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Abstract. Correctness of workflow design cannot be evaluated by checking the
execution for one single instance of the workflow, because instances, even when
being independent from the data perspective, depend on each other with respect
to the resources they rely on for executing tasks. The resources are shared among
the instances of the same workflow; moreover, other workflows can use the same
resources. Therefore, we enrich the workflow model with the model of its envi-
ronment that captures the resource perspective. This allows us to investigate the
verification of workflows extended with resources in a more general setting than
it was previously done. We focus on the soundness property, which means the
ability to terminate properly from any reachable state of the system, for every in-
stance of the system. We show the decision procedure for soundness and how to
repair a workflow that is unsound from the resource perspective by synthesizing
a controller such that the composition of the workflow and the controller is sound
by design.

1 Introduction

A workflow consists of a set of coordinated tasks describing a flow of work for accom-
plishing some business process within an organization. The occurrence of those tasks
may depend on resources, such as machines, manpower, and raw material. Often, sev-
eral cases (i.e., instances) of a workflow coexist, and they may all concurrently access
the resources. In that sense, the execution of a workflow is similar to executing several
threads of a piece of software.

Correctness of classical and resource-constrained workflows has been formalized in
terms of the soundness property [1,14]. Soundness guarantees that given a finite number
of cases and a number of resources of each type, every case has always the possibility to
terminate. As we restrict ourselves to durable resources in this paper—that is, resources
that can neither be created nor destroyed—soundness also ensures that the number of
resources initially available remains invariant.

The current notion of soundness for resource-constrained workflows assumes a
workflow to be executed in isolation. However, workflows increasingly cross organi-
zational boundaries and are usually intertwined. As a consequence, resources are no
longer internal for a workflow but shared among different workflows. This, in fact, re-
quires a different way of modeling workflows. To do so, we propose to enrich the work-
flow model with an environment capturing the resource perspective of the workflow.



The environment is generic in the sense that it can be parameterized, thereby enabling
the modeling of relevant instances of practical scenarios. More precisely, the environ-
ment allows for borrowing, lending, and permanently adding and removing of resources
of each type up to an initially specified number. Moreover, it also creates the cases of
the workflow that are to be executed, with the number of cases taken from a specified
interval.

We formalize correctness of workflows with shared resources with the notion of
interval soundness, as it considers intervals of cases and resources. Interval sound-
ness is defined for the composition of the workflow and the corresponding instance of
the generic environment. We show that the verification of soundness reduces to check
whether for the workflow it is always possible to terminate in the composition with
the environment. The state of the environment can thereby be neglected because sev-
eral invariant properties hold in the environment model which are necessary for interval
soundness. To further support the design of interval-sound workflows, we present an ap-
proach for repairing an unsound workflow by synthesizing a controller (if exists) such
that the composition of the workflow and the controller is interval sound.

Our contributions can be summarized as follows:

– A generalization of the model for workflows extended with resources to deal with
shared resources;

– A notion of correctness considering intervals of instances and resource vectors and
two procedures to decide correctness; and

– An approach to repair an incorrect workflow based on controller synthesis.

We continue by providing the background in Sect. 2. In Sect. 3, we introduce our
model of resource-constrained workflow nets, the generic environment for modeling the
resource perspective, and define interval soundness. In Sect. 4, we show how interval
soundness can be decided, and repairing unsound workflows is studied in Sect. 5. We
discuss related work in Sect. 6 and close with a conclusion.

2 Preliminaries

In this section, we provide the basic notations used in this paper, such as Petri nets and
workflow nets.

For two sets P and Q, let P ]Q denote the disjoint union; writing P ]Q expresses
the implicit assumption that P and Q are disjoint. A multiset or bag m over P is a
mapping m : P −→ IN; for example, [p1, 2p2] denotes a multiset m with m(p1) = 1,
m(p2) = 2, and m(p) = 0 for p ∈ P \ {p1, p2}. We define operations +,−,=, <,>
,≤,≥ on multisets in the standard way. We overload the set notation, writing ∅ for the
empty multiset and ∈ for the element inclusion. We canonically extend the notion of a
multiset over P to supersets Q ⊇ P ; that is, for a mapping m : P −→ IN, we extend m
to the multisetm : Q −→ IN so that for all p ∈ Q\P ,m(p) = 0. Analogously, a multiset
can be restricted to a subset Q ⊆ P . For a mapping m : P −→ IN, the restriction of m
to the elements in Q is denoted by m|Q : Q −→ IN.

Definition 1 (labeled Petri net). A net N = 〈P, T,W 〉 consists of



– a finite set P of places,
– a finite set T of transitions such that P and T are disjoint, and
– a weight function W : (P × T ) ] (T × P ) −→ IN.

A labeled net N = 〈P, T,W, l, Σ〉 is a net 〈P, T,W 〉 together with an alphabet Σ of
actions and a labeling function l : T → Σ ] {τ}, where τ represents an invisible,
internal action. A (labeled) Petri net 〈N,mN 〉 is a (labeled) net N together with an
initial marking mN , where a marking m : P −→ IN is a distribution of tokens over
the places. The incidence matrix C of N is defined by ∀(p, t) ∈ P × T : C(p, t) =
W ((t, p))−W ((p, t)).

