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Abstract. We consider push-down automata with dat@£B) that operate on
variables ranging over the set of natural numbers. The tiondion variables are
defined via gap-order constraint. Gap-order constraittsvaio compare vari-
ables for equality, or to check that the gap between the sadfiéwo variables
exceeds a given natural number. The messages inside the ssmequipped
with values that are natural numbers reflecting their “vellu&/hen a message is
pushed to the stack, its value may be defined by a variableiprilgram. When
amessage is popped, its value may be copied to a variable, Wewbtain a sys-
tem that is infinite in two dimensions, namely we have a staakmay contain an
unbounded number of messages each of which is equipped waltueal num-
ber. We present an algorithm for solving the control statehability problem
for PDAD based on two steps. We first provide a translation to the sporeding
problem for context-free grammars with datar@D). Then, we use ideas from
the framework of well quasi-orderings in order to obtain Eyo&thm for solving
the reachability problem for €5Ds.

1 Introduction

Model checking has become one of the main techniques foritliguc verification
of computer systems. The original applications were founddntext of finite-state
systems, such as hardware circuits, where the behavioe sf/dtem can be captured by
a finite state machine. In the last two decades, there habedsoa large amount of work
devoted to extending model checking so that its can handtetlavithinfinite state
spaces such as Petri nets, timed automata, push-down systeamter automata, and
channel machines. Recent works have considered systetrar¢hafinite inmultiple
dimensions. For instance, many classes of timed protocelgsaaameterizedconsist
of unbounded numbers of components), and hence they cantiralhamodeled by
timed Petri netd10]. Also, many message passing protocols have behaviatsate
constrained by timing conditions, giving risettmed channel systenfs].

In particular, Push-Down AutomatagR) have been studied extensively as a model
for the analysis of recursive programs (e.g., [12, 33, 2B, ZFhe model of PA has
been extended to allow quantitative reasoning with resgetime [1] and probabil-
ities [26, 24]. However, all existing models assume fintt#es control, which means
that variables in the program are assumed to range over fiaiteins. In this paper,
we consider an extension obR, which we call ®AD, that strengthens the model in
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two ways. First, in addition to the stack, @&b also operates on a number of vari-
ables ranging over the natural numbers. Furthermore, easkage inside the stack is
equipped with a natural number which represents its “vali&us, we get a model
that is possibly unbounded in two dimensions, namely we havenbounded number
of messages inside the stack each of which has an attribatéstla natural number.
The operations allowed on the stack are the standasthand pop operations. How-
ever, when pushing a symbol to the stack, its value may beatkfmbe the value of a
program variable. Also, when a message is popped, thenlite vaay be copied to a
variable. A BAD allows comparing the values of variables according togidue-order
constraint system, where two variables may be tested faaliguor for checking that
there is a minimal gap (defined by a natural number) betweervalues of the two
variables. Also, a variable may be assigned a new arbitrey the value of another
variable, or a value that is at least some (given) naturalbarrtarger than the value
of another variable. In this manner, the model afa® subsumes two known models,
namely that of BA (which we get by removing the variables in the program and by
neglecting the values of the symbols in the stack), and thaetraf Integral Relational
Automatg15] (which we get by removing the stack).

In this paper, we show decidability of the control reachgbproblem for PAD.
Given a control (local) state of the automaton, we check indrghe automaton reaches
the state from its initial configuration. We solve the prabli& two steps. We introduce
a class ofContext-Free Grammars with Da{@rGD). In a CFGD, each non-terminal
has an arity. The grammar generatsnseach of which is either a terminal or a non-
terminal equipped with a tuple of natural number (as manysaarity). An application
of a production rewrites a term tosatof terms. Such an application is constrained by
the arguments of the involved non-terminals. The condaire defined by gap-order
conditions. For €GD, we solve a reachability problem in which we ask whether it is
possible to derive a set of terms each of which is a terminaliggng to a given set of
terminals. In the first step of our method, we give a reacliglaihalysis algorithm that
solves the above mentioned problem faraDs.

The algorithm is based on a constraint representation afiiefsets of terms, and it
is formulated within the framework of well structured trdim systems [4, 6].

The second step of our method translates a givexoHinto a G-GD so as to exploit
the corresponding reachability analysis procedure toesobwntrol state reachability for
PDADS.

To our knowledge our result yields a new decidable fragmEpashdown automata
with data (see Section 10).

2 Preliminaries

In this section, we introduce some notations and definitibaswe will use in the rest
of the paper. We usl to denote the set of natural numbers.

We fix a finite set? of variables that range ové¥. A valuationis a mapping
Val: ¥ — N, i.e., it assigns a natural number to each variable. Giveariablex e 7/,
a natural numbec € N, and a valuatioval : ¥ — N, we useVal[x — c] to denote the
valuationVal defined as followsval (x) = ¢, andVal (y) = Val(y) for all ye (\{x}).
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A renamings a mappindRen: ¥ — 4/, i.e., itrenames each variable to another one.
A renamingRendoes not need to be injective, i.e., several variables magrmemed to
the same variable biren We say thaRenis a renaming foW if Ren(x) e W for all
Xe V.

