
HAL Id: hal-01514872
https://inria.hal.science/hal-01514872v4

Submitted on 16 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparing two clusterings using matchings between
clusters of clusters

Frédéric Cazals, Dorian Mazauric, Romain Tetley, Rémi Watrigant

To cite this version:
Frédéric Cazals, Dorian Mazauric, Romain Tetley, Rémi Watrigant. Comparing two clusterings us-
ing matchings between clusters of clusters. [Research Report] RR-9063, INRIA Sophia Antipolis -
Méditerranée; Universite Cote d’Azur. 2017, pp.1-45. �hal-01514872v4�

https://inria.hal.science/hal-01514872v4
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
90

63
--

FR
+E

N
G

RESEARCH
REPORT
N° 9063
August 2017

Project-Team Algorithms-
Biology-Structure

Comparing two
clusterings using
matchings between
clusters of clusters
Frédéric Cazals and Dorian Mazauric and Romain Tetley and Rémi
Watrigant

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Comparing two clusterings using matchings
between clusters of clusters

Frédéric Cazals and Dorian Mazauric and Romain Tetley and
Rémi Watrigant

Project-Team Algorithms-Biology-Structure

Research Report n° 9063 — version 4 — initial version August 2017 —
revised version July 2019 — 48 pages

Abstract: Clustering is a fundamental problem in data science, yet, the variety of clustering
methods and their sensitivity to parameters make clustering hard. To analyze the stability of a
given clustering algorithm while varying its parameters, and to compare clusters yielded by different
algorithms, several comparison schemes based on matchings, information theory and various indices
(Rand, Jaccard) have been developed. We go beyond these by providing a novel class of methods
computing meta-clusters within each clustering– a meta-cluster is a group of clusters, together
with a matching between these.
Let the intersection graph of two clusterings be the edge-weighted bipartite graph in which the
nodes represent the clusters, the edges represent the non empty intersection between two clus-
ters, and the weight of an edge is the number of common items. We introduce the so-called
D-family-matching problem on intersection graphs, with D the upper-bound on the diameter of
the graph induced by the clusters of any meta-cluster. First we prove NP-completeness results
and unbounded approximation ratio of simple strategies. Second, we design exact polynomial time
dynamic programming algorithms for some classes of graphs (in particular trees). Then, we prove
spanning-tree based efficient algorithms for general graphs.
Our experiments illustrate the role of D as a scale parameter providing information on the rela-
tionship between clusters within a clustering and in-between two clusterings. They also show the
advantages of our built-in mapping over classical cluster comparison measures such as the variation
of information (VI).

Key-words: Clustering stability, comparison of clusterings, graph decomposition, NP-
completeness, dynamic programming algorithms

Comparer deux clusterings en utilisant des clusters de
clusters

Résumé : Le clustering est une tâche essentielle en analyse de données, mais la variété des
méthodes disponibles rend celle-ci ardue. Diverses stratégies ont été proposées pour analyser
la stabilité d’un clustering en fonction des paramètres de l’algorithme l’ayant généré, ou bien
comparer des clusterings produits par des algorithmes différents. Nous allons au delà de celles-ci,
en proposant une nouvelle classe de méthodes formant des groupes de clusters (meta-clusters)
dans chaque clustering, et établissant une correspondance entre ceux-ci.

Plus spécifiquement, définissons le graphe intersection de deux clusterings comme le graphe bi-
parti dont les sommets sont les clusters, chaque arête étant pondérée par le nombre de points com-
muns à deux clusters. Nous définissons le D-family-matching problème à partir du graphe inter-
section, D étant une borne supérieure sur le diamètre du graphe induit par les clusters des meta-
clusters. Dans un premier temps, nous établissons des résultats de difficulté et d’inaproximabilité.
Dans un second temps, nous développons des algorithmes de programmation dynamique pour
certaines classes de graphes (arbres en particulier). Enfin, nous concevons des algorithmes effi-
caces, basés sur des arbres couvrants, pour des graphes généraux.

