SIMD
instructions are further extended to very wide 512-bit and allow 512-bit numbers
to be manipulated on a core simultaneously. MIC’s 60 cores also greatly enhance
its parallel computing capabilities.

To the best of our knowledge, how to use a computing unit as powerful as a
MIC coprocessor for Galois Field arithmetic has not been discussed yet. When
the operator size of SIMD instructions extends from 128 bits to 512 bits, though
the number of elements keeps at 16, the size of each element changes from 8
bits to 32 bits. With smaller w, e.g. w = 4, the spatial utilization ratio is only
1/8 for the multiplication table. The obvious waste needs to be avoided to save
memory usage. As to larger w, e.g. w = 32, the existed algorithm [6] maps a word
into 4 8-bit parts since the element size of 128-bit SIMD instructions is 8-bit,
which in-creases complexity and decreases performance. With 32-bit elements,
the over-head should be reduced.

This paper will detail how to leverage 512-bit SIMD instructions and shared
memory multiprocessing to multiply regions of bytes by constants in GF(2w) for
w 2 f4, 8, 16, 32g. Each value of w has similar but still di�erent implementation
techniques. We will present these techniques and compare the performance of
our algorithms on MIC with other approaches on other platforms.

The rest of this paper is organized as follows. The next section describes
related work. Section 3 gives description about Erasure Codes and Galois Fields.
Section 4 introduces 512-bit instructions used in our algorithms. Section 5 details
our algorithms leveraging 512-bit SIMD instructions and OpenMP to multiply
regions of bytes by constants in GF(2w) for w varying from 4 to 32. Section 6
compares and analyzes the performance of our algorithms and the others. Section
7 is the conclusion and future work.

2 Related Work

Erasure coding is an alternative to replication for fault tolerance as storage sys-
tems scale. Traditionally used in the communication �eld, erasure codes have
gained their popularity due to lower spatial requirement under the same relia-
bility.

Many erasure codes are based on Galois Field arithmetic, such as Pyramid
codes [10], LRC codes [2], RS codes [11] and F-MSR codes [12], among which the
most common one is RS codes. RS codes are used in Bigtable [13] from Google,
Cassandra [14] from Facebook and Cleversafe [15]. Microsoft Azure uses LRC
codes [2].

Traditional implementations of Galois Field arithmetic adopt multiplication
tables or discrete logarithms. There are methods proposed to improve Galois



Field arithmetic, such as Kevin M. Greenan et al. using split multiplication
tables and composite �elds [16], Jianqiang Luo et al. using bit-grouping tables
[17] and H. Peter Anvins approach based on fast multiplication by two [8, 18]
and so on.

Recently in [6] James S. Plank et al. present the algorithms of Galois Field
arithmetic on CPUs using 128-bit SIMD instructions. As with [6], this paper
focuses solely on multiplying regions of bytes by constants. We will exploit 512-
bit SIMD instructions as well as OpenMP on MIC coprocessors.

3 Erasure Codes and Galois Fields Arithmetic

Fault tolerance of a storage system is enabled by redundancy. For Galois Field
Arithmetic based erasure codes, n disks are partitioned into k disks for original
data and m disks for coding information, which is calculated from the original
data. When no more than m disks fail, the lost data can be recovered through
the remaining disks.

(a)

(b)

Fig. 1. The RAID-6 data disks and coding disks (k = 4). (a) The composition of the
RAID-6. (b) How to create code disk C1.

For example, RAID-6 has two (m = 2) coding disks (C0 and C1), which are
created from k data disks (Di, 0�i<n) as shown in Fig. 1 (a). Content of every



disk is composed of w -bit words, such as dih and cih (0�i<k, 0�j <2, 0�h<l).
Here l is the number of words in a disk. The coding disks are created by a set
of linear equations on the right.

The arithmetic of redundant code generation mainly includes Galois Field
multiplication and addition, which correspond to multiplication and XOR oper-
ations. Taking C1 as an example, every word dih is multiplied by a constant ai,
shown in Fig. 1 (b). The products of dih and ai (0�i<k) are added (XOR-ed)
and the sum is cih (0�h<l). Since the speed of XOR operations is very fast
for modern computes, multiplication becomes the dominant concern with code
calculating.

The selection of w decides the number of disks in the storage system for
protection. For example, when using Reed-Solomon codes, w = 4 means the
disk number cannot be larger than 16; w = 16 sets the limit to 65,536 disks. The
value of w also greatly impacts the computation performance. Larger values of
w perform much more slowly than smaller ones. Usually w is a power of 2 to
match the size of machine words. Combining all the factors together, typically
w is 4 or 8 for storage systems [2, 15] and could be 32 and 64 for security and
erasure coding purpose [17].