For a setA, we useA* to denote the set of finite words ov&r We uset to denote
the empty word. For wordg1, 02 € A*, we used; - a» to denote the concatenation of
a7 andas.

A transition systenis a tuple(Y, yinit, —>» whereY is a (potentially infinite) set
of configurationsyinit € Y is the initial configuration, and—c Y x Y'is the transition
relation. As usual, we writg— y' to denote thaty,y) e—, and use-*- to denote
the reflexive transition closure ef—. For a configuratiorye Y and a sel’ < Y of
configurations, we usge—= I to denote thay — y for somey €I

3 Push-Down Automata with Data

In this section, we introducBush-Down Automata with Dat@DAD) that are exten-
sions of the classical model of Push-Down AutomataA} First, we define the model,
then we define the operational semantics, i.e., the trangtistem induced by aDRD,
and finally we introduce the reachability problem. As in thase of a BA a PDAD op-
erates on an unbounded stack to which it can push (appengdpagesand from which
it can pop (remove) message in last-in-first-out manner.méssages are chosen from
a finite alphabet. BADS extend BAs in two ways. First, in addition to the stack, the
automaton is equipped with a finite set of variables rangirey aatural numbers. Sec-
ond, each message inside the stack is equipped by a natunélenthat represents its
“value”. The allowed operations on variables are definedh&gap-orderconstraint
system [15, 31]. More precisely, the model allows non-deieistic value assignment,
copying the value of one variable to another, and assignofenvaluev to some vari-
able such thav is larger of at least a given natural number than the curreahitevof
another variable. The transitions may be conditioned big tésmt compare the values
of two variables for equality, or that give the minimal allesvgap between two vari-
ables. Apushoperation may copy the value of variable to the pushed messagl a
popoperation may copy the value of the popped message to a lariab

Model. A PDAD 4 is a tupl&Q, ginit, A, Ay whereQ is the finite set of statesjnit € Q is
the initial state A is the stack alphabet, arddis the transition relation. We remark that
the stack alphabet is infinite since it consists of péitg) whereais taken from a finite
set and/ is a natural number. A transitiahe A is a triple{qs, op, 02) whereqs, g2 € Q
are states andp is anoperationof one of the following forms: (inopis an empty
operation that does not change the values of the variabtbs @ontent of the stack, (ii)
X < * assigns non-deterministically an arbitrary valu&lito the variable, (iii) y < x
copies the value of variableto y, (iv) y — (>¢ x) assigns non-deterministically yoa
value that exceeds the current valuexdfy c (so the new value of is > x+c), (V) y =X
checks whether the value pis equal to the value of, (vi) x <¢ y checks whether the
gap between the values pfandx is larger thare, (vii) push(a) (x) pushes the symbol
ac Ato the stack and assigns to it the valuexpénd (viii) pop(a) (x) pops the symbol
ae A (if ais the top-most symbol at the stack) and assigns its valuestodriablex.
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Transition SystemA PDAD induces a transition system as followscénfigurationy is
a triple(q, Val,a) whereg e Q is a stateVal : 7 — N is a valuation, andi € (A x N)*
defines the content of the stack (each element of the wordasr égyc) wherea is the
symbol anct is its value).

We define the transition relation—:= Ugp —5>, where—2- describes the effect
of the transitiord. For configurationy = (g, Val,a), y = (¢, Val',a’), and a transition

0 ={q1,0p,q2) € A, we Writey—5> Y to denote thay = q1, d = g2, and one of the
following conditions is satisfied:

— opisnop Val' = Val, anda’ = a. The values of the variables and the stack content
are not changed.

— opis X < %, Val = Val[x < c] wherece N, anda’ = a. The value of the variable
x is changed non-deterministically to some natural numbee. vialues of the other
variables and the stack content are not changed.

— opisy <« x, Val = Vally < Val(x)], anda’ = a. The value of the variablg is
copied to the variablg. The values of the other variables and the stack content are
not changed.

— opisy « (>¢Xx), Val = Val]y < c], wherec’ > Val(x) + ¢, anda’ = a. The vari-
abley is assigned non-deterministically a value that exceedvdhes ofx by c.
The values of the other variables and the stack content archaoged.

— opisy = x, Val(y) = Val(x), Val = Val, anda’ = a. The transition is only enabled
if the value ofy is equal to the value of The values of the variables and the stack
content are not changed.

— opis x <c¢Y, Val(y) > Val(x) + ¢, Val = Val, anda’ = a. The transition is only
enabled if the value of is larger than the value ofby more tharc. The values of
the variables and the stack content are not changed.

— opis push(a) (x), Val' = Val, anda’ = (a,Val(x)) - a. The symboh s pushed onto
the stack with a value equal to thatyof

— opis pop(x) (a), a = (a,cy-a’ for somece N, andVal = Val[x < c]. The symbol
ais popped from the stack (if it is the top-most symbol), asdsdlue is copied to
the variablex.

We define thenitial configurationyinit := {Clinit, Valnit, €y, whereValnit(x) = 0 for all
xe 7. In other words, we start from a configuration where the aatomis in its initial
state, the values of all variables are equal to 0, and th& gaampty (the fact that we
choose to initialize the variables to 0 is not crucial forvaag the problem).

