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Abstract. In this paper, a software-and-hardware hybrid simulation method for 

CMP (Chip-MultiProcessor) system is designed, as well as its performance 

model. In detail, the NoC (Network-On-Chip) module is totally simulated by 

the FPGA resource; a software-and-hardware interaction interface of this mod-

ule is provided so that the simulation software running on the on-chip soft core 

can cooperate with the NoC to complete the whole simulation. In other words, 

the most time-consuming and relatively-fixed part is implemented by hardware 

and others are implemented by software, which maintains simulation flexibility 

and high performance owing to the compact on-chip design. We implement this 

design on the Xilinx’s Virtex 5 155T chip and the work frequency is 100Mhz. 

Compared with a typical software counterpart, the simulation speed of NoC is 

more than 3000 times faster; and the advantage is widened further with the in-

creasing injection rate. Moreover, compared with another hybrid method exe-

cuting the software part on the host CPU, it is still fairly faster although the host 

performance is much higher than the on-chip core. 

Keywords: Network on chip, FPGA, Simulation 

1 Introduction 

Networks-on-Chip (NoC) [1][2] is an approach to designing the communication sub-

system between IP cores in a chip, which separates the on-chip communication from 

computing and storage to improve scalability. For multi-core architectures, NoC has 

been regarded as one of the crucial and common components. NoC interacts with 

other functions on-chip, like the cache-coherency (CC) mechanism, the cache-line 

distribution and so on, to affect the whole system efficiency. It means system archi-

tects and researchers must include detailed NoC simulation as part of any complete 

system simulation.  

Detailed NoC simulation is a time-consuming process [3] [4]. Thus quite a few ex-

isting projects [5][6][7][8] have used FPGA resource to emulate NoC for high speed, 

and the reconfigurable feature of FPGA provides a certain degree of flexibility. Fur-



thermore, to simulate the system rather than the NoC itself is the final destination. 

Thus, NoC simulation should interact with other simulation modules efficiently.  

This paper presents a software/hardware hybrid design for such requirements. The 

design principle is: the detailed and time-consuming NoC simulation is totally ac-

complished by the hardware resource (FPGA) and a simple but general purpose inter-

face between the software and hardware simulations has been provided. To reduce the 

roundtrip transfer latency between SW and HW, we use the on-chip soft processor to 

execute simulation software to drive the NoC.   

This paper gives the following contributions: 

1. A general SW/HW hybrid simulation framework of CMP has been designed and 

implemented. The kernel is a configurable NoC simulator on the FPGA and some 

parameters such as data width, network topology, channel FIFO depth, virtual 

channel options, and packet length and so on can be assigned without recompiling / 

resynthesizing. Now in a Xilinx Virtex 5 FPGA chip, a NoC to scale to 16 nodes 

can be simulated with one MicroBlaze CPU on-chip and the work frequency is 

100Mhz. A simple interface between SW and HW is also designed that the simula-

tion software running on the on-chip soft core can cooperate with the NoC. 

2. Performance analysis is given to show under what circumstance such a design is 

preferred. There are two ways to run the simulation software, on the on-chip soft 

CPU or on the host general-purpose CPU. The former usually works on a much 

lower frequency (1/10 ~ 1/30 of the latter) but its interaction speed with the hard-

ware module is very high because they co-exist on the same chip. For the latter, the 

transfer trip between the FPGA and the host application is fairly long. We present a 

sequential and quantitative performance model for such situations 

3. The running efficiency is compared with its software counterpart. Result shows 

that, the NoC speed is 3000 times faster than the 100% software method for the 

simulation of a 4X4 NoC. Moreover, two usage examples are presented: For the 

first, two directory-based CC protocols for the multi-core architecture design have 

been simulated on this framework. In this case, all parts other than the NoC are 

simulated on the on-chip soft core. Compared with the counterpart that executes 

the software part on the host CPU, its speed is much higher because the HW/SW 

transfer latency has been reduced remarkably. The second is a trace-driven case. 

