open science

Circular Dimensional-Permutations and Reliable Broadcasting for Hypercubes and Möbius Cubes

Baolei Cheng, Jianxi Fan, Jiwen Yang, Xi Wang

To cite this version:

Baolei Cheng, Jianxi Fan, Jiwen Yang, Xi Wang. Circular Dimensional-Permutations and Reliable Broadcasting for Hypercubes and Möbius Cubes. 10th International Conference on Network and Parallel Computing (NPC), Sep 2013, Guiyang, China. pp.232-244, 10.1007/978-3-642-40820-5_20 . hal-01513766

HAL Id: hal-01513766
https://inria.hal.science/hal-01513766
Submitted on 25 Apr 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Circular Dimensional-Permutations and Reliable Broadcasting for Hypercubes and Möbius cubes

Baolei Cheng ${ }^{1,2}$, Jianxi Fan ${ }^{1, \star}$, Jiwen Yang ${ }^{1}$, and Xi Wang ${ }^{1}$
School of Computer Science and Technology, Soochow University, Suzhou 215006, China
\{chengbaolei, jxfan, jwyang, 20124027002\}@suda.edu.cn
Key Laboratory for Computer Information Processing Technology, Soochow University, China

Abstract

Reliable broadcasting for interconnection networks can be achieved by constructing multiple independent spanning trees(ISTs) rooted at the same node. In this paper, we prove that there exists $(n-1)$! sets of ISTs rooted at arbitrary node for Q_{n} and M_{n} based on circular dimensional-permutations of $0,1, \ldots, n-1$ and $n \geq 1$. At the same time, we give an parallel algorithm, called BCIST, which is the further study of IST problem for Q_{n} and M_{n} in literature. Furthermore, simulation experiments of ISTs based on JUNG framework and different sets of disjoint paths between node 1 and any node $v \in V\left(0-M_{4}\right) \backslash\{1\}$ for $0-M_{4}$ are also presented

Keywords: dimensional-permutation, reliable broadcasting, hypercube, Möbius cube, independent spanning tree

1 Introduction

It is well known that hypercubes are widely used in parallel computing systems, which have many advantageous properties such as lower node degree and diameter, higher connectivity, symmetry, and etc [21], [24]. Furthermore, by changing their links between some nodes, the variants of hypercubes, such as Möbius cubes [9], crossed cubes [20], and twisted cubes [1] were proposed, which have better properties [12], [13], [14], [16], [29].

Independent spanning trees(ISTs for short) have been used in reliable broadcasting, secure message distribution [2], reliable communication protocols [17], one-to-all broadcasting [26], the multi-node broadcasting [3], and diagnosis [6]. Therefore, the problem to construct ISTs for a given network is becoming an important issue.

However, there is a well-known conjecture on the existence of ISTs for any network [17][31]:

[^0]Conjecture 1. Let G be an n-node-connected network with $n \geq 1$. Then, there exist n node-independent spanning trees rooted at any node for G.

In what follows, we use independent to represent node-independent. For $n \leq$ 4, Conjecture 1 was solved [8], [10], [17], [31], but when $n \geq 5$, it has remained open. Consequently, researchers are interested in the study of ISTs for various special networks. Conjecture 1 has been solved for some restricted classes of networks, such as planar networks [15], product networks [23], hypercubes [25], [28], [30], Möbius cubes [5], [6], locally twisted cubes [22], crossed cubes [4], [7], twisted cubes [27], even networks [18], odd networks [19], and etc.

We say that a sequence of n integers is a permutation if it contains all integers from 0 to $n-1$ exactly once. Considering the results for hypercubes and Möbius cubes, each paper in literature only considers a set of ISTs for the special network and lacks the discussion of the relation between the permutations and ISTs.
Question 1. Can all permutations of $0,1, \ldots, n-1$ be used to construct spanning tree and ISTs for the n-dimensional hypercube Q_{n} and the n-dimensional Möbius cube M_{n} ?

To solve this question, we adopt the definition of circular dimensional-permutation and prove that any circular dimensional-permutation of $0,1, \ldots, n-1$ can be used to construct n ISTs for Q_{n} and M_{n} in this paper, which is the further discussion of spanning trees and ISTs for Q_{n} and M_{n} comparing with the results in literature.

The rest of this paper is organized as follows. Section 2 presents some definitions and graph terminologies and notations. Section 3 discusses the IST problem for Q_{n} and M_{n} rooted at any node. We draw the conclusion of the paper in the last section.

2 Preliminaries

2.1 Definition of Hypercubes, Möbius Cubes, and ISTs

We use a unique binary string of length n to denote the address of each node in the n-dimensional hypercube Q_{n} and the n-dimensional Möbius cube M_{n}. In what follows, nodes and their addresses will be used alternatively. Q_{n} is a network consists of 2^{n} nodes. Any two nodes of Q_{n} are adjacent whenever their corresponding addresses differ in exactly one place.
M_{n} is a variant of the Q_{n}, which has two types, 0-type n-dimensional Möbius cube and 1-type n-dimensional Möbius cube. We adopt the following definition of M_{n} in [11].
Definition 1. [11] $0-M_{1}$ and $1-M_{1}$ are both the complete graph on two nodes whose addresses are 0 and 1 . For any integer n with $n \geq 2$, both $0-M_{n}$ and $1-M_{n}$ contain one 0 -type $(n-1)$-dimensional sub-Möbius cube M_{n-1}^{0} and one 1-type ($n-1$)-dimensional sub-Möbius cube M_{n-1}^{1}. The nodes in M_{n-1}^{0} have a common prefix 0 ; the nodes in M_{n-1}^{1} have a common prefix 1 . For two nodes $x=x_{n-1} x_{n-2} \ldots x_{0} \in V\left(M_{n-1}^{0}\right)$ and $y=y_{n-1} y_{n-2} \ldots y_{0} \in V\left(M_{n-1}^{1}\right)$, where $x_{n-1}=\overline{y_{n-1}}=0$,
(1) $(x, y) \in E\left(0-M_{n}\right)$ if and only if $x_{i}=y_{i}, i=0,1, \ldots, n-2$;
(2) $(x, y) \in E\left(1-M_{n}\right)$ if and only if $x_{i}=\overline{y_{i}}, i=0,1, \ldots, n-2$.