Nos résultats expérimentaux illustrent le rôle de D comme un paramètre d’échelle fournissant
de l’information sur la relation entre les clusters intra ou inter clusterings. Ils montrent aussi les
avantages de notre appariement sur les outils de comparaison de clusterings classiques comme la
variation d’information (VI).

Mots-clés : Stabilité du clustering, comparaison de clusterings, décompositions de graphes,
NP-complétude, programmation dynamique

Clustering stability 3

Contents
1 Introduction 4

1.1 Clusterings: generation, comparison and stability assessment 4
1.2 Exploiting many-to-many correspondences: illustration on a specific application . 6
1.3 Main contributions . 7

2 Comparison of clusterings: formalization as graph problems 9
2.1 Equivalent definition of the D-family-matching problem 11

3 Hardness of the D-family-matching problem and greedy strategies 12
3.1 APX-hardness . 13

3.1.1 Part I: ∆ = 4, fixed values of weights . 13
3.1.2 Part II: D = 2, ∆ = 3, unary weights . 17
3.1.3 Part III: D > 2, ∆ = 3 . 18

3.2 Greedy strategies . 19

4 Polynomial time dynamic programming algorithms for some classes 21
4.1 The D-family-matching problem for trees . 22
4.2 The D-family-matching problem for paths . 23
4.3 The D-family-matching problem for cycles . 24

5 Generic approach based on spanning trees 25

6 On the choice of D 28
6.1 Rationale . 28
6.2 Computation of tradeoff-plateaus of large widths and small heights 29
6.3 Computation of multiple sets of plateaus of small heights 30
6.4 Hierarchical Plateaus . 32

7 Experiments 33
7.1 Implementation . 33
7.2 Experiments on random and edited clusterings 34
7.3 On the separability of clusters and the role of D 36
7.4 Comparison to the Variation of Information (VI) 41

8 Conclusion 45

RR n° 9063

4 Cazals / Mazauric / Tetley / Watrigant

1 Introduction

1.1 Clusterings: generation, comparison and stability assessment

Clustering methods. Clustering, namely the task which consists in grouping data items into
dissimilar groups of similar elements, is a fundamental problem in data analysis at large [46].
Existing clustering methods may be ascribed to the following categories. Hierarchical clustering
methods typically build a dendrogram whose leaves are the individual items, the grouping ag-
gregating similar clusters [16]. k-means and variants perform a grouping induced by the Voronoi
cells of the cluster representatives, which are updated in an iterative fashion [2]. In density
based clustering methods, a density estimate is typically computed from the data, with clusters
associated to the catchment basins of local maxima [7]. Topological persistence may be used
to select the significant maxima [6]. The notions of culminance and proeminance, which have
been used since the early days of topography by geographers to define summits on mountains,
can also be used to define clusters [37]. Finally, spectral clustering methods define clusters from
the top singular vectors of the matrix representing the data (or their similarity) [43]. Each of
these categories comes with its intrinsic difficulties. For example, the smart seeding strategy of
k-means yields an algorithm with an approximation guarantee [2]; yet, k-means++ still suffers
from instabilities when the number of centers used is larger than the exact number of clusters,
as the clustering obtained depends on the initial distribution of centers within the clusters [43].

This type of difficulty together with the vast array of clustering schemes actually raises
two important questions: comparing clusterings–including the problem of finding many-to-many
correspondences between clusters, and estimating the number of clusters. We briefly review
previous work on these.

Comparing clusterings. To describe existing cluster comparison methods, we consider two
clusterings F and F ′ of some data set Z = {z1, . . . , zt} composed of t items. Recall that the
contingency table of F and F ′ is the matrix in which a cell counts the number of data items
common to any two clusters from F and F ′. For the sake of exposure, we define a meta-cluster
of a clustering as a set of clusters of this clustering.

