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Abstract—The choice of an appropriate dictionary is a crucial step in
the sparse representation of a given class of signals. Traditional dictionary
learning techniques generally lead to unstructured dictionaries which are
costly to deploy and do not scale well to higher dimensional signals.
In order to overcome such limitation, we propose a learning algorithm
that constrains the dictionary to be a sum of Kronecker products of
smaller sub-dictionaries. A special case of the proposed structure is
the widespread separable dictionary. This approach, named SuKro, is
evaluated experimentally on an image denoising application.

I. INTRODUCTION

Dictionary learning algorithms [1] generally lead to unstructured

over-complete dictionaries which are very costly to operate with,

limiting their applicability to relatively low-dimensional problems.

In order to obtain computationally efficient dictionaries, some of

the most recent works in the field employ parametric models in

the training process, which produce structured dictionaries [2]–

[8]. Among the countless possibilities, a promising one is learning

separable dictionaries [2], which can be represented as the Kronecker

product of two sub-dictionaries, i.e. D = B⊗C.

We propose a broader structure class of which the separable

structure is a special case. It consists of a sum of separable terms,

where the number of components serves as a fine tuner for the

complexity-adaptability tradeoff:

D =
∑
r

B
(r) ⊗C

(r). (1)

II. PROPOSED TECHNIQUE

Consider a matrix D ∈ R
n1n2×m1m2 which is the Kronecker

product of two sub-matrices B ∈ R
n1×m1 and C ∈ R

n2×m2 .

The rearrangement operator, defined in [9] and here denoted R(·),
reorganizes the elements of D in such a way that the rearranged

matrix R(D)∈R
m1n1×m2n2 has rank one and can be written as an

outer product of the vectorized versions of B and C.

R(D) = vec(B) vec(C)T. (2)

Now, let us consider a sum of α Kronecker products

D =
α∑

r=1

B
(r) ⊗C

(r) =
α∑

r=1

D
(r). (3)

After rearrangement, we obtain a rank-α matrix, since each term D
(r)

leads to a rank-1 matrix as follows

R(D) =
α∑

r=1

R(D(r)) =
α∑

r=1

vec
(
B

(r)
)
vec

(
C

(r)
)T

. (4)

Therefore, by using (4), we can add a low-rank regularization term

to the original dictionary learning optimization problem in order to

learn a dictionary as a sum of few Kronecker products:

min
D,X

1
2
‖Y −DX‖2F + λ rank(R(D)) (5)

s.t. ∀i ‖xi‖0 ≤ t , ∀j ‖dj‖2 = 1

where the parameter λ ∈ R
+ controls the rank penalty.

III. OPTIMIZATION FRAMEWORK

As typically done in the literature [10]–[12], we solve the problem

in (5) by alternately minimizing on the variables D and X. On the

sparse coding step (minimization with respect to X), we use the

existing Orthogonal Matching Pursuit (OMP) algorithm [13].

On the dictionary update step, we use the nuclear norm (denoted

‖·‖∗) as a convex relaxation of the rank operator [14], yielding

Dictionary update: min
D

1
2
‖DX−Y‖2F + λ‖R(D)‖∗. (6)

The Alternating Direction Method of Multipliers (ADMM) [15]

can be employed to solve such problem. It introduces an auxiliary

variable D̃ = R(D) and a Lagrangian multiplier matrix Z, as shown

in Algorithm 1. The partial update with respect to D̃ (second step

in Alg. 1) is the proximal operator associated to the nuclear norm. It

consists in the singular value soft-thresholding operation [16].

Algorithm 1 Dictionary Update - ADMM

Initialize D0, D̃0, Z0

while ‖Zk+1 − Zk‖
2
F < tol do

Dk+1 = Dk−γ
[
(DkX−Y)XT + µ

(
Dk−R−1(D̃k−Zk)

)]

D̃k+1 = prox λ
µ
‖.‖∗

(R(Dk+1) + Zk)

Zk+1 = Zk −
(
D̃k+1 −R(Dk+1)

)

end while

Normalize columns of D

IV. EXPERIMENTS

We use a patch-based image denoising application to validate the

proposed algorithm. The simulation set-up is the same as in [17] and

is summarized in Table I. We compare our results to the unstructured

K-SVD [11] dictionary, the SeDiL [2] separable dictionary, which

uses a single Kronecker product and a different optimization strategy,

and the ODCT analytic dictionary.

Figure 1 shows the denoised image PSNR as a function of the

number of separable terms in the dictionary, which can be controlled

by the parameter λ in (6). Note that even with very few separable

terms, the results are close to the K-SVD. SuKro may even outper-

form K-SVD for high-noise scenarios, suggesting that imposing some

structure on the dictionary may decrease the problem of overfitting.

Also note that the one-term SuKro dictionary outperforms SeDiL.

Naturally, as the number of separable terms increases, so does the

denoising performance, since the structure becomes more flexible.

The drawback is the increase in the dictionary application complexity.

Figure 2 illustrates the complexity-performance tradeoff. Besides

providing very good denoising performance with quite reduced

complexity costs, the proposed technique has the merit of providing

a range of options on this tradeoff curve.

V. CONCLUSION

The proposed dictionary structure leads to fast operators while

keeping a considerable degree of flexibility. Such tradeoff can be

controlled through the number of terms in the summation. The image

denoising simulations have shown very promising results, specially

for higher noise scenarios. In such cases, the proposed structure

manages to overcome an unstructured dictionary in terms of both

computational complexity and denoising performance.



TABLE I
SIMULATION PARAMETERS

Sample dimension (n) 64

Number of atoms (m) 256

Training samples (N ) 40000

Step-size (γ) 6× 10−9

Lagrangian penalty (µ) 107

Convergence tolerance (tol) ‖D‖F ×10−4

Alternate optimization iterations (Niter) 100

Dictionary initialization (D0) ODCT

Size of sub-matrices B
(r) and C

(r) (8×16)

Size of R(D) (128×128)
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Fig. 1. PSNR vs. rank(D̃) (i.e. the number of separable terms). σ is the
noise standard deviation.
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Fig. 2. Performance (PSNR) vs. Complexity, with noise standard deviation
σ = 50. The number of separable terms is displayed between parentheses.
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