A binary string x of length n is denoted by $x_{n-1} x_{n-2} \ldots x_{0}$. Suppose that $u=u_{n-1} u_{n-2} \ldots u_{0}$ and $v=u_{n-1} u_{n-2} \ldots u_{l} \overline{u_{l-1}} v_{l-2} v_{l-3} \ldots v_{0}$ are two nodes in $X_{n} \in\left\{Q_{n}, M_{n}\right\}$. We say that u and v have a leftmost differing bit at position $l-1$. We use $\operatorname{LDF}(u, v)$ to denote the leftmost differing bit of two nodes u and v. Given two adjacent nodes u and $v, \operatorname{if} \operatorname{LDF}(u, v)=d$, we say that v is the d-neighbor of u or that the edge (u, v) is an edge of dimension d. For this purpose, let $N_{d}(u)$ denote the d-neighbor of u. We follow the definitions of path and ancestor in [7].

Two paths P and P^{\prime} starting from a node u and ending with another node v are said to be internally disjoint if $E(P) \cap E\left(P^{\prime}\right)=\varnothing$ and $V(P) \cap V\left(P^{\prime}\right)=\{u, v\}$. Two spanning trees for a network G are independent if they are rooted at the same node, said u, and for each node $v \in V(G) \backslash\{u\}$, the two paths starting at u and ending with v are internally disjoint. A set of spanning trees of G rooted at v are called independent spanning trees if they are pairwisely independent.

2.2 Definition of Dimensional-Permutation

The sequence of n integers is called a dimensional-permutation if it contains all integers from 0 to $n-1$ exactly one (Noting that each node in Q_{n} or M_{n} has n neighbors, which are 0 -neighbor, 1-neighbor, ..., $(n-1)$-neighbor). A circular dimensional-permutation (CDP for short) is a type of permutation to put all integers from 0 to $n-1$ along a closed circle in the clockwise order [6]. Suppose that $\left\{a_{0}, a_{1}, \ldots a_{n-1}\right\}=\{0,1, \ldots, n-1\}$. All cyclic permutations of integers are equivalent in the circle,

$$
\begin{aligned}
& a_{0} \rightarrow a_{1} \rightarrow \ldots \rightarrow a_{n-1} \\
& a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{n-1} \rightarrow a_{0}, \\
& \ldots, \\
& a_{n-1} \rightarrow a_{0} \rightarrow a_{1} \rightarrow \ldots \rightarrow a_{n-2}
\end{aligned}
$$

belong to the same CDP. The total number of CDPs is $n!/ n=(n-1)!$. For example, the six CDPs of $0,1,2,3$ are
$3 \rightarrow 0 \rightarrow 1 \rightarrow 2$,
$3 \rightarrow 0 \rightarrow 2 \rightarrow 1$,
$3 \rightarrow 1 \rightarrow 0 \rightarrow 2$,
$3 \rightarrow 1 \rightarrow 2 \rightarrow 0$,
$3 \rightarrow 2 \rightarrow 0 \rightarrow 1$,
$3 \rightarrow 2 \rightarrow 1 \rightarrow 0$.

3 An Reliable Broadcasting Algorithm Based on ISTs for Hypercubes and Möbius Cubes

In this section, we point out that every CDP of n integers $0,1,2, \ldots, n-1$ can be used to construct ISTs for $X_{n} \in\left\{Q_{n}, M_{n}\right\}$. We now present the following observation.

Observation 1. For the n-dimensional Möbius cube, we proved the correctness of ISTs rooted at any node based on the descending CDP $n-1, n-2, \ldots, 0[6]$. In essence, the set of optimal ISTs for Q_{n} in [25] can be obtained by the ascending CDP $0,1, \ldots, n-1$; the set of ISTs in [30] is similar to that in [28] for Q_{n}, which can be constructed by the descending CDP $n-1, n-2, \ldots, 0$. Thus, the result in this section is the further study of spanning trees and ISTs for Q_{n} and M_{n}.

3.1 ISTs for Q_{n} and M_{n} with any Circular Dimensional-Permutation

In what follows, we always let u denote any node in Q_{n} or M_{n}. Now we present an algorithm, called BCIST, to construct n ISTs rooted at an arbitrary node u for $X_{n} \in\left\{Q_{n}, M_{n}\right\}$. Fig. 1 demonstrates the construction procedures of n spanning trees $T_{0}, T_{1}, \ldots, T_{n-1}$ rooted at node u for $X_{n} \in\left\{Q_{n}, M_{n}\right\}$ in radial style.

```
Algorithm BCIST
Input: An array \(S=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}\), where
    the permutation \(a_{0}, a_{1}, \ldots, a_{n-1}\) is a CDP of \(0,1, \ldots, n-1\);
        an arbitrary node \(u\) in \(X_{n} \in\left\{Q_{n}, M_{n}\right\}\);
Output: \(T_{0}, T_{1}, \ldots, T_{n-1}\) rooted at \(u\) for \(X_{n}\);
Begin
: for \(i=0\) to \(n-1\) do in parallel
2: \(\quad V\left(T_{i}\right)=N_{a_{i}}(u)\);
    \(/ * N_{a_{i}}(u)\) denotes the \(a_{i}\)-neighbor of \(u . * /\)
        \(E\left(T_{i}\right)=\varnothing\);
        for \(l=0\) to \(n-1\) do
                        for each node \(v \in V\left(T_{i}\right)\) do in parallel
                                    \(d=S[(i+l+1) \bmod n]\);
                                    /*Indexing of \(S\) is counted from 0 to \(n-1\),
                                    where \(n\) is length of the array \(S . * /\)
                    \(E\left(T_{i}\right)=E\left(T_{i}\right) \cup\left\{\left(v, N_{d}(v)\right\} ;\right.\)
                    \(V\left(T_{i}\right)=V\left(T_{i}\right) \cup\left\{N_{d}(v)\right\} ;\)
            end for
        end for
        end for
end
```