For a transition t ∈ T , we define the preset •t and the postset t• of t as the multisets
of places where every p ∈ P occurs W ((p, t)) times in •t and W ((t, p)) times in t•.
Analogously, we define for a place p ∈ P its preset •p and its postset p•. We also
lift pre- and postsets to sets of places and of transitions. A place p is a source place if
•p = ∅ and a sink place if p• = ∅.

A transition t ∈ T is enabled at a marking m, denoted by m t−→ , if •t ≤ m.
If t is enabled at m, it can fire, thereby changing the marking m to a marking m′ =

m − •t + t•. The firing of t is denoted by m t−→ m′; that is, t is enabled at m and
firing t results in m′. Depending on the context, we interpret a marking m of N either
as a multiset over P or as a vector from P −→ IN. Firing transitions can be extended to

sequences: m1
t1−−→ . . .

tk−1−−−→ mk is a run of N if for all 0 < i < k, mi
ti−→ mi+1.

A marking m′ is reachable from a marking m if there exists a (possibly empty) run

m1
t1−−→ . . .

tk−1−−−→ mk with m = m1 and m′ = mk; for v = t1 . . . tk−1, we also write
m

v−→ m′. Markingm′ is reachable ifmN = m. The setR(m) represents all markings
of N that are reachable from m.

A marking m of N is b-bounded for a bound b ∈ IN, if m(p) ≤ b for all p ∈ P . N
is bounded if every reachable marking is b-bounded for some b ∈ IN. A transition t ∈ T
is live if from every reachable marking m there is a marking m′ such that t is enabled
at m′. If all transitions are live, then N is live. A marking m is a home-marking if from
every reachable marking we can reach m. A set HS of markings of N is a home-space
if for every reachable marking m, there exists a marking m′ ∈ HS such that m′ is
reachable from m.

A place invariant is a row vector I : P → Q such that I · C = 0. When talking
about invariants, we consider markings as vectors.

In the following, we define two composition operators for labeled Petri nets to
model asynchronous composition based on place fusion and synchronous parallel com-
position based on transition fusion. The composition operator⊕merges common places
of two labeled Petri nets.

Definition 2 (asynchronous composition). Two labeled netsN1 andN2 are a-compos-
able if (Σ1∪T1)∩(Σ2∪T2) = ∅. The asynchronous composition of two a-composable
labeled nets is the labeled net N1⊕N2 = 〈P1 ∪P2, T1 ]T2,W1 ]W2, l, Σ1 ]Σ2〉 and
l(t) = li(t) for t ∈ Ti, i = 1, 2.

If N1 and N2 are labeled Petri nets with initial markings mN1
and mN2

, then the
composition is a labeled Petri net with initial marking m0 = mN1

+mN2
.



We define a synchronous composition operator ‖ where, for each common action a,
an a-labeled transition of one labeled Petri net is merged with an a-labeled transition of
the other. If there is more than one a-labeled transition in one of the labeled Petri nets,
then each of these transitions is merged with a copy of the respective transition of the
other labeled Petri net.

Definition 3 (synchronous composition). Two labeled nets N1 and N2 are s-compos-
able if (P1 ] T1) ∩ (P2 ] T2) = (Σ1 ∩ Σ2). The synchronous composition of two
s-composable labeled nets is the labeled net N1‖N2 = 〈P, T,W, l, Σ〉, where

– P = P1 ] P2,
– T = {t ∈ T1 ∪ T2 | l1(t) = τ ∨ l2(t) = τ},

] {(t1, t2) ∈ T1 × T2 | l1(t1) = l2(t2) ∧ l1(t1) 6= τ},

– W ((p, t)) =


Wi((p, t)), p ∈ Pi, t ∈ Ti, li(t) = τ, i = 1, 2,

Wi((p, ti)), p ∈ Pi, t = (t1, t2), i = 1, 2,

0, otherwise,

W ((t, p)) =


Wi((t, p)), p ∈ Pi, t ∈ Ti, li(t) = τ, i = 1, 2,

Wi((ti, p)), p ∈ Pi, t = (t1, t2), i = 1, 2,

0, otherwise

– l(t) =

{
li(t), t ∈ Ti, i = 1, 2,

l1(t1), t = (t1, t2),

– Σ = Σ1 ∪Σ2.

If N1 and N2 are labeled Petri nets with initial markings mN1 and mN2 , then composi-
tion yields a labeled Petri net with initial marking m0 = mN1

+mN2
.

The labeled transition system (LTS) TSN = 〈Q, δ, q̂, Σ〉 of a labeled Petri net
N = 〈P, T,W, l, Σ,mN 〉 consists of a set Q = R(mN ) of states, a set δ of labeled
edges with (q, l(t), q′) ∈ δ iff q t−→ q′ and q, q′ ∈ Q, and an initial state q̂ = mN .

We define the synchronous product of two labeled transition systems in the standard
way: common visible actions are synchronized, all other actions are not. In fact, we have
TSN1‖N2

and TSN1
‖TSN2

are isomorph.