Compared with the counterpart that executes all parts (including the equivalent 

NoC simulation implemented by software) on the host CPU, our method is much 

faster, too. 

2 Related Work 

Many NoC simulators are achieved by software. Some are standalone tools, like 

BookSim [3] and DARSIM [4] while others are used as the interconnection module of 

full-system simulators (GEMS [9], SimFlex[10], etc.). Software implementations are 

very easy for reconfiguration, fast to compile and deterministic. However they are 



quite slow, so that users often have to maintain reasonable running speed at the ex-

penses of simulation accuracy.  

Several FPGA-based NoC simulators have been designed [5], [6], [7], [8], [11] that 

increase simulation performance by 10 times and more. [5] presents an emulation 

environment implemented on an FPGA that is suitable to explore a wide range of 

NoC design-space. It gets a speed-up of 4 orders of magnitude with respect to a 

SystemC simulation of the same network. But re-generating is required when chang-

ing the configuration of the network. 

DRNoC [6] solves this problem based on the re-configurability of FPGAs. 

Speedups of hundreds of time have been achieved in the presented use case compared 

with a non-reconfigurable approach (synthesis based). However, partial reconfigura-

tion requires a special design flow and incurs area overheads; and only a few select 

devices are available. NoCem [7] improves emulation density over [4] and imple-

ments a 9-node mesh network on a single FPGA. Moreover, an example memory 

architecture exploration platform based on this tool has been provided. [8] virtualizes 

a single router on an FPGA, allowing the simulation of a NoC with multiple routers. 

An off-chip ARM processor stores N contexts for the router model and orchestrates 

the emulation of the N-node network. However, the off-chip ARM/FPGA communi-

cation is a performance bottleneck.  

Further, DART [11] virtualizes NoC totally on the chip while no help of any off-

chip CPU is needed. It provides a flexible FPGA-based NoC simulator platform by 

decoupling the simulator architecture from the architecture of the simulated system. 

This technology has been also used in some multi-core CPU simulations, like 

Protoflex [12], RAMPGold [13] and so on. 

Our work can be regarded as an extension of the above-mentioned projects. We de-

sign a straight and efficient HW/SW interface to control and stimulate the FGPA NoC 

module, and give a performance model of such a hybrid design to judge in what case 

it is beneficial in terms of performance.  

A similar hybrid work is [14]. It is focused on how to design the FPGA platform ef-

ficiently, which is used as an emulation plat-

form for the cache and NoC designers to 

verify their designs in cooperation with the 

full-system software simulator. In contrast, 

our work provides a flexible NoC simulator 

on FPGA and all other modules, including the 

cache system, are implemented by software 

on-chip. Then, researchers can explore the 

design space more flexibly as less RTL (Reg-

ister Transfer Level) codes are needed, and 

the SW/HW interaction is more efficient 

owing to the compact on-chip design. 

3 System Design 

 

Fig. 1. Levels of the micro-architecture 

of CMPs. 



From the viewpoint of the system architects or researchers, a chip multi-core proces-

sor (CMP) contains the following levels (Fig.1). 

• Network on Chip: Most NoCs are packet-switched. The router usually implements 

wormhole routing with virtual channel (VC) flow control. Each packet in the net-

work consists of the header flit to setup a route, an arbitrary number of data flits 

that contain the packet’s information and one tail flit that will free the router’s re-

sources. All communications, including explicit accesses issued from CPU cores or 

the others (like control messages used by the CC protocol), are transferred in this 

level. 

• Memory hierarchy: It includes all of cores’ local caches and / or on-chip memories. 

Access requests from CPU cores will be handled by this level before entering into 

the NoC. If CC is maintained by hardware (which is true for most CMP designs to-

day), the corresponding components (for example, the CC directory) are also re-

garded as part of this level.  

• CPU cores and upper-level components.  

In our design, the whole NoC is emulated by FPGA and quite a few of parameters 

can be configured without recompiling. Detailed descriptions of parameters are listed 

in Table 1. Of course, the simulation scale is limited by the available on-chip re-

sources.  