For a configuration and a states Q, we writey —— q to denote thay —— y =
{q,Val,a) for someVal: v — N anda € (A x N)*.

In other words, fromy we can reach a configuration whose statg is

Reachability Problemin the reachability problemaD-REACH, given a BAD 4 =
(Q,dinit,A,A) and a stat€jarget € Q, We ask whetheyinit R Otarget:
4 Context-Free Grammars with Data

In this section, we introduc€ontext-Free Grammars with Daf@CFGD) that are ex-
tensions of the classical model of Context-Free Grammars) @ which (terminal
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and non terminal) symbols are defined by terms with free begaand productions
have conditions defined by gap order constraints. We defementbdel, the operational
semantics, and the reachability problem.

Model. A Context-Free Grammars with Dat&€FGD) is a tupleg = (S, Xinit, P), where

S is a finite set oymbols Xyt € $ is thestart (or initial) symbo] andP is the set of
productionsEach symboK has ararity p (X) € N that is a natural number. Without loss
of generality, we assume thatXinit) = 1. Atermhas the fornK(xy, ..., xn) whereX e

S, p(X) =nandxy,...xn € ¥ are variables. Ayround termhas the fornX(cy,...,cn)
whereX € 5, p(X) = nandcy,...c, € N are natural numbers. For a teovof the form
X(X1,...,X%) we defineSym(o) = X andVar (o) = {x1,...,X}. We defineSym(o) for

a ground terno similarly. A (ground) sentence is a finite se{ 01,02, - ,0n}, where
eacha; is a (ground) term. We definBym(a) := {Sym(o1),...,Sym(on)}, i.e., it is
the set of symbols that occurén For a termo = X(x1,...,X,) and a valuatioval, we
defineVal(o) := X(Val(x1),...,Val(x,)) to be the ground term we get by substituting
each variable; in o by Val(x). For a sentence, we defineval(a) similarly.

A condition8 is a finite conjunction of formulas of the forms< .y orx =y, where
X,y € ¥ andc e N. Herex <. y stands forx+ ¢ < y. Sometimes, we treat a condition
B as set, and write e.@x <¢ y) € 0 to indicate thak <y is one of the conjuncts if.
For a valuatiorval, we useVval(0) to denote the result of substituting each variatile
6 by Val(x). We useVal = 8 to denote thaVal(B) evaluates tarue. We useVar(0) to
denote the set of variables that occuBin

A production pis of the formo ~» a : 6, whereo is a term,a is a non-empty
sentence, anéis a condition. We often use the notation-» o1 --- 0, : 6 to denote the
productiono ~» {01,...,0n} : 0 (i.e. a sequence in the right-hand side denotes a set of
terms). We use( to denote the set of non-terminals consisting of symboksabeur in
the left-hand side of a production (we say that they are defiyea production). We use
7 to denote the set of terminals consisting of symbols thatdd@eocur in the left-hand
side of a production. Furthermore, we uge to denote the set of ground terms with
symbols in7 .

Transition SystemA configurationy is a ground sentence. We define a transition rela-
tion — on the set of configurations by—; := Upep 2, where-% represents the
effect of applying the productiop. More precisely, for a productiope P of the form
o~ : B, we havey, — ys if there is a valuatioval 6 suchthayy = o’ U {Val(o)}
andy; = o’ u {Val(a)}.

For a seSof ground terms, we defirere(S) to be the set of ground ternaswhich
can, through the single application of a production, geleeaaonfiguratioy < S(i.e.,
0 — Y). LetPre* (-) denote the transitive closure Bfe(-).

We will use the following lemmata later in the paper.

Lemma 1. Leta be a ground sentence gf. Then, if for every ground term € a, we

haves —; a” for some ground sentencé such that Syrfa”) < 7, thena — o’
for a’ such that Syrfo’) < 7.

Lemma 2. Let S be a set of ground terms amtie a ground term such thate Pre* (S).
If o ¢ S then there is a ground terai € (Pre(S)\S).
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Reachability Problem.In the reachability problem G-GD-REACH, we are given a
CFGD G = (S, Xinit, P) and we are asked the question whetkigf(0) i>g o for some
ground sentence such thaSym(a) < 7 . In other words, we start from a configuration
consisting of the start symbol with its parameter is equalei®, and ask whether the
system can reach a configuration where all its ground terms $yanbols in7 .

CFGD VSCFG A Context-Free Grammars (G) is defined by production of the form
S— w wherew is a word defined over terminal and non terminal symbols. We ca
encode a €G as a GGD by associating to each terminal/non terminal syn¥{xcept
the initial) a termX(a, b) in which (a,b) are used to maintain an order in the right-hand
side of arule. For instance, the producti®n SaSs encoded via the 5D production

S(x,y) — {S(x,2),a(z,t),S(t,y)} i x<zz<tt<y.