4 512-bit SIMD Instructions

The Intel Many Core not only has ordinary vector oating-point units, but also
uses special registers that enable packed data of up to 512 bits in length for
optimal vector graphic streaming SIMD processing. These 512-bit instructions
[7] can manipulate sixteen elements of 32 bits or eight elements of 64 bits at a
time. In this paper, we use manipulation of 16 elements of 32 bits simultaneously.
We leverage the following instructions in our implementations:

� mm512 setzero epi32(void): sets all the elements of the 512-bit vector to
zero. Returns a 512-bit vector with all elements set to zero.

� mm512 set1 epi32(int a): sets all 16 elements of an int32 result vector to an
equal integer value speci�ed by a. Returns an int32 vector with 16 elements
each equal to integer value speci�ed by a.

� mm512 slli epi32( m512i v2, unsigned int count): performs an element-by-
element logical left shift of int32 vector v2, shifting by the number of bits
given by immediate count. If the shift value speci�ed by this parameter is
greater than 31 then the result of the shift is zero.

� mm512 srli epi32( m512i v2, unsigned int count): performs an element-by-
element logical right shift.

� mm512 and epi32( m512i v2, m512i v3): performs a bitwise AND oper-
ation between int32 vectors v2 and v3.

� mm512 xor epi32( m512i v2, m512i v3): performs a bitwise XOR opera-
tion between int32 vectors v2 and v3.



� mm512 loadunpackhi epi32( m512i v1 old, void const* mt): the high 64-
byte-aligned portion of the double word stream starting at the element-
aligned address mt is loaded. It usually works together with the intrinsic
mm512 loadunpacklo epi32( m512i v1 old, void const* mt) to load 64 bytes

in memory into a 512-bit variable.

� mm512 permutevar epi32( m512i v2, m512i v3): this is the real enabling
SIMD instruction for GF(2w). It permutes 32-bit blocks of int32 vector v3
according to indices in the int32 vector v2. The ith element of the result is
the j th element of v3, where j is the ith element of v2.

5 Galois Field Arithmetic on MIC

In this section, calculating yA in GF(24), GF(28), GF(216) and GF(232) on MIC
are presented respectively.

5.1 Calculating yA in GF(24)

When w = 4, each word is composed of four bits, and there are only 16 values
that a word may be. All operations are based on a 16 16 multiplication table
that is small enough to �t into main memory and can be calculated in advance.
A table lookup is needed every four bits, i.e. 2K lookups for a region of 1K bytes.

The SIMD intrinsics operates on operators composed of 16 32-bit elements
simultaneously. In the original table, each entry corresponds to the 16 4-bit
results of a number y multiplied by 16 numbers from 0 to 15. Storing only 4-bit
in a 32-bit element is obviously a waste. Thus we try to merge multiple entries
into one in the multiplication table, which is showed in Fig. 2. The products
of y and 0x0 to 0xf from 8 entries are placed in 16 elements from the lowest to
highest, and in each element the product from entry 7 on the high end and the
one from entry 0 at the low end. Compressing entries 8-15, 16-23 is similar.

Since the processing element of SIMD instructions is 32-bit while w = 4,
every 32 bits in an element are split into 8 4-bit unit using mask[i], shown in
Fig. 3 step (6). Step (7)-(9) calculated tmp[i] and should be executed for 0�i<8.
Finally, perform XOR operation on all tmp values and get yA. Thus 40 SIMD
instructions ful�ll 128 multiplication operations.

In general the amounts of data to be computed are huge. Dividing data into
basic units of 512 bits and there are no data dependence among them. Thus it
is natural to parallelize Galois Field Arithmetic by OpenMP exploiting 60 cores
on MIC and opens up to 240 threads.

5.2 Calculating yA in GF(28)

When w = 8, each word is 8-bit and there are 256 values that a word may have.
In principal the method used in GF(24) is applicable to the one in GF(28). The
di�erence is that the instruction mm512 permutevar epi32() only works on 16-
element tables (each element is 32-bit), 256 values are too large to �t into a



Fig. 2. Merge eight entries into one in the multiplication table when w = 4. Four
entries in the original table are merged into one to �t 512-bit registers and variables
on MIC. The upper line is high-order 256-bits and the lower line is low-order 256-bits.
All variables are presented in hex.

Fig. 3. Multiplying a 512-bit region A by y = 7 in GF(24).