The construction procedures of $T_{0}, T_{1}, \ldots, T_{n-1}$ are similar. Take T_{0} for example, the construction procedures are described as follows (See Fig. 1).

At first, there is only one node $N_{a_{0}}(u)$ in tree T_{0}; during the 1st iteration (l $=0)$, node $N_{a_{0}}(u)$ in T_{0} is connected to its a_{1}-neighbor node $N_{a_{1}}\left(N_{a_{0}}(u)\right)$. Therefore, $V\left(T_{0}\right)=\left\{N_{a_{0}}(u), N_{a_{1}}\left(N_{a_{0}}(u)\right)\right\}$ and $E\left(T_{0}\right)=\left\{\left(N_{a_{0}}(u), N_{a_{1}}\left(N_{a_{0}}(u)\right)\right)\right\}$; during the 2nd iteration $(l=1)$, each node v in T_{0} is connected to its $a_{2}-$ neighbor node $N_{a_{2}}(v)$. Thus, the edges $\left(N_{a_{1}}\left(N_{a_{0}}(u)\right), N_{a_{2}}\left(N_{a_{1}}\left(N_{a_{0}}(u)\right)\right)\right)$ and

Fig. 1. Construction procedures based on algorithm BCIST.
$\left(N_{a_{0}}(u), N_{a_{2}}\left(N_{a_{0}}(u)\right)\right)$ are appended to T_{0} and $V\left(T_{0}\right)=\left\{N_{a_{0}}(u), N_{a_{2}}\left(N_{a_{0}}(u)\right)\right.$, $\left.N_{a_{1}}\left(N_{a_{0}}(u)\right), N_{a_{2}}\left(N_{a_{1}}\left(N_{a_{0}}(u)\right)\right)\right\}$; during the 3rd iteration, each node v in T_{0} is connected to its a_{3}-neighbor node $N_{a_{3}}(v)$. As a result, it has doubled the number of nodes in T_{0}; During the l-th iteration, each node v in T_{0} is connected to its $S[l+1]$-neighbor node $N_{S[l+1]}(v)$ with $4 \leq l \leq n-2$; in the last iteration, each node v in T_{0} is connected to its a_{0}-neighbor node $N_{a_{0}}(v)$.

Consequently, T_{0} is a spanning tree for $X_{n} \in\left\{Q_{n}, M_{n}\right\}$.
More examples will be shown in the next subsection. Now we give the following lemma about the relation of adjacent nodes in M_{n} and Q_{n}.
Lemma 1. For any node $x_{n-1} x_{n-2} \ldots x_{0}$ and its k-neighbor node $y_{n-1} y_{n-2} \ldots y_{0}$ with $0 \leq k \leq n-1$ in $X_{n} \in\left\{M_{n}, Q_{n}\right\}$, we have $x_{n-1} x_{n-2} \ldots x_{k+1}=y_{n-1} y_{n-2} \ldots$ y_{k+1} and $x_{k} \neq y_{k}$.

Based on Definition 1, the definition of Q_{n}, and Lemma 1, we have the following lemma.
Lemma 2. For any two nodes x, y in $V\left(X_{n-1}^{x_{n-1}}\right)$, if $\operatorname{LDF}(x, y)=k$ with $0 \leq$ $k \leq n-2$ and $X_{n-1}^{x_{n-1}} \in\left\{M_{n-1}^{x_{n-1}}, Q_{n-1}^{x_{n-1}}\right\}$, then $\operatorname{LDF}\left(N_{n-1}(x), N_{n-1}(y)\right)=k$ and $N_{n-1}(x), N_{n-1}(y) \in X_{n-1}^{\overline{x_{n-1}}}$.
Lemma 3. [5] Given a walk $W: u^{(0)}, u^{(1)}=N_{m_{1}}\left(u^{(0)}\right), u^{(2)}=N_{m_{2}}\left(u^{(1)}\right), \ldots$, $u^{(k)}=N_{m_{k}}\left(u^{(k-1)}\right)$ in M_{n} for any integer k with $1 \leq k \leq n$, if $m_{1}, m_{2}, \ldots, m_{k}$ differ from one another and $0 \leq m_{i} \leq n-1$ for $i=1,2, \ldots, k$, then W is a path.