In set matching based comparisons [29, 13], a greedy best effort 1-to-1 matching between clus-
ters is sought from the contingency table. A statistic is designed by adding up the contributions
of these pairs. The resulting measure is often called the minimal matching distance (MMD) [30].
To define MMD for the k-means algorithms, assuming that k clusters are produced, each iden-
tified by a label, denote Π = {π} the set of all permutations of the k labels. The MMD is
defined by dMMD(F, F ′) = 1

t minπ∈Π

∑t
i=1 1F (xi)6=π(F ′(xi)), where F (xi) (F ′(xi), respectively)

is the cluster of F (F ′, respectively) containing xi. Finding the best permutation reduces to a
maximum perfect matching, and thus has polynomial complexity. Likewise, to compare clus-
terings with different numbers of clusters, one computes a maximum weight bipartite matching.
However, MMD is inherently based on a 1-1 mapping between clusters, a stringent condition we
shall get rid off–MMD shall be covered by the diameter constraint D = 1 in our framework (Fig.
1).

In pair counting methods [44, 32], each pair of items is ascribed to a category out of four (in
the same cluster in F and F ′, in different clusters in F and F ′, in the same cluster of F but in
different clusters in F ′, and vice versa). The sizes of these four classes can be used in several
ways [44], including the Chi square coefficient, the Rand Index, the Fowlkes-Mallows index, the
Mirkin metric, etc. However, with a focus on pairs, such methods do not provide any insight on
the many-to-many relationships between the clusters of the two clusterings.

Inria

Clustering stability 5

Figure 1 Comparing two clusterings of the same 2D data set involving 40 points.
(a) Clustering F contains 2 clusters of respectively 30 and 10 points. Clustering F ′ contains
5 clusters of respectively 5, 15, 5, 5, and 10 points. In (b) and (c), the intersection graph
associated with the two clusterings is depicted: one node per cluster, an edge between two nodes
if the corresponding clusters share at least one point, the weight of an edge being the number
of points shared by the two clusters. Our method groups clusters within meta-clusters. It is
parameterized by the diameter D of the sub-graphs connecting clusters within meta-clusters (in
red). Existing methods based on (maximum) graph matching correspond to D = 1. (b) With
D = 1, a matching is obtained: F1 with F ′2 and F2 with F ′5. (c) With D = 2, {F1} is matched
with the meta-cluster involving {F ′1, F ′2, F ′3, F ′4}, while {F2} is matched with {F ′5}.

F1

F2

F ′
1

F ′
2

F ′
3

F ′
4

F ′
5

F F ′

u1 u2

u′
1 u′

2 u′
3 u′

4 u′
5

5 15 5 105

u1 u2

u′
1 u′

2 u′
3 u′

4 u′
5

5 15 5 105

(a) (b) D = 1

(c) D = 2

In information theoretical methods, the mutual information (MI) between the two clusterings
(i.e. the Kullback-Leibler divergence between the joint and the marginal distributions associated
with the contingency table) is first computed. In combination with the entropy of marginal
distributions of clusters’ sizes, the MI can then used to derive the Normalized mutual information
[44]. Alternatively, the MI can be used to define the variation of information (VI) between the
clusterings F and F ′ [32]. In short, VI is defined from the mutual information between the
two clusterings [8], namely the Kullback–Leibler divergence between the joint distribution and
the marginals defined from the contingency table. While VI defines a metric, it exhibits the
drawbacks of pair counting methods. Generalization of information theoretic measures have
been proposed. In [45], the bipartite graph whose nodes are clusters with one weighted edge for
two clusters sharing items is used to derive a general connected component-based decomposition
formula, and it is shown that several existing measures are special cases. In a similar spirit,
a generalization of clustering agreement measures is proposed in [36] based on a function ϕ(·)
which quantifies the dispersion of the per-row and per-column distributions of the contingency
table. Adjustments of mutual information measures have also been worked out in particular to
reduce selection bias [38].