Further, we wrap the hardware kernel to provide control signals for the simulation 

software. From the viewpoint of software, the NoC module works like a function call: 

when all of the upper level’s architecture-states in one simulated cycle have been 

updated, the software simulator invokes the SW/HW interface to promote the NoC 

simulation a cycle. Because the HW running frequency is much higher than the soft-

ware simulation
1
, this sequential design does not affect the simulation speed. 

Table 1. Parameters of the NoC simulator 

Configurations Valid Options 

Topology Mesh,Torus,2D-Torus  

Data width  1-256 bits  

Packet Length 2,4,8,16 words  

Pipeline latency of the router Arbitrary (> 3) 

VC Number 0/2/4  

FIFO Length 2,4,8,16  

                                                           
1 In our design, MicroBlaze and NoC both work at 100Mhz and a machine instruction on the 

MicroBlaze will take at least 3 cycles to complete. Therefore, during a whole NoC cycle, 

there is almost no progress for software. 



3.1 The Internal Design 

From the physical view, the NoC simulator contains multiple nodes connected by a 

crossbar, which allows all-to-all communication mode. Because it can restrict the 

communication pattern through this interconnect, this design is able to model the 

connectivity of the target topology. Then from the viewpoint of simulation, arbitrary 

topologies can be simulated. In the current design, we only introduce 5 entry points 

into one NoC node (North, South, West, East and Local Access Point), which limits 

the number of types that can be simulated. 

Each node is a timing model, including the channel FIFOs, a router and a traffic 

generator: The first sends and receives data-flits to and from the node through those 

points; the second consists of arbitration blocks used to judge what is transmitted and 

when. The traffic generator connects to the Local Access Point to inject data flits into 

NoC. Each node has parameters that can be configured to match the properties of the 

component they simulate, without modifying the RTL codes (using VHDL generics).  

• Traffic Model 

Each data-flit in the NoC is described by a 32-bit value. It contains the metadata 

such as the source / destination addresses, the packet length, a timestamp that indi-

cates when the flit should be forwarded, and the injection time to compute latency at 

the destination. The bit-width is dependent on the range of configuration parameters: 

For a NoC containing 16 nodes, 8 bits are used to represent the source and destination 

IDs, and we reserve extra 4 bits for expansion. Now the maximum of packet length is 

16, so that 4 bits are used here. In addition, the timestamp occupies 6 bits and 10 bits 

for the latency computation.  

For flow control, the credit-based mechanism is used: The upstream router keeps a 

count of the number of free flit buffers in each virtual channel downstream. Then, 

each time the upstream router forwards a flit, thus consuming a downstream buffer, it 

decrements the appropriate count. If the count reaches zero, no further flits can be 

forwarded until a buffer becomes available. Once the downstream router forwards a 

flit and frees the associated buffer, it sends a credit to the upstream router, causing a 

buffer count to be incremented. The 12-bit credit descriptor contains a timestamp (6 

bits) and a virtual channel identifier.  

• Timing Model 

The channel FIFO models the timing information of latency of a wire link; each 

FIFO contains multiple virtual channels (VCs) and a RTL parameter controls the 

number of VCs to incorporate (up to 4 for this design). For each incoming flit, it will 

be queued into its VC and the internal timing logic can compute the corresponding 

de-queue timestamp. 

The router models a four-stage wormhole VC router with credit-based flow control. 

Each router connects to four channel FIFOs and a traffic generator. The deterministic 

routing (X-Y routing) is supported because this simulator is mainly used to simulate 

the mesh (or mesh-like) topologies now. Router latency is modeled by incrementing 



the flit timestamp (it is also configurable) when it leaves. Contention in VC and 

switch allocation is also modeled by adjusting the timestamp appropriately. 

3.2 The Configuration and Result-collection Interface 

The interface contains the following types of signals or modules: 

• Packet Injection: Packet control is written to the channel FIFO for the local access 

point. It will contain the metadata of packet such as source / destination addresses, 

packet length, and so on, which will be used to route the packet. 