For the convenience of proof, we define a vector $<\beta_{1}, \beta_{2}, \ldots, \beta_{n}>$ such that the set $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\}$ equals to the set $\{0,1, \ldots, n-1\}$.
Lemma 4. Suppose that $P: u^{(0)}, u^{(1)}=N_{a_{1}}\left(u^{(0)}\right), u^{(2)}=N_{a_{2}}\left(u^{(1)}\right), \ldots$, $u^{(k)}=N_{a_{k}}\left(u^{(k-1)}\right)$ and $P^{\prime}: u^{(0)}, v^{(1)}=N_{a_{1}{ }^{\prime}}\left(u^{(0)}\right), v^{(2)}=N_{a_{2}{ }^{\prime}}\left(v^{(1)}\right), \ldots$, $v^{(t)}=N_{a_{t}{ }^{\prime}}\left(v^{(t-1)}\right)$ are two paths in $X_{n} \in\left\{Q_{n}, M_{n}\right\}$ for any two integers k, t with $1 \leq k, t \leq n$ and $a_{1} \neq a_{1}{ }^{\prime}$. If the following conditions hold:
(1) $<\beta_{i_{1}}, \beta_{i_{2}}, \ldots, \beta_{i_{k}}>=<a_{1}, a_{2}, \ldots, a_{k}>$, where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$;
(2) $<\beta_{j_{1}}, \beta_{j_{2}}, \ldots, \beta_{j_{t}}>=<a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{t}{ }^{\prime}>$, where $1 \leq j_{1}<j_{2}<\ldots<j_{t} \leq n$, then $V\left(\operatorname{path}\left(P, u^{(1)}, u^{(k)}\right)\right) \cap V\left(\operatorname{path}\left(P^{\prime}, v^{(1)}, v^{(t)}\right)\right)=\varnothing$.
Proof. Suppose that there exists a node v, such that $v \in V(P) \cap V\left(P^{\prime}\right)$. We denote v as $v=u^{(i)}$ and $v=v^{(j)}$ with $1 \leq i \leq k$ and $1 \leq j \leq t$. Let $A=$
$\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}$ and $B=\left\{a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{j}{ }^{\prime}\right\}$. We have $M_{1}=\max ((A \cup B) \backslash(A \cap B))$. By Lemma 2, we can verify that the M_{1}-bit of v in P is different from that of v in P^{\prime}, which is a contradiction.

Based on Lemma 4, we have the following corollary.
Corollary 1. Suppose that $P: u^{(0)}, u^{(1)}=N_{a_{1}}\left(u^{(0)}\right), u^{(2)}=N_{a_{2}}\left(u^{(1)}\right), \ldots$, $u^{(k)}=N_{a_{k}}\left(u^{(k-1)}\right)=v$ and $P^{\prime}: v^{(0)}, v^{(1)}=N_{a_{1^{\prime}}}\left(u^{(0)}\right), v^{(2)}=N_{a_{2}{ }^{\prime}}\left(v^{(1)}\right), \ldots$, $v^{(t)}=N_{a_{t}}\left(v^{(t-1)}\right)=v$ are two paths in $X_{n} \in\left\{Q_{n}, M_{n}\right\}$ for any two integers k, t with $1 \leq k, t \leq n$ and $a_{k} \neq a_{t}^{\prime}$. If the following conditions hold:
(1) $<\beta_{i_{1}}, \beta_{i_{2}}, \ldots, \beta_{i_{k}}>=<a_{1}, a_{2}, \ldots, a_{k}>$, where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$;
(2) $<\beta_{j_{1}}, \beta_{j_{2}}, \ldots, \beta_{j_{t}}>=<a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{t}^{\prime}>$, where $1 \leq j_{1}<j_{2}<\ldots<j_{t} \leq n$, then $V\left(\operatorname{path}\left(P, u^{(0)}, u^{(k)}\right)\right) \cap V\left(\operatorname{path}\left(P^{\prime}, v^{(0)}, v^{(t)}\right)\right)=\{v\}$.
Lemma 5. Let the input $a_{0}, a_{1}, \ldots, a_{n-1}$ of algorithm BCIST be any dimensionalpermutation of integers $0,1, \ldots, n-1$ and $X_{n} \in\left\{Q_{n}, M_{n}\right\} . T_{i}$ obtained by Algorithm BCIST is a spanning tree for X_{n} with integer $i=0,1, \ldots, n-1$.
Proof. Without loss of generality, we consider the tree T_{0} obtained by algorithm BCIST. After the n iterations, we have $1+2^{0}+2^{1}+\ldots+2^{n-1}=2^{n}$ nodes in tree T_{0}. Choosing arbitrary two nodes $v^{(1)}$ and $v^{(2)}$ from T_{0}, the $<N_{a_{0}}(u), v^{(1)}>-$ path can be denoted by $N_{a_{0}}(u), x^{(1)}=N_{a_{i_{1}}}\left(N_{a_{0}}(u)\right), x^{(2)}=N_{a_{i_{2}}}\left(x^{(1)}\right), \ldots$, $x^{(k)}=N_{a_{i_{k}}}\left(x^{(k-1)}\right)$ and the $<N_{a_{0}}(u), v^{(2)}>$-path can be denoted by $N_{a_{0}}(u)$, $x^{(1)}=N_{a_{j_{1}}}\left(N_{a_{0}}(u)\right), x^{(2)}=N_{a_{j_{2}}}\left(x^{(1)}\right), \ldots, x^{(m)}=N_{a_{j_{m}}}\left(x^{(m-1)}\right)$, where $0 \leq$ $i_{1}<i_{2}<\ldots<i_{k} \leq n-1$ and $0 \leq j_{1}<j_{2}<\ldots<j_{m} \leq n-1$. By algorithm BCIST, it is easy to verify $<N_{a_{0}}(u), v^{(1)}>$-path and $<N_{a_{0}}(u), v^{(2)}>$-path satisfy the conditions in Lemma 4, which implies that $v^{(1)} \neq v^{(2)}$.

Thus, we can say that T_{0} is a spanning tree rooted at $N_{a_{0}}(u)$ for $X_{n} \in$ $\left\{Q_{n}, M_{n}\right\}$. Noting that u is the child of node $N_{a_{0}}(u)$ and the leaf node in T_{0}, that is, T_{0} is a spanning tree rooted at u.