Optimal transportation based methods [48] aim at mapping the clusters with one another,
and also at accommodating the case of soft clustering. These methods actually rely on the
earth mover distance [39]–a linear program which may be seen as a particular case of optimal
transportation. In short, this LP involves the distances between the clusters representatives
(centroids), and solves for the weight assigned to the match between any two clusters. This
approach is powerful, as fractional cluster matching goes beyond the 1-to-1 greedy matching
alluded to above. However, the involvement of cluster centroids masks individual contributions
from the items themselves, so that the approach does not apply when commonalities between
groups of clusters from F and F ′ are sought.

Naturally, when the two clusterings studied stem from two runs of the same algorithm (ran-
domized or with different initial conditions), the previous quantities can be used to assess the

RR n° 9063

6 Cazals / Mazauric / Tetley / Watrigant

stability of this algorithm [30]. In particular, the minimal matching distance has been used to
study the stability of k-means.

Finally, the problem of computing many-to-many correspondences between two sets of clusters
S ⊂ F and S′ ⊂ F ′ was addressed recently [20]. The quality of the match is assessed by size of
the symmetric difference of the union of clusters i.e. φ(S, S′) =| ∪s∈Ss ∆ ∪s′∈S′ s |, which ought
to be minimized. The authors introduce four types of constraints, that denoted CP stating that
S 6∈ {∅, F}. Under Cp, S defines a cut of the partition F , and the size of the cut is defined
by φF ′(S) = minS′⊂F ′ φ(S, S′). For a given S, the optimal partner S′ can be found. For the
max-flow min cut problem, recall that the Gomory-Hu construction guarantees that any graph
admits a flow equivalent tree whose paths define the min cuts for all pairs of vertices. Analogously
to graphs, there exists a min cut basis of F wrt φF ′(·), of size |F ′| − 1. The computation of
such cuts falls in the realm of submodular optimization and with exact algorithms which are
essentially quadratic in the size of the partitions. A heuristic combining branch-and-bound and
greedy techniques is also proposed.

Estimating the number of clusters. Finding the correct number of clusters k is admittedly
a difficult problem since there is no universal definition of cluster [42], and also since the right
number of clusters in a dataset often depends on the scale at which the dataset is inspected [41].
Nevertheless, various methods were developed [42, 28]. In the sequel, we consider in turn specific
and generic methods.

For k-means, in order to deal with clusters with complex shapes and/or noise, the split-and-
merge procedure [33, 1] first over-segmentates clusters (to ensure that each cluster center of mass
is located in high density area), and further merges neighboring clusters. Clustering methods
based on Gaussian mixtures triggered specific developments to accommodate clusters with non
Gaussian shapes. The integrated completed likelihood (ICL) method [3] combines the Bayesian
information criterion (BIC) and an entropic penalty on the model complexity. In a nearby vein,
various hierarchical merging strategies of Gaussian components were investigated [23].

Generic methods may be classified depending on whether they directly operate on the clusters,
or use a function (density estimate) modeling the underlying distribution of items/samples.
Consider first methods in the first class. The elbow method tracks an abrupt change of the
functional assessing the clustering quality [34]. The silhouette method [26] picks the clustering
maximizing the silhouette of each sample–a number in −1 . . . 1 assessing whether the sample
is well clustered. Under appropriate well separated-ness hypothesis, the gap statistic defines k
by maximizing the change in within-cluster dispersion that is expected under an appropriate
reference null distribution [42]. Consider next methods in the second class. In spirit, these
methods directly read the correct number of clusters from connected components and/or local
maxima of a density estimate defined from the samples. This idea was first implemented by
tracking the connected components of a union of balls centered on the samples [9], a strategy
akin to density estimation, a difficult problem in high dimensional spaces. More recently, it was
shown that topological persistence is instrumental to read pertinent scales for local maxima,
when such scales exist [6].