16-element variable. Let a be an 8-bit word and ah and al be the high-order 4
bits and low-order 4 bits of a respectively, and we have:

a = (ah � 4)� al: (1)

Thus
ya = y(ah � 4)� yal: (2)

Based on the above analysis, the multiplication table is divided into two,
tablehigh which stores the result of y(ah�4) and tablelow which storage the
result of yal. As with GF(24), multiplication tables are compressed and occupy
8KB memory. Fig. 4 shows the steps to extract the corresponding content from
the compressed lookup tables for mm512 permutevar epi32() to permute. Since
the lookup content for y = 7 is at 24-31 bit of each element in the compressed
table entry, both tablehigh and tablelow, it is extracted by right-shifting 24 bits
and masked by 0x�.

Fig. 4. Multiplying a 512-bit region A by y = 7 in GF(28).

After acquiring the lookup tables, the remaining steps are similar to the ones
with w = 4 in Fig. 3, except for step (8) and (9). For w = 8, eight 4-bits in
an element is indexed by i (0�i<8). When i is odd, it means that these 4 bits
are high-order of a word; when it is even, these 4 bits are low-order of a word.
High-order 4 bits and low-order 4 bits are subject to looking up di�erent tables,
tablehigh and tablelow, as well as left-shifting di�erent bits. The revisions are as
follows:
(8) for the high-order 4 bits i.e. i is odd
tmp[i] = mm512 permutevar epi32(tmp[i], th).
for the low-order 4 bits i.e. i is even
tmp[i] = mm512 permutevar epi32(tmp[i], tl).
(9) When i is odd: tmp[i] = mm512 slli epi32(tmp[i], (i-1) � 2).
When i is even: tmp[i] = mm512 slli epi32(tmp[i], i � 2).



5.3 Calculating yA in GF(216)

For GF(216) each 16-bit word may have 216 = 64K values. Since the instruction
mm512 permutevar epi32() only works on 16-element tables, word a is divided

into 4-bit sub-words, named a3 through a0:

a = (a3 � 12)� (a2 � 8)� (a1 � 4)� a0: (3)

Then
ya = y(a3 � 12)� y(a2 � 8)� y(a1 � 4)� ya0: (4)

Thus, we need perform 4 table lookup operations for a 16-bits word. We use
compressed tables for data storage. The entries from four tables for a constant
y take up 256 bytes and the total memory usage is 8 MB.

5.4 Calculating yA in GF(232)

For w = 32, the processing is similar. We split each word a (32 bits) into 4-bit
sub-words, named a7 through a0:

a = (a7 � 28)� (a6 � 24)� (a5 � 20)� (a4 � 16)� (a3 � 12)
�(a2 � 8)� (a1 � 4)� a0:

(5)

Then

ya = y(a7 � 28)� y(a6 � 24)� y(a5 � 20)� y(a4 � 16)� y(a3 � 12)
�y(a2 � 8)� y(a1 � 4)� ya0:

(6)

Thus we need perform 8 table lookup operations for a 32-bit word. Since the
element size is 32-bit and the same as the size of Galois Field arithmetic word,
w, there is no need for compression. The entries from eight tables for a constant
y take up 512 bytes and the total size is 2 TB, which is too large to �t into main
memory.

6 Performance Evaluation

The performance of our proposed algorithms on a MIC coprocessor is evaluated
and for comparison the Multiplication Table algorithms [5] and the 128-bit SIMD
algorithms from [6] are run on a CPU machine.

The MIC machine used in the experiments is Intel Xeon Phi coprocessor
5110p, 60 cores, core frequency 1.053 GHz, 8 GB GDRR5 memory, 32 KB L1
Instruction Cache, 32 KB L1 Data Cache, 512 KB uni�ed L2 Cache. When the
cores do not share data or code, the e�ective L2 Cache is 30 MB. The comparing
machine is Intel Xeon CPU E5620 � 2, 2.4 GHz, 32 KB L1 Instruction Cache,
32 KB L1 Data Cache, 256 KB L2 Cache, 12 MB L3 Cache, 32 GB memory.

The multiplication table algorithms and 128-bit SIMD algorithms are tested
on CPU and MIC machines. Our proposed 512-SIMD algorithms are run on MIC



with native mode. In all algorithms, regions of random values are multiplied by
constants in GF(2w). For OpenMP accelerated algorithms the region size varies
from 1 MB to 1 GB, while for Multiplication Table and SIMD only algorithms
the size range is 1 KB to 1 GB. The results are shown in Fig. 5 - Fig. 9.