Lemma 6. [4] Let T and T^{\prime} be two spanning trees rooted at node u for a network $G . T$ and T^{\prime} are independent if and only if for every node $v \in V(G) \backslash\{u\}$, ancestor $(v, T) \cap$ ancestor $\left(v, T^{\prime}\right)=\{u\}$ and ancestor $(v, T) \cup$ ancestor $\left(v, T^{\prime}\right) \supset\{u\}$.

Lemma 7. $T_{0}, T_{1}, \ldots, T_{n-1}$ obtained by Algorithm BCIST are n ISTs for $X_{n} \in$ $\left\{Q_{n}, M_{n}\right\}$.
Proof. We have the following two cases.
Case 1. X_{n} is M_{n}. By Lemma $5, T_{i}$ obtained by Algorithm BCIST is a spanning tree for $V\left(M_{n}\right)$ for integer $i=0,1, \ldots, n-1$. We only need to prove that T_{i} and T_{j} are independent for $0 \leq i \leq j \leq n-1$.

The trivial cases is $n=1$ and $n=2$. Now we consider n with $n \geq 3$. The longest path P_{1} in T_{i} and the longest path P_{2} in T_{j} can be denoted by
$P_{1}: u, x_{0}=N_{a_{i}}(u), x_{1}=N_{a_{i+1}}\left(x_{0}\right), \ldots, x_{n-i-1}=N_{a_{n-1}}\left(x_{n-i-2}\right), x_{n-i}=$ $N_{a_{0}}\left(x_{n-i-1}\right), x_{n-i+1}=N_{a_{1}}\left(x_{n-i}\right), \ldots, x_{n}=N_{a_{i}}\left(x_{n-1}\right)$ and
$P_{2}: u, y_{0}=N_{a_{j}}(u), y_{1}=N_{a_{j+1}}\left(y_{0}\right), \ldots, y_{n-j-1}=N_{a_{n-1}}\left(x_{n-j-2}\right), y_{n-j}=$ $N_{a_{0}}\left(y_{n-j-1}\right), y_{n-j+1}=N_{a_{1}}\left(y_{n-j}\right), \ldots, y_{n}=N_{a_{j}}\left(y_{n-1}\right)$,
respectively, where $0 \leq i<j \leq n-1$.

Let $a_{c_{0}}=a_{i}$ and $a_{d_{0}}=a_{j}$. By lemma 6 , we only need to prove that for any $v \in V\left(T_{i}\right) \cap V\left(T_{j}\right)$, ancestor $\left(v, T_{i}\right) \cap$ ancestor $\left(v, T_{j}\right)=\{u\}$ and ancestor $\left(v, T_{i}\right)$ \cup ancestor $\left(v, T_{j}\right) \supset\{u\}$. Any path in T_{i} and any path in T_{j} can be denoted by P_{3} and P_{4}, respectively, as follows.
$P_{3}: u, x_{0}=N_{a_{c_{0}}=a_{i}}(u), x_{1}{ }^{\prime}=N_{a_{c_{1}}\left(x_{i}\right)}, \ldots, x_{k}{ }^{\prime}=N_{a_{c_{k}}}\left(x_{k-1}{ }^{\prime}\right), x_{k+1}{ }^{\prime}=$ $N_{a_{c_{0}}}\left(x_{k}{ }^{\prime}\right)$ and
$P_{4}: u, y_{0}=N_{a_{d_{0}}=a_{j}}(u), y_{1}{ }^{\prime}=N_{a_{d_{1}}}\left(y_{i}\right), \ldots, y_{l}{ }^{\prime}=N_{a_{d_{l}}}\left(y_{l-1}{ }^{\prime}\right), y_{l+1}{ }^{\prime}=$ $N_{a_{d_{0}}}\left(y_{l}{ }^{\prime}\right)$,
Without loss of generality, suppose that $a_{j}>a_{i}$ and $v \in V\left(P_{3}\right) \cap V\left(P_{4}\right)$. Let $v=a_{c_{w}}=a_{d_{z}}$ where $1 \leq u \leq k$ and $1 \leq z \leq m$. Based on P_{1}, P_{2}, P_{3}, and P_{4}, we define walks W_{1}, W_{2}, W_{3}, and W_{4} as follows.

```
\(W_{1}: a_{i}, a_{i+1}, \ldots, a_{n-1}, a_{0}, a_{1}, \ldots, a_{i}\),
\(W_{2}: a_{j}, a_{j+1}, \ldots, a_{n-1}, a_{0}, a_{1}, \ldots, a_{j}\),
\(W_{3}: a_{c_{0}}=a_{i}, a_{c_{1}}, \ldots, a_{c_{w}}\), and
\(W_{4}: a_{d_{0}}=a_{j}, a_{d_{1}}, \ldots, a_{d_{z}}\).
```

Since $a_{c_{0}} \neq a_{d_{0}}$, we have $x_{0} \neq y_{0}$, which implies that ancestor $\left(v, P_{3}\right) \cup$ ancestor $\left(v, P_{4}\right) \supset\{u\}$. We only need to prove that ancestor $\left(v, P_{3}\right) \cap$ ancestor $\left(v, P_{4}\right)=\{u\}$. We have the following Cases.

Case 1.1. $\max \left(V\left(W_{3}\right)\right) \neq \max \left(V\left(W_{4}\right)\right)$. Since $\max \left(V\left(W_{4}\right)\right) \geq a_{j}$, then we have the following subcases.

Case 1.1.1. $\max \left(V\left(W_{3}\right)\right)<a_{j}$ and $\max \left(V\left(W_{4}\right)\right)=a_{j}$. Then, each node in $V\left(P_{4}\right) \backslash\left\{y_{m+1}{ }^{\prime}\right\}$ and each node in $V\left(P_{3}\right)$ have a leftmost different bit at position a_{j}. Then we have $v=y_{m+1}{ }^{\prime}$ and ancestor $\left(v, P_{3}\right) \cap$ ancestor $\left(v, P_{4}\right)=\{u\}$.