• Statistics Export: There are three counters per traffic generator to record the num-

ber of injected and received packets and the cumulative packet latency.  

• Router Metadata: These lines are used to collect running status of each router, 

which can be used to locate and analyze the hot spot(s). Now they mainly consist 

of various VC status signals (empty or full). 

• Clock Signal：The clock signal of NoC is connected to a special strobe register. 

Once this register has been written, a clock signal of high frequency will be issued 

to promote the NoC simulation a cycle.  

• Reset Signal: It is a synchronous signal and the configuration is lost during the 

reset. 

• Simulation configurations: As mentioned earlier, each node has configurable pa-

rameters (packet length, VC Number, FIFO length, etc.). These parameters are 

chained in a 16-bit shift register. A software tool sends the configuration bits over 

an RS232 serial interface.  

From the system point of view, the NoC is a device attached to the processor bus. 

Thus software can access the above-mentioned signals through the memory-address 

mapping mechanism. 

3.3 Performance Model 

A sequential simulation model is presented here. In another word, the simulation 

software works with the hardware NoC sequentially. It is also a common case for 

quite a few widely-used full-system simulators, like SIMICS+GEMS and so on. 

Therefore, the elapsed time for one simulated cycle, E, can be represented by Equa-

tion 1. 

                          E = Tsw + Thw + Tinteraction                 (1) 

Tsw denotes the elapsed time of software execution and Thw is the hardware time. 

The last one represents the roundtrip latency of HW/SW interaction. 

There are two modes of sequential simulation. 

• Both software and hardware simulations are completed in the same chip.  

In this case, both of Tinteraction and Thw are of the order of magnitude of 10 ns, while 

Tsw is much larger. For example, the test of this design shows that MicroBlaze and 



NoC both work at 100Mhz and a machine instruction on the MicroBlaze will take 

averagely 3 cycles to complete. It means the software simulation will consume tens or 

hundreds of instructions to finish a simulated cycle. Then, in this case E mainly de-

pends on Tsw. 

• The software is running on the host. 

Here Thw is still of the order of magnitude of 10 ns and Tinteraction is much larger. Tests 

show that, in our design the average roundtrip latency between the host software and 

the NoC is about 0.3ms (through the GB Ethernet cable). On the other hand the soft-

ware execution time is smaller: for an n-core CPU to simulate m target cores (m >= 

n), it is about 1/(30*n) of the previous version
2
 if we assume the frequency of the 

host CPU is 3Ghz. 

In this case, E equals with (300000ns + Tsw / (30*n)). The conclusion is straight-

forward: if the operation in one simulated cycle is too complex, for example, it takes 

the core on-chip more than 30000 cycles (10ns per cycle) to complete, using the host 

CPU is preferred (just like [14] did); otherwise, the on-chip mode is better. 

4 Implementation and Evaluation 

4.1 Implementation 

We use the open source implementation of NoC emulator [7] as the foundation, which 

is a body of VHDL code configurable by a top-level package file that can create a 

variety of Network on Chips on parameters of data-width, virtual channel implemen-

tations, topology, and in-network buffering lengths.  

We wrap this emulator as described in Section 3.1 to provide the SW/HW interface. 

As mentioned in Section 3.2, because the NoC simulation is actually used as a timing 

model, the original design of in-network buffers has been simplified. In detail, the 

packet header is necessary to be stored and forwarded node by node; for data flits, 

only the corresponding arbitration and flow control behaviors should be simulated 

while no real data-transfer is needed. 

The FPGA platform used is BEE3. One BEE3 module consists of four large Virtex-

5 155T FPGA chips. In addition, up to 4 Gigabit Ethernet interfaces allow a full-

duplex data communication between each BEE3 module and a host server.  

This NoC simulator is created by Xilinx ISE 12.4. For a 4X4 mesh, about 60% of 

FPGA slices have been used and its running frequency is 100Mhz. The remaining 

resources are used to occupy the MicroBlaze CPU. 