Definition 4 (synchronous product). The synchronous product of two LTSs TS 1 and
TS 2 is the LTS TS 1‖TS 2 = 〈Q1 ×Q2, δ, (q̂1, q̂2), Σ1 ∪Σ2〉 with
δ = {((q1, q2), x, (q′1, q

′
2)) | (q1, x, q′1) ∈ δ1, (q2, x, q′2) ∈ δ2, x ∈ Σ1 ∪Σ2}

] {((q1, q2), τ, (q′1, q2)) | (q1, τ, q′1) ∈ δ1}
] {((q1, q2), τ, (q1, q

′
2)) | (q2, τ, q′2) ∈ δ2}.

Workflow Nets A workflow refers to the automation of processes by an IT infrastruc-
ture, in whole or in part [3]. Workflows are case-based; that is, every piece of work is
executed for a specific case. The workflow definition specifies which tasks need to be
executed for a case and in what order.

We can model a workflow definition as a (labeled) net, thereby modeling tasks by
transitions and conditions by places; the state of a case is captured by a marking of



the net. The assumption that a typical workflow has a well-defined starting point and a
well-defined ending point imposes syntactic restrictions on Petri nets that result in the
following definition of a workflow net [2].

Definition 5 (WF-net). A labeled net N = 〈P, T,W, l, Σ〉 is a workflow net (WF-net)
if it has a nonempty set of transitions, a single source place i, a single sink place f , and
every place and every transition is on a path from i to f .

The short-circuited net Ns of N is the labeled net obtained from N by adding a
transition ts with W ((t, i)) = W ((f, t)) = 1 and l(ts) = τ .

In the first instance, researchers were interested in workflow correctness with re-
spect to a single case. One of the most established correctness properties of WF-nets
is soundness, as introduced by Van der Aalst [1] in the context of one case. Sound-
ness guarantees that the workflow has always the possibility to terminate. Later on,
multi-instance behavior attracted researchers’ attention, where WF-nets are considered
as parameterized systems modeling the processing of batches of tasks, as introduced
in [14]. While in classical workflows cases are considered to be independent and the
modeling of multiple cases in one WF-net requires the introduction of id tokens, in
batch workflows cases are considered to be undistinguishable and mixable (e.g., it does
not matter which employee works on which order) and, as a consequence, cases are
modeled with undistinguishable black tokens. Under certain conditions on the work-
flow structure, called separability, the behavior of the WF-net with undistinguishable
cases (black tokens) is equivalent (up to trace equivalence) to the behavior of the WF-
net with id tokens [14,8,7]. Moreover, every net with id tokens can be transformed into
an up-to-bisimulation-equivalent net with black tokens only [14,17].

Capturing the correctness notion for batch workflow nets requires the use of the
generalized notion of soundness, as proposed in [14].

Definition 6 (WF-net soundness). Let k ∈ IN. A WF-net N is k-sound if, for every
marking m reachable from marking [k · i], we can reach marking [k · f ].

The next definition gives a requirement for the correct design of a workflow that can
be checked using structural properties of the net [15]. Nonredundancy of a place p ∈ P
guarantees that p can potentially be marked with a token in some reachable marking.

Definition 7. Let N = 〈P, T,W, l, Σ〉 be a WF-net. A place p ∈ P is nonredundant if
there exist k ∈ IN and m ∈ INP such that [k · i] ∗−→ m ∧ p ∈ m.

3 Generalizing Resource-Constrained Workflow Nets

We use the notion of resource-constrained workflow nets (RCWF-nets) [16] to extend
the definition of the workflow with resource dependencies of the tasks. The production
net of an RCWF-net is a WF-net in its traditional sense, defining the order of task
execution, resource places model the resource types used by the workflow, and resource
consumption and production are modeled by the arcs from the resource places to the
transitions of the production net, and vice versa.
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Fig. 1. Example of an unsound and a sound RCWF-net.

Definition 8 (RCWF-net). A labeled net N = 〈Pp ] Pr, T,Wp ] Wr, l, Σ〉 is a
resource-constrained workflow net (RCWF-net) if

– Np = 〈Pp, T,Wp, l, Σ〉 is a WF-net, the production net of N ;
– Pp is the set of production places, and Pr is the set of resource places; and
– Wr : (Pr × T ) ∪ (T × Pr) −→ IN is the resource weight function.

The short-circuited net Ns of N is the labeled net obtained from N by replacing Np
with its short-circuit net.

The initial markingmN = [k·i]+R of an RCWF-netN consists of k ∈ IN tokens in
place i, specifying the number of cases in the workflow that are concurrently executed,
and an initial marking for the set Pr of resources places, denoted as a resource vector
R ∈ INPr .

Example 1. We illustrate the previously introduced concepts using Fig. 1. The nets N1

and N2 are RCWF-nets with one resource place r. Arc weights are depicted on the
respective arc unless they are equal to 1. Erasing r and its adjacent arcs from N1 and
N2 yields the (same) production net, a WF-net. This WF-net is k-sound, for any k > 0.

3.1 The Generic Environment

To consider RCWF-nets in the setting where the workflow works within some envi-
ronment that can borrow resources from the workflow or lend more resources to it, we
introduce patterns capturing typical behavior of the resource environment. We consider
the following actions of the environment: borrowing resources (the borrowed resources
are then used by other workflows and they can eventually be returned and made avail-
able for the workflow again), lending resources (i.e., making some additional resources
temporarily available, and eventually taking them back, when unused by the workflow),
permanently removing resources, and permanently adding resources. Actual environ-
ments allow for a (possibly empty) subset of these actions.