Case 1.1.2. $\max \left(V\left(W_{3} \cup W_{4}\right)\right)>a_{j}$. Then, the $\max \left(V\left(W_{3} \cup W_{4}\right)\right)$-bit of v in P_{3} is different from that of v in P_{4}. It is a contradiction.

Case 1.2. $\max \left(V\left(W_{3}\right)\right)=\max \left(V\left(W_{4}\right)\right)$. Then, we have the following cases.
Case 1.2.1. $\max \left(V\left(W_{3}\right)\right)=\max \left(V\left(W_{4}\right)\right)=a_{j}$. We can verify that $v \neq$ $y_{m+1}{ }^{\prime}$ and $a_{j} \notin\left\{a_{d_{1}}, a_{d_{2}}, \ldots, a_{d_{m}}\right\}$. We can divide path ancestor $\left(v, P_{3}\right)$ into P_{31} and P_{32} as follows.
$P_{31}: u, x_{0}=N_{a_{c_{0}}}(u), x_{1}^{\prime}=N_{a_{c_{1}}}\left(x_{0}\right), \ldots, x_{f-1}{ }^{\prime}=N_{a_{c_{f-1}}}\left(x_{f-2}{ }^{\prime}\right)$ and
$P_{32}: x_{f}^{\prime}=N_{a_{c_{f}}=a_{j}}\left(x_{f-1}{ }^{\prime}\right), x_{f+1}{ }^{\prime}=N_{a_{c_{f+1}}}\left(x_{f}^{\prime}\right), \ldots, x_{w}{ }^{\prime}=N_{a_{c_{w}}}\left(x_{u-1}{ }^{\prime}\right)$.
By Lemma 2, each node in $V\left(P_{31}\right)$ and each node in $V\left(P_{4}\right)$ have a leftmost different bit at position a_{j}. Then, $V\left(P_{4}\right) \cap V\left(P_{31}\right)=\varnothing$. By Lemma 2, $\operatorname{LDF}\left(x_{f}{ }^{\prime}\right.$, $\left.y_{0}\right)=\max \left(\left\{a_{c_{0}}=a_{i}, a_{c_{1}}, \ldots, a_{c(f-1)}\right\}\right)$. Let $A=\left\{a_{c_{f+1}}, a_{c_{f+2}}, \ldots, a_{c_{w}}\right\}$ and $B=$ $\left\{a_{d_{1}}, a_{d_{2}}, \ldots, a_{d_{z}}\right\}$. Furthermore, we have the following cases.

Case 1.2.1.1. $\max ((A \cup B) \backslash(A \cap B))>\operatorname{LDF}\left(x_{f}^{\prime}, y_{0}\right)$. Then, by Lemma 2, the $\max ((A \cup B) \backslash(A \cap B))$-bit of v in P_{3} is different from that of v in P_{4}, which is a contradiction.

Case 1.2.1.2. $\max ((A \cup B) \backslash(A \cap B))=\operatorname{LDF}\left(x_{f}{ }^{\prime}, y_{0}\right)$. By Algorithm BCIST, T_{i} and T_{j} are constructed based on the same CDP. Then, we can verify that $a_{c_{w}} \neq a_{d_{z}}$. By Corollary 1, $V\left(P_{4}\right) \cap V\left(P_{32}\right)=\{v\}$.

Case 1.2.1.3. $\max ((A \cup B) \backslash(A \cap B))<\operatorname{LDF}\left(x_{f}{ }^{\prime}, y_{0}\right)$. Then, by Lemma 2, the $\operatorname{LDF}\left(x_{f}{ }^{\prime}, y_{0}\right)$ bit of v in P_{3} is different from that of v in P_{4}, which is a contradiction.

Case 1.2.2. $\max \left(V\left(W_{3}\right)\right)=\max \left(V\left(W_{4}\right)\right)=M_{1}>a_{j}$. We can divide path sub-path $<u, v>$-path of P_{3} into P_{31} and P_{32} as follows.
$P_{31}: u, x_{0}=N_{a_{c_{0}}}(u), x_{1}^{\prime}=N_{a_{c_{1}}}\left(x_{0}\right), \ldots, x_{f-1}^{\prime}=N_{a_{c_{f-1}}}\left(x_{f-2}{ }^{\prime}\right)$ and
$P_{32}: x_{f}{ }^{\prime}=N_{a_{c_{f}=M_{1}}}\left(x_{f-1}{ }^{\prime}\right), x_{f+1}{ }^{\prime}=N_{a_{c_{f+1}}}\left(x_{f}{ }^{\prime}\right), \ldots, x_{w}{ }^{\prime}=N_{a_{c_{w}}}\left(x_{u-1}{ }^{\prime}\right)$.
We can divide path sub-path $\langle u, v\rangle$-path of P_{4} into P_{41} and P_{42} as follows.
$P_{41}: u, y_{j}=N_{a_{d_{0}}=a_{j}}(u), y_{1}{ }^{\prime}=N_{a_{d_{1}}}\left(y_{i}\right), \ldots, y_{h-1}{ }^{\prime}=N_{a_{d_{h-1}}}\left(y_{h-2}{ }^{\prime}\right)$, and
$P_{42}: y_{h}{ }^{\prime}=N_{a_{d_{h}}}\left(y_{h-1}{ }^{\prime}\right), y_{h+1}{ }^{\prime}=N_{a_{d_{h+1}}}\left(y_{h}{ }^{\prime}\right), \ldots, y_{z}{ }^{\prime}=N_{a_{z}}\left(y_{z-1}{ }^{\prime}\right)$,
By Lemma 2, $V\left(P_{31}\right) \cap V\left(P_{41}\right)=\{u\}$. Clearly, the M_{1}-bit of each node in $V\left(P_{42}\right)$ is different from each node in $V\left(P_{31}\right)$, thus $V\left(P_{42}\right) \cap V\left(P_{31}\right)=\varnothing$. Similarly, we have $V\left(P_{32}\right) \cap V\left(P_{41}\right)=\varnothing$. We only need to prove that $V\left(P_{32}\right) \cap$ $V\left(P_{42}\right)=\varnothing$. Similarly to Case 1.2 .1 , we can verify that $a_{c_{w}} \neq b_{d_{z}}$. By Corollary $1, V\left(P_{32}\right) \cap V\left(P_{42}\right)=\{v\}$.