                                                           
2 Because the detailed simulation of one core is usually implemented as a large and tightly-

coupled state machine, it is difficult to be parallelized. On the other side, more than one tar-

get core can be simulated in parallel on several host CPU cores as they only interact with 

each other through the NoC. 



BEEcube Platform Studio (BPS) is employed, too, which is a system-level IDE 

specially designed for BEE3. We use soft registers provided by BPS to connect the 

software simulation to the NoC. Such a register works like a normal hardware regis-

ter; the difference lies in that it is used as a bus device that software can access. In 

order to improve the HW/SW interaction performance, several 128-bit-wide soft reg-

isters are used to supply data as much as possible once. 

Moreover, external DRAM has been mapped into the MicroBlaze’s address space 

so that the simulation software on-chip can access enough memory space. Thus, the 

work flow of one simulated cycle is described as follows: 

Step 1) Software reads all output signals of the hardware NoC; 

Step 2) Software completes all simulated events (of the memory hierarchy and / or 

the above level) in the current cycle. 

Step 3) Software updates all input signals of the SW/HW interface accordingly. 

Step 4) Trigger the reg_clk_strobe register. 

4.2 Usage Examples and Tests 

Table 2. Configurations of the comparison 

• Running Performance Comparison 

We use a well-known software NoC simulator, BookSim [15], as the counterpart 

and compare its performance with the FPGA version under different flit-injection-

rates (configuration time is excluded). The flit-injection-rate defines the rate at which 

packets are injected into the simulator; for example, setting flit-injection-rate = 0.25 

means that each node injects a new packet in one out of every four simulator cycles. 

The configurations used by these two simulators are listed in Table.2. 

One Linux server with a 3.2GHz Intel Xeon processor is used to run BookSim; 

multiple flit-injection-rates, from 0.05 to 0.5, are configured respectively to show the 

simulation performance under different loads. 

The speedup (in the right part of Fig.2) is the ratio of the number of cycles simulat-

ed per second in FPGA to that in software. We observe that the software’s simulation 

speed decreases with increasing injection rate (in the left part of Fig.4) while the 

hardware speed is constant. As a result, our simulator achieves greater speed-up at 

higher packet injection rates: The least is more than 3000 as the scale is 4X4 and the 

Topology 2D-Mesh 

NoC Scale 4*4 

FIFO length 8 

Packet Length 1 

Link latency per flit 1 cycle 

Router pipeline latency per flit 4 cycles 



flit-injection-rate is 0.05; when the flit-injection-rate is set as 0.5, the ratio is about 

6000. In addition, as the NoC scale increases, the speed gap will expand further. 

• Comparison with other FPGA-based solutions 

We have collected some information of existing FPGA-based NoC simulators, in-

cluding the running performance, the consumed on-chip resources and the NoC scale 

that can be simulated, and presented them in Table 3. Because the FPGA chips used 

by these works are different, the comparison is for reference only. 

Fig. 2. Performance of the FPGA NoC simulator. In both figures, the X-axis stands for the NoC 

scale and flit-injection-rates. For example, 4X4(0.5) means there 16 nodes and each node in-

jects a new packet in one out of every two simulator cycles. In the left part, the y-axis stands for 

the simulation speed measured in cycles per second. In the right part, the y-axis indicates the 

ratio of the number of cycles simulated per second in FPGA to that in software. 

Table 3. Comparison with other FPGA-based simulators 

 [5] [7] [8] [11] Ours 

Running Fre-

quency(Mhz) 

50 70 6.6 50 100 

On-chip resources 

(slices) 

7387 

(Virtex II 

Pro V20) 

16394 

(Virtex II Pro 

(XC2VP30)) 

N/A 

(Virtex-II 

8000) 

13050 

(Virtex II Pro 

(XC2VP30)) 

11005 

NoC Scale  6 9 N/A3 94 16 

                                                           
3 It supports the time-division multiplexing technology, so that one physical node can simulate 

multiple target nodes (while the simulation speed will be degraded). For example, if a 4X4 

network is simulated, the maximum simulation frequency is 206 kHz. 