CFGD vs CMRS GCraGD also differ from the CMRS model [7]. CMRS is obtained
by combining multiset rewriting and Gap Order constraintd & is aimed at model-
ing concurrent processes. CMRS rules have multiple heatlsvark over multisets of
monadic terms (i.e. with a single argument, no nested tefiggrently from CMRS,
CFGD productions have a single term in the left-hand side andef $etms in the right-
hand side. This implies that multiple occurrences (withgbhee variables) of a term
like p(x,y) are counted only once. Furthermore, non-terminal symbeNe larbitrary
finite arity.

5 Symbolic Encoding

In this section, we define the symbolic representation us#tki definition of the reach-
ability algorithm (Section 6). The algorithm operatesammstraints where each con-
straint characterizes a (potentially) infinite Jed] of ground terms. Aconstraintgis
of the forma : 6 whereg is a term and is a condition. We defin€ym(¢) = Sym(o)
andVar (@) = Var(o) u Var(8).

Definition 3. The constraintp characterizes a set of ground terms defined]ly=
{o’|3Val. (Val = 6) A (0" = Val(0)}. For afinite set of constraint®, [®] = [ Jyqe [¢]-

Without loss of generality, we can assume tat(6) = Var (o), and thaB is consistent
(constraints with inconsistent conditions characterima@® sets of configurations, and
can therefore be safely discarded from the reachabilitfyaisd. A termX(xq,...,Xn)

is said to bepureif x; # x; whenevei # j. A constrainto : 8 is saidpureif o is pure.
We can assume without loss of generality that all conssangé pure. The reason is
that if a variablex occurs (say) twice then the two occurrences oin be replaced by
two different variabley; andy, provided that we add a new conjungt= y» to the
conditionB. For constraintg, @, we useg = @ to denote thaty subsumespy, i.e.,
[¢] = [¢2]. Then, it is easy to see that checking whetfie= @ can be reduced to
the satisfiability problem for an existential Presburgemnfala (which is known to be
NP-COMPLETE[34]).

Lemma 4. For constraintsgs, ¢, the problem of checking whether = ¢, is decid-
able.
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The following lemma states that we can transform any coimstgaof the form
o : Bto an equivalent constraintear(@) of the formao : 8’ such thavar(6') = Var(o)
(i.e., we remove the extra-variablégar (0)\Var (o)) from 6 in order to satisfy the
assumption tha¥ar (6) = Var(o)).

Lemma 5. [31] Given a constraintp of the formo : 6, we can construct a constraint
clean@) of the formo : 8’ such that Vaf®') = Var (o) and[cleano)] = [¢].

Given two termso; and oz, we say thatoi; matchesoy iff Symop) =
Sym(oz). For matching terms; = X(x1,...,%,) and o2 = X(y1,...,¥n), Wherea,
is pure, we defineRergf to be a renaming such thﬂerﬁi(yi) =x for all i:
1 <i < n. Consider a productiorp = 0 ~ 01---0, : 6 and constraintsp; =
07 : 01,...,¢0 = O, : B, such thato; and of are matching, and such that is
pure for alli : 1 <i<n We definep@® - ® @, to be the constraint :
GARergi(el) /\---ARergf;(en). For a set® of constraints, and productiop €
P, we definePre, (®) := {clean@)|3@1,..., he P.¢ = pR@Q1--- @ n}. We define
Pre(®) := UpepPrep (®). Intuitively, Pre(®) defines a finite set of constraints that
characterize the terms which can, through the single agic of a production, gener-
ate a set of terms each of which belongsto

Lemma 6. Uycprew) [¢] = Pre([®]).
For the setr of terminals, we define

&, :={a(x,..., X)) :truelae 7, p(a) =n}

Notice thatd. denotes the set of configurations whose symbols are in

6 Reachability Analysis

In this section, we present an algorithm for solving the heddlity analysis problem for
CFGDs, and prove its partial correctness. The algorithm (Abfoni 1) inputs a €GD
G = {5, Xnit, P) and answers the guestion whether we can reach a sentence alher
the occurring terms are iat (i.e. terms with symbols irr). The algorithm maintains
two sets of constraints: a SBéExplore, initialized to®, of constraints that have not
yet been analyzed; and a &tfplored, initialized to the empty set, of constraints that
contain constraints that have already been analyzed.

The algorithm preserves the following four invariants:

1. For eachu e [ToExplore U Explored], 0 — o for somea s.t.Sym(a) < 7.

2. If Xinit(0) —*, a for someaq s.t. Syma) € 7, then there is a ground terme
[ToExplore] such that ¢ [Explored].

3. Xinit(0) ¢ [Explored].

4. [@;] < [ToExplore u Explored].

It is easy to see that the third and fourth invariants will besgrved. More precisely,
for the third invariantExplored is initially empty, and the condition at line 5 prevents
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Algorithm 1: Reachability analysis for a&&D.
Input: A CFGD G = (S, Xinit, P)
Output: Is there a subset of terminal symbdis= 7 reachable ing ?
ToExplore « @ ;
Explored «
while ToExplore # ¢ do
remove some from ToExplore;
if Xinit (0) € [@] then return true;
else if 3¢/ € Explored. ¢ = @then discardg;
else
L ToExplore < ToExplore u Pre(Exploredu {@});

Explored — {@} U {¢/|¢/ € Explored A (9= ¢)};

0 return false

© 00 N o g B W N P

=

adding any constraint whose symbolXgi and parameter equals to 0 Eeplored.
The fourth invariant holds initially sincBoExplore uExplored =P, U J = O.,.
This invariant is preserved since each time we remove a i@nsfrom ToExplore
(line 4), itis either eventually moved Explored (line 9), or (in case it is discarded at
line 6) there is already a constraipite Explored with [¢'] = [¢]. Also, each time we
remove a constrainf from Explored (line 9), we add the constraigtto Explored
where[q] 2 [¢].