As a consequence, we have ancestor $\left(v, P_{3}\right) \cap$ ancestor $\left(v, P_{4}\right)=\{u\}$.
Case 2. X_{n} is Q_{n}. The proof is similar to that of Case 1.
Based on the above discussion, by Lemma 6, the lemma holds.
Since there are $(n-1)$! CDPs of $0,1, \ldots, n-1$, based on Lemma 7 , we have the following theorem.
Theorem 1. Based on Algorithm BCIST, there are $(n-1)$! sets of ISTs for $X_{n} \in\left\{Q_{n}, M_{n}\right\}$.

Comparing with the result in [25], all the ($n-1$)! sets of ISTs can provide optimal reliable broadcasting for Q_{n}. As far as the symmetry is concerned, all the $(n-1)$! sets of ISTs can also provide optimal reliable broadcasting for M_{n}.

3.2 Simulation Experiments of ISTs and Disjoint Paths for 0-M4

As it is well-known that JUNG framework is a software library which provides a common and extendible language for the modeling, analysis, and visualization of data that can be represented as a network. Using Java multi-thread and JUNG framework, we can easily construct ISTs for Q_{n} and M_{n}. For example, Fig. 2 illustrates some construction procedures of four ISTs rooted at 1 for $0-M_{4}$. The four trees can be obtained by four steps with parallel fashion.

Based on different CDPs, we can obtain multiple sets of ISTs. Thus, there are different sets of disjoint paths between arbitrary two nodes. Fig. 3(a)-(f) show six sets of ISTs rooted at 1 for $0-M_{4}$ based on the six CDPs mentioned in Section 2.2. Clearly, there are six sets of n disjoint paths between node 1 and any node $v \in V\left(0-M_{4}\right) \backslash\{1\}$, among which the total length of four disjoint paths between node 1 and node v may be different. For example, the four disjoint paths between nodes 1 and 13 in Fig. 3(a) are

```
\(1 \rightarrow 0 \rightarrow 8 \rightarrow 15 \rightarrow 12 \rightarrow 13\),
\(1 \rightarrow 3 \rightarrow 2 \rightarrow 10 \rightarrow 13\),
\(1 \rightarrow 5 \rightarrow 13\), and
\(1 \rightarrow 9 \rightarrow 14 \rightarrow 13\).
The four disjoint paths between nodes 1 and 13 in Fig. 3(c) are
```


Fig. 2. Simulation experiments of ISTs based on JUNG framework. (a) Initialization; (b) The 2nd iteration; (c) The 3rd iteration; (d) The 4th iteration.
$1 \rightarrow 0 \rightarrow 2 \rightarrow 10 \rightarrow 13$,
$1 \rightarrow 3 \rightarrow 11 \rightarrow 12 \rightarrow 13$,
$1 \rightarrow 5 \rightarrow 13$, and
$1 \rightarrow 9 \rightarrow 14 \rightarrow 13$.
The total length of four disjoint paths between nodes 1 and 13 in Fig. 3(c) is shorter than that in Fig. 3(a). Thus, basing on CDPs, we may easily obtain a set of n disjoint paths with better performance between some pairs of nodes.

(a)	$\left(\begin{array}{l}0 \\ \downarrow \\ \vdots \\ \downarrow \\ \downarrow \\ \vdots \\ \downarrow \\ 1\end{array}\right.$	
(b)	(
(c)		
(d)	$\left(\begin{array}{l}0 \\ \downarrow \\ 1 \\ \downarrow \\ \downarrow \\ 2 \\ \downarrow \\ 3\end{array}\right.$	
	$\left(\begin{array}{l}0 \\ \downarrow \\ 2 \\ \downarrow \\ \downarrow \\ 3 \\ \downarrow \\ 1\end{array}\right.$	
(f)		

Fig. 3. Example of ISTs rooted at node 1 and disjoint paths between nodes 1 and 13 in $0-M_{4}$.

4 Conclusions

In this paper, we study the circular dimensional-permutations and reliable broadcasting based on ISTs for the n-dimensional hypercube Q_{n} and the n-dimensional Möbius cube M_{n}. We prove that any circular dimensional-permutation of 0,1 , $\ldots, n-1$ can be used to construct n ISTs, which is the further discussion of IST problem for Q_{n} and M_{n} comparing with the results in literature. Moreover,
we also conduct simulation experiments of ISTs based on JUNG framework and list some disjoint paths for $0-M_{4}$.

5 Acknowledgment

This work is supported by National Natural Science Foundation of China (No. 61170021), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20103201110018), Application Foundation Research of Suzhou of China (SYG201240), the 2011 Program for Postgraduates Research Innovation in University of Jiangsu Province (No. CXZZ11_0100), the 2012 Science and technology innovation team building program of Soochow University (SDT2012B02) and sponsored by Qing Lan Project.