We define the generic environment, built as a union of generic environments defined
for every resource type (i.e., place). All the patterns can be obtained by choosing an
appropriate initial marking for the generic environment. The generic environment of a
resource place r is captured in Fig. 2(a). The transitions t↑r and t↓r model permanent
addition and removal of resources correspondingly. Their counterparts t̄↑r and t̄↓r model
the decision of the environment not to lend/borrow a certain number of resources, but
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Fig. 2. Generic resource environment for the resource place r and case environment for a work-
flow with initial place i and final place f .

removing the tokens from places r↑ and r↓. The number of tokens in places r↑ and r↓

in the initial marking gives the bounds for the number of resources that can be added
and removed, respectively. Clearly, choosing 0 as initial marking of r↑ and r↓ makes the
corresponding transitions dead, so they might be removed for the corresponding pattern,
but for the sake of readability, we prefer to use only the initial marking for configuring
the generic environment into a pattern.

Transitions t+r and t−r together with places r+ and r− model lending and borrow-
ing resources in the following way: The number of tokens in r+ and r− in the initial
marking corresponds to the number of resources the environment may lend and borrow,
respectively. Thus having 0 for the initial marking on r+ means that the environment
cannot lend any resource of type r. When the resources are borrowed, the marking of
r+ is increased by the number of borrowed resources, and the firings of t+r will then
correspond to returning those resources by the environment.

The initial marking of the places r↑, r↓, r+, and r− serves thus as the configuration
parameter defining the behavior of the environment. In principle, it is possible to elab-
orate the model further by linking, for example, r↓ and r− by means of choosing the
bound for the total number of resources that can be removed permanently or temporar-
ily. We can model this by introducing the place r−↓ and the arcs depicted by the dashed
lines in Fig. 2(a). The same can be done for other configuration components. Variations
on the environment construction are also possible by linking the scheme for adding and
removing resources for different resource types. We restrict our attention further to the
main structure, without linking the configuration components to each other, although
the results hold for environments restricted in this way, too.

Since borrowing is temporary—that is, under the fairness assumption, the environ-
ment will eventually return the borrowed resources—the choice of the initial marking
for r− does not change the set of markings reachable in the composition of the work-
flow and the environment projected on the workflow places: The workflow can always
wait until the environment returns the resources borrowed and then proceed. The same
applies to lending resources: The workflow can always wait until the environment will
lend it the maximal amount of the resources possible, meaning that the behavior of the
composition is defined by r+. The borrowing/lending part of the environment model
becomes important when time is taken into consideration, also for transitions t+r and



t−r , since borrowing/lending then changes the set of markings reachable in the work-
flow. Note that also transition t̄↓r , decreasing the amount of resources the environment
might remove permanently, only has influence on the set of markings reachable in the
workflow when we take time into account.

To create cases of the workflow, we add a generic case environment to our generic
environment, allowing for an arbitrary number of cases from the interval [k1, k2], for
some k1, k2 ∈ IN, k1 ≤ k2. Figure 2(b) shows the construction. The place c (creation)
contains initially k1 tokens (i.e., the lower bound of cases to be created), the place d
(dismissable) contains k2−k1 tokens (i.e., cases that can but do not have to be created),
and place e (end) is empty. For every case that is not created, a token is produced in the
place e by firing te. Thus, if all created cases terminate (modeled by a token in f for
each case), the place e contains on the termination k2 tokens.

Definition 9 (generic environment). Let N = 〈Pp ] Pr, T,Wp ] Wr, l, Σ〉 be an
RCWF-net. The generic environment ofN is a labeled Petri netE such thatE andN are
a-composable with ((Pp]Pr)∩PE) = Pr]{i, f} andE = 〈PE , TE ,W,mE , lE , {τ}〉
is defined as

– PE = Pr ] Pe ] {i, f, c, d, e} with Pe = {r−, r+, r↑, r↓, r̄↑1 , r̄
↑
2 , r̄
↓
1 , r̄
↓
2 | r ∈ Pr},

– TE = {t−r , t+r , t↑, t↓, t̄↑r , t̄↓r | r ∈ Pr} ] {tc, td, te, tf},
– W ((r−, t−r )) = W ((r, t−r )) = W ((t−r , r

+)) = W ((t+r , r
−)) = W ((t+r , r)) =

W ((r+, t+r )) = W ((r↑, t↑r)) = W ((t↑r , r̄
↑
2)) = W ((t↑r , r)) = W ((r↑, t̄↑r)) =

W ((t̄↑r , r̄
↑
1 , )) = W ((r↓, t↓r)) = W ((t↓r , r̄

↓
2)) = W ((r, t↓r)) = W ((r↓, t̄↓r)) =

W ((t̄↓r , r̄
↓
1 , )) = 1 for r ∈ Pr and

W ((c, tc)) = W ((tc, i)) = W ((d, td)) = W ((d, te)) = W ((td, i)) =
W ((te, e)) = W ((f, tf )) = W ((tf , e)) = 1,

– mE(p) =



mN (p), p ∈ Pr
m−r , p = r− and m−r is the maximal number of

resources r the environment can borrow
m+
r , p = r+ and m+

r is the maximal number of
resources r the environment can lend

m↓r , p = r↓ and m↓r is the maximal number
resources r the environment can remove

m↑r , p = r↑ and m↑r is the maximal number of
resources r the environment can add

k1 ∈ IN, p = c

k2 − k1 ∈ IN, p = d

An environment 〈E,mE〉 of N consists of E and a concrete initial marking mE .