Below, we show that the first two invariants are also preserimtially, the first
invariant holds sincéToExplore U Explored) = @, . The second invariant also holds
initially sinceExplored = ¢J and[ToExplore] = [®. ] # &J. Due to the first two in-
variants, the following two conditions can be checked dygach step of the algorithm:

— From the second invariant,ToExplore becomes empty then the algorithm termi-
nates with a negative answer.

— From the first invariant, if a constraiptis detected such th¥,;: (0) € [¢], then the
algorithm terminates with a positive answer.

If neither of the two conditions is satisfied, the algorithrgeeds by picking and re-
moving a constrainp from ToExplore. Two possibilities arise depending on the value
of o:

— If there exists a constrainy € Explored with ¢ = @, then we discardp. The
first invariant is preserved since this operation will notlahy new elements to
[ToExplore U Explored]. If Xiit(0) = a for somea s.t.Syma) < 7, then the
second invariant and the fact tHjgl] < [Explored] imply that there is still some
o € ToExplore such thato ¢ [Explored]. This means that the second invariant
will also be preserved by this step.

— Otherwise, we compute the elements Bfe(Exploredu @), add them in
ToExplore, move @ to Explored, and remove all constraints iBxplored
that are subsumed by. Let Explored®? and Explored®" be the con-
tents of the setExplored before resp. after performing the operation. De-
fine ToExplore®!® and ToExplore™¥ analogously. The operation preserves the



Push-Down Automata with Gap-Order Constraints 9

first invariant as follows. Pick ang € [ToExplore™¥ U Explored™¥]. If o €
[ToExplore®?d U Explored®d] then the result follows by the first invariant.
Otherwise we know that € [Pre(Explored®®u {@})], i.e., 0 —; a where

o < [Explored®?u {@}] (see Lemma 6). By the induction hypothesis and the

first invariant, we know that every ground terai € a, o’ Lg o’ for some
o’ s.t. Sym(a’) € 7 . Hencea —*>; a” for somea” s.t. Syma”) < T (see
Lemma 1). In other wordsy —; o —; o s.t. Syma”) < 7. The opera-

tion also preserves the second invariant as follows. AsstiragXit(0) i>g

a for somea s.t. Syma) < 7. There are two cases. If there iscae [®]
such thato ¢ [Explored™®¥], then by the fourth invariantr € [ToExplore™|
and the invariant holds immediately. Otherwigeé, | < [Explored®®¥]. Since
Xinit (0) Lg a we have also thaXit(0) € Pre* ([Explored®¥]). By the third
invariant, we know thaki:(0) ¢ [Explored®®¥] . By Lemma 2 that there is a
ground termo € (Pre([Explored®])\ [Explored®¥]). Since[Explored™®¥] =
[Explored®?u {@}] it follows that o € [Pre(Explored®?u {@})] and hence
O € [ToExplore™].

This give us the following theorem.

Theorem 7. Algorithm 1, under termination assumption, always retdra torrect an-
swer.

7 Termination

In this section, we show that Algorithm 1 is guaranteed tmteate. To do that, we first
recall some basics of the theory of well and better quaserimds. Then, we introduce a
new class of constraints that we cfidit constraintsand show that they are better quasi-
ordered. We show that each condition can be translated imtodoer of flat constraints.
We use this to show that the set of conditions is well quadered under set inclusion.
This leads to the well quasi-ordering of the set of constsgjof Section 5). Finally, we
show the termination of the algorithm.

WQqos andBQos. A Quasi-Ordering(or a Qo for short), is a paikA, <) where< is

a reflexive and transitive binary relation on the 8etA QO (A, <) is aWell Quasi-
Ordering(WQo), if for each infinite sequenas, az, as, ... of elements oA, there are
i < j such thai; < a;. The following lemma follows from the definition of a $o.

Lemma 8. For Qos < and <’ on some set A, ikc<’ and< is aWqQo then<' is a
Waoo.

Given a @ (A <), we define a @ (A*,<*) on the set of word#A* such that
ajay---am <* aja,-- - &, if there is an injectiorh : {1,...,m} — {1,...,n} such that
i < jimpliesh(i) <h(j) foralli,j:1<i,j<m andg < a;](i) foreachi: 1<i<m

We define the relatios” on the powerser (A) (finite set of elements iA) of A, so
thatA; <? Ay if Vap e Ap.3a; € Aj.a1 < ap.
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We define the relatiosP on the Cartesian produsg x ... x A, of orders(A;, <;)
fori:1,...,n sothatas,...,any <P(@,....a ) if & <ja fori:1,....n.
In the following lemma we state some properties af®* [10, 28].