From Fig. 5 (MulTa is the abbreviation for multiplication table) it can
be seen that the SIMD algorithms (128-bit SIMD on CPU and 512-bit SIMD
on MIC) greatly outperform the multiplication table algorithms. When w =
4, the performance using SIMD on MIC is 13 times more than that of using
multiplication table, and 10.6 times on CPU. We can also conclude that the
performance of both algorithms on CPU is better than that on MIC, mainly
because the core on CPU is more powerful than the one on MIC (2.4 GHz over
1.053 GHz). For example the multiplication table algorithm on CPU is about
1.8 times faster than on MIC and the SIMD is 1.3 times faster. With w = 8, 16
and 32 we have similar results and the details are omitted.

Fig. 6 presents the performance under di�erent w values. We can see that
the performance does not change much as w grows which is quite di�erent from
the conclusion from [6]. In [6] w = 4 and w = 8 perform roughly the same,
w = 16 slightly slower and w = 32 slower still. This is because MIC SIMD
instructions can operate on more bits (512 bits over 128 bits) simultaneously
thus fewer operations needed for a word processing, which bene�ts larger w. For
a certain w, when the region size reaches a point between 256 KB and 512 KB,
the performance peaks and then drops dramatically. This is because L2 cache
saturation impacts the performance greatly.

(a) MulTa algorithms. (b) SIMD algorithms.

Fig. 5. The performance of MulTa algorithms and SIMD algorithms on CPU and MIC
with w = 4.

The results of OpenMP-based acceleration on the algorithms are shown in
Fig. 7 - Fig. 9. For the multiplication table algorithm, it is always CPU-intensive
thus changing the region size does little impact on performance as given in Fig.
7. For the 128-bit SIMD algorithms, before L3 cache saturates 8 threads are
better than 4 threads; after the saturation they are of the same since it is I/O
bound now. In the best case, the 128-bit SIMD outperforms the multiplication
table by 9.5.



Fig. 6. The performance
of SIMD algorithms on
MIC with w = 4, 8, 16 and
32.

Fig. 7. The performance
of OpenMP accelerated
MulTa and SIMD algo-
rithms on CPU with 4 and
8 threads, when w = 4.

Fig. 8. The performance
of OpenMP accelerated
MulTa algorithm on MIC,
when w = 4.

(a) w = 4. (b) w = 8.

(c) w = 16. (d) w = 32.

Fig. 9. The performance OpenMP accelerated 512-bit SIMD algorithms with di�erent
thread numbers on MIC.



Fig. 8 - Fig. 9 compare the performance of the multiplication table algorithm
(w = 4) with the 512-bit SIMD (w = 4, 8, 16 and 32) on MIC. Though each
core on MIC is capable of 4-way hardware multi-threading, 240 threads do not
have the best performance while generally speaking 180 threads are the best.
The 512-bit SIMD + OpenMP algorithm is better than the multiplication table
+ OpenMP on MIC by 6.8 times and better than the 128-bit SIMD + OpenMP
on CPU by 7.2 times.

The peak speedups for all algorithms and conditions are summarized in Table
1 with w = 4. Here we take the performance of the single-threaded multiplication
table algorithm on CPU as the base 1.

From Fig. 9 (a) - (d) right before the combined 32 MB L2 cache saturates
the computing peak can be about 220 GB/s. MIC works as a coprocessor and
is connected to the host by standard PCIe x16 which has one-way bandwidth 8
GB/s theoretically. In practice, we have tested that the peak bandwidth from
MIC to CPU is 7.0 GB/s and that is 6.7 GB/s from CPU to MIC. Obviously
I/O is the bottleneck of Galois Field arithmetic.

Table 1. The speedups with w = 4 (taking the performance of the single-threaded
multiplication table on CPU as the base 1; MulTa is the abbreviation for multiplication
table).

Peak Speedup MulTa MulTa+OpenMP SIMD SIMD+OpenMP
CPU(128-bit SIMD) 1 5.5 10.6 52.2
MIC(512-bit SIMD) 0.56 55.4 7.2 373.4

7 Conclusion and Future Work

In this paper, we detail how to apply 512-bit SIMD instructions with OpenMP
on MIC to Galois Field arithmetic. The algorithms are evaluated with di�erent
w from 4 to 32. The performance of our algorithms is about 7.2 to 35.2 times
faster than the implementations using 128-bit SIMD with OpenMP on CPU.

With 512-bit SIMD and OpenMP, cache, main memory and I/O to host
become bottlenecks. In future we focus on improving the I/O performance and
coordination between computation and data transfer.
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