3.2 Interval Soundness for RCWF-nets with an Environment

We adapt the definition of soundness for WF-nets to RCWF-nets with an environment.
Soundness of an RCWF-net N with an environment 〈E,mE〉 guarantees that the un-
derlying production net of N is k-sound, for every k in the interval; that is, also in the



presence of resources, a case has always the possibility to terminate. In addition, we put
two conditions on the resources: First, all resources that are initially available in N and
E are again available when all cases are terminated. Second, at any reachable marking,
the number of available resources does not increase the number of initially available
resources. These two criteria are a consequence of our restriction to durable resources,
because they ensure that no resources are created or removed.

To guarantee the previous conditions, we define four necessary conditions that are
captured in the notion of a well-defined composition of N and an arbitrary environment
〈E,mE〉. The first condition ensures that the production net of N is k-sound, for every
k in the interval. The second condition ensures that no resource tokens can be created
by the WF-net; that is, for every firing sequence, the number of resource tokens put
by N on the resource places does not exceed the number of tokens taken by N from
the resource places (meaning that then every reachable marking has a resource vector
R′ ≤ R, unless the environment can add tokens to the resource places). The third
condition states that there exists a place invariant for the places c, d and e, guaranteeing
that the number of cases remains constant. Likewise, the fourth condition requires that,
for every resource place, there exists a place invariant, guaranteeing that the number of
resources remains constant.

Definition 10 (well-defined). Let N be an RCWF-net such that the production net of
N does not have redundant places. Let 〈E,mE〉 be an environment of N . The compo-
sition N ⊕ E is well-defined if the following four properties hold:

1. The production net of N is k-sound, for all mE(c) ≤ k ≤ mE(c) +mE(d).
2. ∀x ∈ ZZT : (C · x)|Pp]{e} ≥ 0 implies (C · x)|Pr

≤ 0.
3. There exists a place invariant Ip such that Ip(c) = Ip(d) = Ip(e) = 1 and, for all
p′ ∈ PE \ {c, d, e}, Ip(p′) = 0.

4. For each r ∈ Pr, there exists a place invariant Ir satisfying Ir(c) = Ir(d) =
Ir(e) = 0, Ir(r) = 1, and ∀r′ ∈ Pr \ {r} : Ir(r

′) = 0.

The absence of redundant places is necessary for applying invariant techniques. The
next lemma shows that a well-defined composition is bounded.

Lemma 11. Let N be an RCWF-net and 〈E,mE〉 be an environment of N . If N ⊕ E
is well-defined, then it is bounded.

Proof. Boundedness of the resource environment follows from Definitions 10(2),(4)
and of the case environment from Definition 10(3). The latter argument and Defini-
tion 10(1), which implies boundedness of the production net, implies boundedness of
N . ut

For a well-defined composition N ⊕ E, we can define interval soundness, which is
a more general variant of the soundness notion as defined in [13,5].

Definition 12 (interval soundness). Let N be an RCWF-net and 〈E,mE〉 be an en-
vironment of N such that N ⊕ E is well-defined. Then, N is sound with 〈E,mE〉 if
for all m ∈ R(mN⊕E) : m

∗−→ m′ such that m′(e) = mE(c) + mE(d). If mE is not
relevant, we say N is interval sound.



Definition 12 captures at least the following relevant instances of interval soundness:

– (k,R)-soundness [13,5] (i.e., we consider a fixed number k of cases and a fixed
resource vector R) if mE(p) = 0, for all p ∈ Pe ] {d} and mE(r) = R(r), for all
r ∈ Pr;

– up-to (k, [R,R+])-soundness (i.e., (k,R′)-soundness for all R ≤ R′ ≤ R+ but the
initial resource vector R can be increased up to R+ at runtime) if mE(d) = 0 and
mE(r↓) = 0, for all r ∈ Pr and mE(r↑) = R+(r)−R(r), mE(r) = R(r) for all
r ∈ Pr;

– down-to (k, [R−, R])-soundness (i.e., (k,R′)-soundness for all R− ≤ R′ ≤ R but
the initial resource vector R can be reduced down to R− at runtime) if mE(d) = 0
and mE(r↑) = 0, for all r ∈ Pr and mE(r↓) = R(r) − R−(r), mE(r) = R(r)
for all r ∈ Pr;

– up-to, down-to (k, [R−, R+])-soundness (i.e., (k,R)-soundness for all R− ≤ R ≤
R+ but the initial resource vector R can be reduced down to R− or increased up
to R+ at runtime) if mE(d) = 0 and mE(r↑) = R+(r) − R(r), mE(r↓) =
R(r)−R−(r), mE(r) = R(r).

We now relate the previous variants of interval soundness, thereby generalizing
them from a fixed number k of cases to an interval [k1, k2] of cases.