Lemma9. - EachBgQoisWqgo.
— If Ais finite, then(/A,=) is aBQo, and{? (A),<) is aBQo.
- (N,<)isaBqo.
— If (A, <iyisaBqQofori:1,....,nthen(A; x ... x Ay, <P)is aBqo.
- If (A,<)is aBQo, then{? (A),<* ) is aBQo.

Flat Constraints.Fix a set” = {x1,...,X,} of variables. A flat constrainp over ¥’ if
of the formAgC1A; - - - CAm, Wherecy,...,cne N, andAg, Ay, ..., An iS a partitioning
of V,ie, ¥V =AbuALU--- UAW A # I, andA nAj = J if i # j. In other words,
a flat constraint is a word which alternatively contains sdtsariables and natural
numbers, starting and ending with a set of variables. Thedastraintp characterizes
an infinite sefY] of vectors ovelN of lengthn, i.e., [W] < N". More precisely, define
hy : {1,...,n} — {0,...,m} such thaty (i) = kif x € Ax. v={dy,...,dn) € [Y] iff the
following conditions are satisfied for allj : 1 <i,j <n:

— di =d; if hy(i) = hy(j).
— 1f hy (i) = k. andhy(j) = k+ 1 theng, 1 < d; — d.

In other words, the variabbe representd; in . If two variables are mapped to the same
set then their values should be identical. Furthermorey#tearal numbers; define the
gaps between values of variables belonging to the diffesets. For flat constraints
Y = AgC1A1 - - CmAm andy’ = AGCi A - - - CLAy, over v, we write < |’ to denote that
(i) A=A foralli:0<i<mand(ii)c <c foralli:1<i<m. The followinglemma
follows from the definitions.

Lemma 10. Y < ¢/ implies that[y] = [W'].
By Lemma 9 it follows that
Lemma 11. < is aBQo on the set of flat constraints.

Proof. We first observe that flat contraints can be viewed as tupléls at most

K = |¢| partitions and%’ | — 1 constants and we can always add finite sequences such
as Q0...0g to considerK-tuples only. From Lemma 9, we know thd¥, <) and

(? (¥),=) are BQos. Thus, the Cartesian prodyet (7) x N)X=1 x o () with < is

still a BQo.

Flattening. Consider a conditio® with Var(0) = {xi,...,X,} (recall the definitions
of conditions and constraints from Section 5). We defiBto be the set of vectors
v ={di,...,dny € N", such that there is a valuatidfal with Val = 8 andVal(x;) = d

for alli : 1 <i < n. Furthermore, for two conditions on the same set of variable
define® = ' iff [8] = [0']. A flatteningof 6 is a flat constrainty overVar(6), of the
form AgC1A1 - - - CmAm Wherec, ..., ¢y = 0 are minimal natural numbers such that the
following conditions are satisfied:

4 The technical definition of Bos is quite complicated and can be found in e.g. [10]. The &ctua
definition is not needed for understanding the rest of thepamd is therefore omitted here.
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— If (x=y)eBthenx,ye A forsomei:1<i<m
— If (x<cy) €6, xe A, andye A thenc < (Zﬂ(:iﬂ(cknLl)—l).

Intuitively, variables which are required to be equalthyare put in the samk;. Also,
variables which are ordered accordind@tare placed sufficiently far apart to cover the
corresponding gap. We defirre(0) to be the set of flattening & In general conditions
induce a partial order between variables. The flatteningados all linearizations with
minimal gaps (constants) between variables. Notice tlgs#t is finite. As an example,
consider the conditior <, y,x <1 z Since there are no constraintsyandz, we have
three different flattening where< zory = zory > z, namely{x}2{y}0{z}, {x}2{y, z},
and{x}1{z}0{y}.

We define an ordering on conditions such th&< 0’ if for eachy’ € # (¢) there
isaWe 7 (0) with @ < /. From Lemma 10 we get the following.

Lemma 12. 6 < 6’ implies that[08] = [6'].

The following lemma follows from Lemma 9 and Lemma 11.

Lemma 13. < is aBQo (and hencaV Qo) on the set of conditions.

From Lemma 13, Lemma 12, and Lemma 8 we get the following lemma
Lemma 14. The set of conditions i/Q0 underc.

The following lemma then holds.

Lemma 15. The set of constraints M/Q0 underc.

Proof. Consider an infinite sequence of constraigisip,, @3, . ... Since the sety U T
is finite, there is an infinite sequenige< i < iz < --- such thaBym(@,) = Sym@,) =
Sym@,) = ---. If Sym@;) € 7 then the result follows immediately (sindey; | =
{Sym(@;) } forall j > 1). Otherwise, we can assume, without loss of generaliygth
is of the formX (xy, ..., %) : 8;;. Notice that eacNar (6;;) = {xi,...,xn} is a condition
over{xi,...,Xn}. By Lemma 14, there arp< k such thad;; = 6;,, and hencey; = @, .

Termination. The reason why the algorithm always terminates is that offilyite set
of constraints can be addedReplored. This can be explained as follows. By defini-
tion, a new elemeny is added tExplored only if ¢f = @, for eachq already added
to Explored. This means that the constraints addeEiplored form a sequence
@1, @2, @3, ..., such thatp = @; for all i < j. By WQo of = (Lemma 15) it follows that
this sequence is finite. This gives the following theorem.