References

1. Abraham, S., Padmanabhan, K.: The twisted cube topology for multiprocessors: a study in network asymmetry. J. Parallel and Distributed Computing 13(1) (1991) 104-110
2. Bao, F., Igarashi Y., and Öhring, S.R.: Reliable broadcasting in product networks. Discrete Applied Mathematics 83(1-3) (1998) 3-20
3. Chen, Y.-S., Chiang, C.-Y., and Chen, C.-Y.: Multi-node broadcasting in all-ported 3-D wormhole-routed torus using an aggregation-then-distribution strategy. J. Syst. Architect. 50(9) (2004) 575-589
4. Cheng, B., Fan, J., Jia, X., and Zhang, S.: Independent spanning trees in crossed cubes. Information Sciences 233(1) (2013) 276-289
5. Cheng, B., Fan, J., Jia, X., Zhang, S., and Chen, B.: Constructive algorithm of independent spanning trees on Möbius cubes. The Computer Journal (2012) doi: 10.1093/comjnl/bxs123.
6. Cheng, B., Fan, J., Jia, X., and Jia, J.: Parallel construction of independent spanning trees and an application in diagnosis on Möbius Cubes. J. Supercomputing (2013) doi:10.1007/s11227-013-0883-1.
7. Cheng, B., Fan, J., Jia, X., and Wang, J.: Dimension-adjacent trees and parallel construction of independent spanning trees on crossed cubes. J. Parallel and Distributed Computing 73(5) (2013) 641-652
8. Cheriyan, J. and Maheshwari, S.N.: Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs. J. Algorithms 9(4) (1988) 507-537
9. Cull, P. and Larson, S.M.: The Möbius cubes. IEEE Trans. Comput. 44(5) (1995) 647-659
10. Curran, S., Lee, O., and Yu, X.: Finding four independent trees. SIAM J. Comput. 35(5) (2006) 1023-1058
11. Fan J.: Diagnosability of the Möbius Cubes. IEEE Trans. Parallel Distrib. Syst. 9(9) (1998) 923-928
12. Fan, J.: Hamilton-connectivity and cycle-embedding of the Möbius cubes. Inf. Process. Lett. 82(2) (2002) 113-117
13. Fan, J., Jia, X.: Embedding meshes into crossed cubes. Information Sciences 177(15) (2007) 3151-3160
14. Fan, J., Jia, X., Lin, X.: Optimal embeddings of paths with various lengths in twisted cubes. IEEE Trans. Parallel Distrib. Syst. 18(4) (2007) 511-521
15. Huck, A.: Independent trees in planar graphs. Graphs and Combinatorics 15(1) (1999) 29-77
16. Hsieh, S.-Y. and Chen, C.-H.: Pacyclicity on Möbius cubes with maximal edge faults. Parallel Comput. 30(3) (2004) 407-421
17. Itai, A. and Rodeh, M.: The multi-tree approach to reliability in distributed networks. Inform. Comput. 79(1) (1988) 43-59
18. Kim, J.-S., Lee, H.-O., Cheng, E., and Lipták, L.: Independent spanning trees on even networks. Information Sciences 181(13) (2011) 2892-2905
19. Kim, J.-S., Lee, H.-O., Cheng, E., and Lipták, L.: Optimal independent spanning trees on odd graphs. J. Supercomputing 56(2) (2011) 212-225
20. Kulasinghe, P., Bettayeb, S.: Multiply-twisted hypercube with five or more dimensions is not vertex-transitive. Inf. Process. Lett. 53 (1) (1995) 33-36
21. Lee, S.C. and Hook, L.R.: Logic and computer design in nanospace. IEEE Trans. Comput. 57(7) (2008) 965-977
22. Liu, Y.-J., Chou, W.Y., Lan, J.K., and Chen C.: Constructing independent spanning trees for locally twisted cubes. Theoretical Computer Science 412(22) (2011) 2237-2252
23. Obokata, K., Iwasaki, Y., Bao, F., and Igarashi, Y.: Independent spanning trees of product graphs and their construction. IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences E79-A(11) (1996) 1894-1903
24. Schlosser, M., Sintek, M., Decker, S., and Nejdl, W.: HyperCuP-hypercubes, ontologies, and efficient search on peer-to-peer networks. Lecture Notes in Computer Science, Vol. 2530. Springer-Verlag, Berlin Heidelberg, Bologna, Italy (2003) 133134
25. Tang, S.-M., Wang, Y.-L., and Leu, Y.-H.: Optimal independent spanning trees on hypercubes. J. Information Science and Engineering 20(1) (2004) 143-155
26. Tseng, Y.-C., Wang, S.-Y., and Ho C.-W.: Efficient broadcasting in wormholerouted multicomputers: A network-partitioning approach. IEEE Trans. Parallel Distrib. Syst. 10(1) (1999) 44-61
27. Wang, Y., Fan, J., Zhou, G., and Jia, X.: Independent spanning trees on twisted cubes. J. Parallel and Distributed Computing 72(1) (2012) 58-69
28. Werapun, J., Intakosum, S., and Boonjing, V.: An efficient parallel construction of optimal independent spanning trees on hypercubes. J. Parallel and Distributed Computing 72(12) (2012) 1713-1724
29. Xu, J.-M., Ma, M., Lü, M.: Paths in Möbius cubes and crossed cubes. Inf. Process. Lett. 97(3) (2006) 94-97
30. Yang, J.-S., Tang, S.-M., Chang, J.-M., and Wang, Y.-L.: Parallel construction of optimal independent spanning trees on hypercubes. Parallel Comput. 33(1) (2007) 73-79
31. Zehavi, A. and Itai, A.: Three tree-paths. J. Graph Theory 13(2) (1989) 175-188

[^0]: * Corresponding author.