Lemma 13. For any RCWF-net N and k1, k2 ∈ IN with k1 ≤ k2, we have

1. N is ([k1, k2], R′)-sound for all R ≤ R′ ≤ R+ iff N is up-to ([k1, k2], [R,R+])-
sound.

2. N is down-to ([k1, k2], [R−, R])-sound implies N is ([k1, k2], R′)-sound for all
R− ≤ R′ ≤ R.

3. Let R = R+. N is down-to ([k1, k2], [R−, R])-sound iff N is up-to, down-to
([k1, k2], [R−, R+])-sound.

Proof (Sketch). It suffices to prove the three statements for k, k1 ≤ k ≤ k2.
(1) ⇒: Let m0 be the initial marking for (k,R′)-soundness with R′ = R+ and

m′0 be the initial marking for up-to (k, [R,R+])-soundness. Clearly, we have m0|Pr
≥

m′0|Pr
. Let m′0

σ−→ m′. Then by the monotonicity of the firing rule and construction of

E, we have m0

σ|TN−−−−→ m and m|Pr
≥ m|Pr

. Thus, if we consider the projection of
markings to N , then every marking that is reachable for up-to (k, [R,R+])-soundness
is also reachable for (k,R′)-soundness.
⇐: Any resource vector R′ within the interval can be reached by firing transitions

t↑r , for all r ∈ Pr. Then, every run in the composition for (k,R′)-soundness can be
replayed in the net for up-to (k, [R,R+])-soundness.

(2) Similar argumentation as in the reverse implication of (1), but this time transi-
tions t↓r and t̄↓r have to be fired.

(3)⇒: Similar argumentation as for the implication of (1).
⇐: Use argumentation in (2) to decrease the resource vector to R. ut

The next lemma gives a necessary condition for interval soundness, thereby justify-
ing the restriction to well-defined compositions of N and E.



Lemma 14 (necessary condition). Let N be an RCWF-net and 〈E,mE〉 be an envi-
ronment of N . If N is sound with 〈E,mE〉, then N ⊕ E is well-defined.

Proof. (1) k-soundness of the production net of N follows from [16, Cor. 4.1].
(2) Follows from [16, Thm. 4.4].
(3) Existence of an invariant I follows from [16, Thm. 4.8] and by the construction

of E, we have I + (c+ d+ e) is also an invariant.
(4) By [16, Thm. 4.8], a resource invariant exists for all r ∈ Pr. Moreover, we have

the following invariant: r + r− + 2r+ + 2r↑ + 2r̄↑1 + r̄↑2 + r↓ + r̄↓1 + 2r̄↓2 , for r ∈ Pr.
So the sum of these two invariants is the resource invariant we are looking for. ut

Example 2. Consider the RCWF-netN1 in Fig. 1(a) and its environmentE (see Fig. 4(a)
for the entire composition). The production net of N1 is k-sound, for k > 0, and
i+ p+ q+ f + c+ d+ e is a place invariant in the production net. Furthermore, no re-
source token is created inN1, and r+p+2q+r−+2r++2r↑+2r̄↑1 + r̄↑2 +r↓+ r̄↓1 +2r̄↓2
an invariant for resource place r. Thus, N1 ⊕ E is well-defined. For the same reason,
N2 ⊕ E is well-defined. However, N1 is not (k,R)-sound for all k = R(r). For exam-
ple, for k = r = 2, firing transition t twice yields a deadlock [2 · p]. In contrast, N2 is
(k,R)-sound for R(r) > 1 and any k. This example exemplifies that well-definedness
is only a necessary condition for interval soundness.

4 Deciding Interval Soundness

Definition 12 (interval soundness) gives an immediate decision procedure: An RCWF-
net N is sound with 〈E,mE〉 if the set {m | m(e) = mE(c) +mE(d)} of markings is
a home-space in N ⊕E or respectively m = [(mE(c) +mE(d)) · e] is a home-marking
in the projection of reachable markings of N ⊕ E to the places of N .

Theorem 15 (decision I). Let N be an RCWF-net and 〈E,mE〉 be an environment of
N such that N ⊕ E is well-defined. Then, N is sound with 〈E,mE〉 if the set {m |
m(e) = mE(c) +mE(d)} of markings is a home-space in N ⊕ E.

Note that we have one decision algorithm, for every instance of interval soundness.
As checking a home-space property is decidable [12], we can conclude:

Theorem 16 (decidability). Let N be an RCWF-net and 〈E,mE〉 be an environment
of N . Checking whether N is sound with 〈E,mE〉 is decidable.

In the literature, soundness is often reduced to showing that the short-circuited
(RC)WF-net is live and bounded. The reduction works if the transition ts consumes
all k cases from the place f and produces k tokens on the place i. Figure 3 illustrates
this. The drawback of this construction is that it requires to check a different net for
every k. As we consider N with an environment, we propose the following generic
reduction to liveness and boundedness:

Theorem 17 (decision II). Let N be an RCWF-net and 〈E,mE〉 be an environment of
N such thatN⊕E is well-defined. LetEs be obtained fromE by adding a transition ts
with W ((e, ts)) = X(c) + X(d), W ((ts, d)) = X(d), and W ((ts, c)) = X(c). Then,
N is sound with 〈E,mE〉 iff all transitions TN ] {ts} of N ⊕ Es are live.
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Fig. 3. The RCWF-net N is not (3, 1)-sound: The firing sequence t1t2t4t1 yields the marking
[2 · f, p1] which is a deadlock. Nevertheless, the short-circuited net of N is bounded and live.
However, if the transition ts consumes all k cases from the place f and produces k token on the
place i, then the short-circuited net of N is not live.