Theorem 16. Algorithm 1 is guaranteed to terminate.

8 Translation

Reachability with Empty StacksWe consider a different variant ofbRD-REACH
which we call BAD-REACH-EMPTY. An instance of BAD-REACH-EMPTY is de-
fined by a PAD 2 = (Q,0init, A,A) and a stat@arget € Q, and we are asked whether
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Vinit =, y for somey of the form{Garget, Val, €), i.e., we ask whether we reaghget at

a configuration where the stackampty Given an instance of BAD-REACH, defined
by a PAD 2 = (Q, Ginit,A,A) and a stat@jarget € Q, We derive an equivalent instance
of PDAD-REACH-EMPTY as follows. We construct a newpRD 4’ from 2 by adding

a new stat@pnewto Q, and adding a transition labeled witlopfrom Giarget t0 Gnew: FOr
each membea € A of the stack alphabet, we add a self-loopgpa, that popsa (with
any value). The two problem instances are equivalent asvisll Suppose thajnew

is reachable with an empty stack #1. Then, the run ofz’ reachinggnew must have
passed througharget (Sincednew can only be reached fromyarger). This means that
Otarget iS reachable im . On the other hand, suppose thatget is reachable im . Then,
4’ can simulate the run of until it reacheSyarget. From there, it takes the transition to
Onews @nd starts executing the self-loops, popping all the sysibahe stack until the
stack becomes empty.

From PDAD to CFGD. Suppose that we are given an instance AP REACH-EMPTY
defined by a BAD 4 = (Q,init,A,A) and a stat@jarget€ Q. Let {X1,...,xn} be the
set of variables that occur ir. We derive an equivalent instance oF&-REACH
defined by a €GD G = (S, Xinit, P). The setr of g is defined by the singleton st}
and we assume that the aritytos 0 (i.e.,p(t) = 0). The set of\l of ¢ is defined as
follows: For each pair of stateg, gz € Q and symbohe Au { L}, with L ¢ A, we have
a nonterminakK g, aq,) € A With arity 2n+ 1. The symboll is used to denote that the
stack ofg is empty. The set of non-terminal sgt contains the initial symboXin;i; (by
definition).

In the following, lety denote a vectafy, . . ., yny of lengthn, and defing([i] :=y; for
irl<i<n Forvectorg=<(z,...,Z,yandy =(y1,...,¥n), We USEZ =Yy (resp.Z#; y
for somej : 1< j < n) to denote the conditioh\; _; .,z =Yi (resp.\ 1<icn) n (i2j) 4 =
yi). Furthermore, for brevity, we sometimes shorten a cortjan®f conditionst; A
... ABpinto alistBy,..., 0.

Intuitively, a non-terminal of the fornXq, a4,y (Y,Z ¢) represents a run of from a
configuration where the stateds, the topmost stack symbol&and its corresponding
value is given by the valué (if a = | then the stack is empty), and the valuation of
the shared variables df is given by the valuation of, to a configuration with a stack
content wherea has been popped and where the statgsisand the valuation of the
shared variables of is given by the valuation of.

The setP is derived fromA, and it contains the productions of Fig. 1. Then the
following property holds.

Proposition 17. yinit —— Y for somey = (Garget, Val, €) iff Xinit —— o for some sen-
tencea such that Syrfo) < 7.

As an immediate consequence of the above Proposition, €hedy and Theorem 16,
we get:

Theorem 18. The PDAD-REACH and PDAD-REACH-EMPTY problems are decidable
for PDADS.
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(Qu,nopge) el geQ

Kapags) V20 ~ Xgpag) V.Z,0) : Y=Yy, 2=2 (=) eP

QX< * 0D BEQ
()T,Z_,K)MX( (y,Z2,0) :y#y,z=ZL=0)eP

(X(ql.,a7q3) 02,8,03)

{01, % < Xj,t2) €A 3eQ
Xapaq) W20 ~ Xiaaq V-2, 1) - Y4Y,Z=2,0= L y[i] =yli])) e P

(o1, % — (>cXj),GyeD ozeQ

(X(q17a,q3)()772_7€) ~r x(qz,a,q3)(y_/7 Z_/7 5/) DY A y_’, Z= 277€ = K’J[j] <c y_/[']) eP

o1, X =X,GyeA 0z3€Q
Xapaq) V20~ Xipagy V-2, £) - Y=y, Z=2,0 = Ji] =y[j]) e P

a1, Xj <cXi,02) €A qz€Q
Xapaq 020~ Xgag) V:2.0) Y=y, Z=2,0 = y[j] <c¥li]) € P
{(qz,push(b) (%) ,02) €A 3, qa € Q
Xarag) V20~ Xgpban) V0 ) Xquag) (U Z.0") : Y=y, 0=U,z=2,0=¢" (' =i eP

{91, pop(xi) (@) ,qpy € A
Kqpag) V.20 ~t 1 y#zZi]=()eP

(XKinit (%) ~> X(qunie, Ltarge) V-2 0) + A1<icnYlil =X%) €P

(X(QtargetaJ-aQIarget) (BT’Z_’K) ~ Y: Z) epP

Fig. 1. From transitions of pushdown with data to productions.