 



• CC Examples 

For the 4X4 mesh NoC, we simulate some directory-based CC protocols of CMP at 

the memory-hierarchy level to verify its function. The software is written in C and 

running on the soft processor on-chip. Details are presented as follows: 

─ The whole memory space is shared by all cores. The CC feature is kept by the 

distributed-directory-based hardware, which is the main simulated subject by soft-

ware. 

─ No real CPU core is simulated. Instead, read / write memory accesses from the 

upper-level are created randomly.  

─ On the memory-hierarchy level, a distributed and shared L2 cache including 16 

banks and 16 L1 private caches have been simulated; all connect with each other 

through the 4X4 mesh. From the system point of view, each core has a L2 bank 

and a L1 private cache; the former is also the home directory of the corresponding 

memory-address range assigned to it. All distributed directories construct a global 

table that keeps track of what memory is held and where. 

Now, two variants of the MESI protocol have been implemented: 

Case 1: When one cache-line is to be modified, its owner directory will invalidate 

all copies in L1 caches. 

Case 2: When one cache-line has been modified, its owner directory will replace all 

copies in caches with the new content as well as the copy in the memory. 

A fixed sequence of 10000 memory accesses has been simulated in these two cases; 

the results are presented in Table 4. We can see that the number of elapsed cycles of 

Case 2 is about 164.5% of that of Case 1, although its L1 cache hit-ratio is 160.9% of 

Case 1. The reason lies in that, for Case 2, the communication times is much larger, 

about 229.5% of the other; and the average transfer-latency of a message through the 

NoC is increased from 3.8 cycles to 4.1.  

Table 4. Results of CC Examples 

 Case 1 Case 2 

Simulated cycles 83627 137536 

Cache-hit ratio 16.31% 26.24% 

Number of NoC communications 44131 101300 

Average transfer-latency of a message 3.8 cycles 4.1 cycles 

For Case 1, the whole simulation time is about 2.5s. According to the performance 

model in Section 3.2, if running the CC simulation on the host CPU that interacts with 

the FPGA, the time spent on the roundtrip communications will be more than 25.1s 

                                                                                                                                           
4 DART supports the time-division multiplexing technology, too. Here only the number of 

physical nodes are given. 



(83627 *0.3ms ), which is much more than the on-chip version. Therefore, this mode 

is preferred for such relatively simple simulations.  

In addition, if both simulations (CC and the NoC) are completed by software on the 

host, the estimated running-time is also longer although we take the fastest simulation 

speed of BookSim (about 31000 cycles per second in Fig.4). 

• Trace-driven Example 

This is a real usage. To compare NoC designs with different configurations, we have 

to simulate a few NoC architectures and use the real running trace as the input to 

judge the better design. The trace is collected through the following way: We use the 

Pin [16] to instrument the real target process; in the corresponding callback code, we 

simulate a 16-core CMP’s memory hierarchy with the given configurations but no 

NoC-communication has been simulated. Till now we can get the access-trace for 

NoC and the collected trace contains about 3,200,000 records.  

Then, we use the GB Ethernet cable to transfer records into the chip when a proxy 

program is running on the soft core to receive data to drive the NoC. Although the 

transfer latency of the Ethernet is relatively high, its throughout is enough so that the 

transfer is not the bottleneck. 

It has consumed 29,000,000 cycles or so to complete all records, in 127s. In con-

trast, we use the 100% software solution and the running time is about 710s. 

5 Conclusions 

We have presented a method that allows multi-core system designers to simulate NoC 

and other layers with flexibility and fast enough speed. By providing common 

SW/HW interfaces, the time-consuming and relatively-fixed part, NoC, is implement-

ed by hardware while others are implemented by software. We synthesize this design 

on the Xilinx’s Virtex 5 155T FPGA and some example has been completed to show 

its availability. In addition, performance analysis is given to show under what circum-

stance such a design is preferred: if the operation in one simulated cycle is too com-

plex, using the host CPU for software simulation is preferred although the slow 

HW/SW interaction exists; otherwise, the on-chip mode is better.  
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