Proof. ⇒: As N does not have redundant places, it does not have dead transitions in its
production net and ts is not dead either, so we conclude that all transitions in TN ]{ts}
are live.
⇐: From liveness of the transition ts, we conclude that it is always possible to reach

a marking m with m(e) ≥ mE(c) +mE(d). The number of tokens in e at m cannot be
greater than mE(c) +mE(d) by the invariant in Definition 10(3). Moreover, all places
of the production net Np of N are unmarked in m by the k-soundness of Np. Firing ts
at m yields m′ where the places c and d contain the same number of tokens as in the
initial markingmZ . Because of the invariants covering all places ofE (Definition 10(3)
and (4)), we conclude that m′ is reachable from mZ . Hence, markings m are a home-
space in N ⊕ Es, and N is sound with 〈E,mE〉. ut

Example 3. Using Theorem 17, we can show that the RCWF-net N1 is not (k,R)-
sound whereas the RCWF-net N2 is.

5 Repairing Interval Unsound RCWF-Nets

In the previous section, we presented an algorithm to decide interval soundness of an
RCWF-netN . However, designing an interval-sound workflow or adjusting a workflow
if some functionality or the environment has been changed is a nontrivial and error-
prone task even for experienced process designers. In order to support process design-
ers, we introduce an approach to repair an interval-unsound RCWF-net N if possible
so that interval soundness is achieved by design. Clearly, the repaired workflow should
be seen as a suggestion to the process designer rather than the ultimate solution.

Requiring the composition N ⊕E to be well-defined reduces the cause of unsound-
ness to a deadlock or a livelock due to the lack of resources during the production
process (see Lemma 11). To repair an RCWF-net N , we therefore propose to automat-
ically construct a controller C that controls those transitions of N that produce tokens
on or consume tokens from a resource place. This way, we control the order in which
certain tasks may occur and prevent the workflow from getting stuck.



Technically, a controller is a labeled Petri net C and will be composed with N ⊕E
by merging transitions of N only. These merged transitions of N are then controlled
by C in the composition. Another technicality that we leave out in the following is
ensuring that the nodes of E and C are pairwise disjoint.

Definition 18 (controller, repairable). Let N be an RCWF-net and 〈E,mE〉 be an
environment of N . A labeled Petri net C is a controller of N ⊕ E if C and N are
s-composable and replacing Z in Definition 12 with C‖N ⊕ E yields soundness of N
with 〈E,mE〉. If there exists a controller of N ⊕ E, then N ⊕ E is repairable.

The following algorithm synthesizes a controller of N ⊕ E. It takes the state space
of N and the environment E as its input, and it outputs an LTS which can, in a next
step, be easily transformed into a labeled Petri net.

Definition 19 (controller construction). Let N be an RCWF-net and and 〈E,mE〉 be
an environment of N such that Z = N ⊕E is well-defined and has a finite state space.
Let Σ ⊆ ΣN be the set of synchronized actions, and let TSZ = 〈QZ , δZ , q̂Z , Σ〉 be
the LTS of Z after relabeling all actions x ∈ ΣN \ Σ to τ . Define a sequence of LTSs
TS i, i = 0, 1, . . . inductively as follows:
Base : TS 0 = 〈Q0, δ0, Q0, Σ〉 with

− Q0 = 2QZ ,

− δ0 = {(Q, x,Q′) ∈ Q0 ×Σ ×Q0 | Q′ = {q′Z | ∃qZ ∈ Q : qZ
τ∗xτ∗

−−−−→ q′Z}},
− Q0 = {qZ | q̂Z

τ∗

−−→ qZ}.
Step : TS i+1 = 〈Qi+1, δi+1, Q0, Σ〉 with

− Qi+1 = Qi \ {Q ∈ Qi | ∃(qZ , Q) ∈ TSZ‖TS i :

(qZ , Q) 6 ∗−→ (q′Z , Q
′) ∧ q′Z |{e} = k1 + k2}1,

− δi+1 = δi ∩ (Qi+1 ×Σ ×Qi+1).

Let j be the smallest number with TS j = TS j+1. If Q0 ∈ Qj , then the corresponding
labeled Petri net C of TS j is a controller of N ⊕ E.

The construction of C allows some level of flexibility: We do not assume all transi-
tions of N to be controllable as we restrict the set of labels of TS j in the construction
to a subset Σ of the alphabet ΣN . That way, we take into account that not all tasks in
a workflow can be controlled. We assume the nodes of C and E to be pairwise dis-
joint; that is, the controller cannot control actions of the environment. (If one would
find it possible to control actions of the environment, we could adapt our construction
by labeling certain transitions of E and adding those actions to the alphabet of C.)

Note that C is not necessarily a WF-net, because it may have more than one sink
place; thus, the composition N‖C is not an RCWF-net but a labeled Petri net.