9 ExtendedPDADS

In this section, we present generalizations of the basikcPmodel for which the results
presented in this paper still hold.

The first extension consists in adding to conditions of thenfa = ¢, x > ¢, and
x < cfor a variablex and a constant value> 0. The resulting formulas corresponds to
the original Gap Order Constraints considered in [31].

The second extension consists in adding multiple data fieldach element pushed
to the stack. For fixed number of data fields 0, the configuration of BADk becomes
atriple(q, Val,a) whereqe Qis a stateVal: ¢ — N is a valuation, and € (A x Nk)*
defines the content of the stack (each element of the wordas dg)c;, . .., c) where
ais the symbol and; is its value for the-th field).

We now consider operations that manipulate the data fielddiré¢ extend the push
operation and consideush(a) (x, . . . ,X) to push the symbal € Aand to assign to the
i-th field the value of; fori: 1,... k. We also consider operatigrop(a) (X1, . - ., X)
to pop the symboh € A from the stack and to assign xpthe value of the-th field on
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the top of the stack: 1,...,k. The operational semantics can be naturally extended in
order to cope with tuples of values instead of single one.

Finally, we consider operations that test and modify tha €iatds on the stack. We
can use special identifietepx, . ..,topX to denote such data fields and use them in
conditions of transitions.

To encode the resulting model inta-GD, we need to introduce non-terminals with
extra arguments that represent both the current value an@tressed) updated value
of data fields. More specifically, we need non-terminals effthrm X g, aq,) (XY, Z U)
to represent a run of ax from a configuration where the stategg the topmost stack
symbol isa and its corresponding data field values are given by the wvectnd the
valuation of the shared variables fis given by the valuation of, to a configuration
with the updated data fieldsand where the state ¢ and the valuation of the shared
variables is given by the valuation pf —

We leave a detailed treatment of this extension for futurgkwo

10 Related Work and Conclusion

Decidability and complexity of reachability problems fanghdown systems with or
without data have been extensively studied in the litegatlir [12] the authors present
an algorithm to computBost* andPre* for a pushdown automata and a regular set of
its configurations (represented as automata). Symbolgioms of the algorithms have
been studied e.g. in [29]. In [11] the authors consider axprated verification meth-
ods for subclasses of pushdown systems called finite indicekich it is possible to
handle counters without zero test (i.e. transitions of aiPet). In [2, 1] the authors
present decidability results for timed extensions of poshdsystems. In [14] the au-
thors present decidability results for pushdown systentts @ther a well-quasi ordered
set of control locations or of data values. In our model we dlioconsider a well-quasi
ordered data domain, but introduce a well-quasi orderediogl over values pushed to
and popped from the stack in order to decide reachability.e2tensions of pushdown
system with Gap Order is orthogonal to the above mentionedktsoFurthermore, it
subsumes the model presented in [32], where the authorgleopsishdown systems in
which messages carry (object) identifiers that can be cosddayr equality. In addition
to equality tests, Gap Order can be used to order messadesstack.

Concerning our proof techniques, the algorithm for solvihg O-GD reachabil-
ity problem is inspired to the seminal results on Datalog aodtext-free language
reachability [35, 30] and to the evaluation of Datalog witap3Order Constraints [31].
CLP programs with Gap Order constraints without conjuntdim the body have been
used to model transition systems in [27]. The fixpoint semardf CLP programs has
been used to characterize model checking problems in [2llfpplied to infinite-state
systems in [18, 16,17, 20]. In [15] extended automata witp Geder conditions over
variables are used as an approximated model of countemnsysiéhe model however
does not have recursion. The complexity of verification pgots (expressed in tempo-
ral logic) for transitions systems with Gap Order Constisahlmas been studied in [13].
Allowing rules with sets of terms in the right-hand side; & are more general than
the model in [13]. Multiset rewriting systems with Gap Or@amstraints (i.e. systems
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with an arbitrary number of integral variables) have bedroatuced in [3] and applied
to different types of systems in [8] extending the paraniztermodels described in [9,
22]. These systems are a subclass of multiset rewriting {liitear) constraints applied
to infinite state verification, e.g., in [19].

The evaluation procedure for Datalog with Gap Order Coimgsén [31] and its ter-
mination depend on specific data structures (weighted griagt in normal form) used
to represent relations between variables that occur inl@gatdauses. In the present pa-
per we formulate an algorithmic solution toFGD reachability as an instance of the
general framework of well-structured transition systemd apply the theory of better-
quasi ordering to naturally infer its termination. This apgch has the great advan-
tage of capturing the essential ingredients needed fondixtg the algorithm to other
classes of grammars with data. For instance, under sonmictiests on the arity of
terms, a slightly modified algorithm can be applied to gramswéth sets of terms in
the left-hand side of a production. A more formal treatmdrihis kind of generaliza-
tion together with a deeper investigation of the complegftthe resulting algorithm is
part of our future work.
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