Our main result of this section is that a composition N ⊕E is repairable if and only
if the algorithm in Definition 19 outputs an LTS with at least one state.

Theorem 20 (justification). Let N be an RCWF-net, 〈E,mE〉 be an environment of
N , andC be the labeled Petri net constructed according to Definition 19. Then,C exists
iff N ⊕ E is repairable.

1 For the sake of readability, we see the state q′Z as its corresponding marking in Z.
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Fig. 4. Illustration of the controller construction (see Definition 19) for N1 ⊕ E, assuming an
initial marking [3 · i, 3 · r, r↓] (i.e., the transition tc has been fired three times) for purposes of
simplification. The state Q2 contains a deadlock and will be removed in one of the iterations.

Proof. ⇒: Suppose C is a controller of N ⊕ E. As TS 0 is the largest structure, there
must be a largest i such that there exists a simulation relation of (the state space) of C
by TS i. If there is no simulation relation of C by TS i+1, then (N⊕E)‖C must violate
soundness because this is the reason for removing further states from TS i.
⇐: The construction of TS j and thus of C terminates because finiteness of TSZ

ensures that TS 0 is also finite and only removes states and transitions from TS 0 when
constructing TS j . If the resulting TS j is nonempty, it must be a controller of N ⊕ E
because all reasons not to be a controller have been erased: We removed all states from
which N cannot reach a final state and we iteratively check this. ut

So, Definition 19 yields the most permissive controller of N ⊕E. Other, more spe-
cific controllers that have less behavior can also be constructed, for example, by as-
signing costs to each transition in N and constructing a controller that has the least
cost.

Example 4. Figure 4 illustrates the controller construction for N1 ⊕ E. For the sake
of readability, we keep the size of each controller state (i.e., the number of markings
N1⊕E can be in) small by choosing [3 ·i, 3 ·r, r↓] to be the initial marking ofN1⊕E—
the state space of the controller remains the same. Initially, N1 ⊕ E can be in any of
the three markings of the initial state Q0 of TS . Firing the transition t, yields the three
markings depicted in the state Q1 of TS . The state Q2 (depicted by a dashed frame) is
removed in one of the iterations of the construction, because the marking [i, 2 · p, r̄↓2 ]
is a deadlock and no final marking. The complete LTS TS , the controller, has 12 states
and realizes tu(tv + vt)u(tv + vt)uv. Composing the resulting labeled Petri net C of
TS with N1 ⊕ E yields a sound net C‖N1 ⊕ C. Note that the composition operator ‖
requires one copy for each occurrence of the transition t, u, and v in C.



6 Related Work

The verification of soundness for RCWF-nets has been investigated by many researchers.
On the one hand, interval soundness is a more restrictive instance compared to sound-
ness in [21,13,5], as we assume the number of cases and resources to be fixed within
an interval. On the other hand, it is more general because we assume resources to be
shared among workflows rather than internal to a workflow. We incorporated this in
our model by enriching the model of RCWF-nets as proposed in [6,13] with a generic
environment modeling the resource perspective of a WF-net. Moreover, we are neither
restricted to one resource type as [13] nor to certain subclasses of WF-nets as [5]. Re-
source problems with an unbounded number of resource items have been studied in [9].

RCWF-nets can be seen as parameterized (or multi-threaded) systems with two pa-
rameters: the number of cases to be executed and the number of available resources.
Verification of parameterized systems is a popular topic, but must approaches investi-
gate safety properties with unbounded parameters (e.g., [18]) whereas we assume fixed
bounds but consider with soundness a liveness property. A resource interface in [11]
defines a safety property over the resources for open system; we defined the generic
environment E and hence deal with a closed system. There also exist extensions of the
temporal logics CTL and ATL to reason about resources [10,4]. Although the problem
instances considered in this paper can be expressed in terms of those logics, verification
would require to check the system for all parameters.

Our approach to repair unsound workflows is based on classical controller synthe-
sis [20] and has been defined for Petri nets and soundness in [22]. For an overview of
Petri net-based controller synthesis approaches, we refer to [19]. Most of these works
focus on the net structure and properties different from soundness; moreover, the main
application are manufacturing systems where one tries to construct a scheduler. In con-
trast, we construct a controller such that the net is robust and thus sound.

7 Conclusion

We investigated the correctness of workflows with shared resources, called interval
soundness. To do so, we proposed to enrich the workflow model with a generic en-
vironment capturing the resource perspective. An instance of this generic environment
models a specific environment that specifies an interval of workflow instances to be
created and available resources for each resource type. The generic environment gener-
alizes the existing workflow model extended with resources and captures environments
of practical relevance. To decide interval soundness for every instance of the generic
environment, we presented two decision procedures, both using invariant properties
of the environment. Furthermore, we showed a way to support the design of correct
workflows by automatically synthesizing a controller such that the composition of the
workflow and the controller is interval sound.

In ongoing work, we are interested in determining a smallest resource vector (based
on given requirements) that guarantees soundness. Likewise, we aim at determining
the largest resource vector that guarantees soundness or proving that increasing some
resource vector does not influence the soundness result. Constructing more specific
controllers by assigning costs to transitions is another direction of future work.
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