1.2 Exploiting many-to-many correspondences: illustration on a spe-
cific application

Having commented on the comparison of clusterings, let us address the status of individual
items identified thanks to many-to-many correspondences between clusters. While most methods

Inria

Clustering stability 7

summarize the comparison of the two clusterings with a real value, in a number of applications,
though, the mapping between individual items from the two clusterings is critical.

Our interest in the cluster comparison problem actually comes from the problem of comparing
two protein molecules in structural biology. To apprehend the importance of this task recall
that it is the structure (and also the dynamics) of molecules which determine their function.
Prosaically, the structure of a lock must match that of the lock to be opened. In analyzing two
protein conformations, a central task is to identify regions within these conformations, called
structural motifs, which can be geometrically superimposed onto one another. Using geometric
methods akin to rigidity analysis, a method to identify geometrically conserved regions was
proposed in [4]. Once such regions have been identified, a many-to-many correspondence is
sought (Fig. 2). Critically, one does not know a priori how many structural motifs a protein
contains. Therefore, it is important not derive the correspondence sough from a cut as in [20].
Once identified, motifs can be used to boost the exploration of the conformational variability
of a molecule. Since motifs are more rigid than their complement in the molecule, one can e.g.
rigidify all degree of freedoms of atoms present in the motifs, restricting conformational changes
to linker regions connecting motifs. This strategy is currently being exploited for several complex
biomolecular systems such as membrane transporters (involved in cancer chemo-resistance and
antibiotics resistance), the polymerase of influenza (which replicates the viral genome), as well
as viral fusion proteins (used by viruses to attach themselves to the to-be-infected cells). Such
a system has 3n Cartesian coordinates for n atoms. With typically n > 10, 000, the brute
force exploration of the conformation space requires massive calculations. With the detection of
motifs and their complement (flexible linkers), the number of degrees of freedom to be considered
is typically lowered by two orders of magnitude on the aforementioned systems – a dramatic
simplification for the physical simulation.

1.3 Main contributions

Rationale. Until recently, previous work has overlooked two issues. First, the comparison of
two clusterings has been done globally, i.e. without providing insights on the mapping between
clusters–if one omits the elementary matching case. Second, in assessing and comparing cluster-
ings, the scale at which clusters merge has not been studied. Phrased differently and following
[41]: “In fact, the right number of clusters in a dataset often depends on the scale at which
the dataset is inspected”. Indeed, VI or co-occurrence matrices which count the number of times
two data points are clustered together do not provide such insights. The recent contribution [20]
partly answers the questions of which clusters match to which, in a global manner since binary
cuts of the two clusterings / partitions are returned.

In this paper, we go beyond this approach by studying the problem of grouping clusters into
meta-clusters, beyond cuts [20]. To do so, we define the family-matching problem on the intersec-
tion graph G constructed from F and F ′. A node of G represents a cluster, an edge between two
nodes means that the intersection between the two corresponding clusters is not empty, and the
weight of an edge is the number of items (elements) shared by the two clusters (that necessarily
belong to different clusterings). Intuitively, the family-matching problem consists in finding an
explicit many-to-many correspondence between groups of clusters of the two clusterings. More
formally, the family-matching problem consists in computing disjoint subsets of nodes (clusters
of clusters, or meta-clusters) such that (i) every such subset induces a sub-graph of G of diameter
at most a given constant D ≥ 1, and (ii) the number of items, for which the two clusters that
contain it (in F and in F ′) are in a same meta-cluster, is maximum. This parameter corresponds
to the score of a solution. In this paper, we consider the unweighted diameter of graphs (largest
number of edges which must be traversed in order to travel from one vertex to another or infinite

RR n° 9063

8 Cazals / Mazauric / Tetley / Watrigant

Figure 2 Finding structural motifs in protein conformations using clusters of clusters.
(a) Two protein conformations reconstructed by X-ray crystallography, each with a set of amino-
acids identified from a geometric analysis seeking (quasi-)isometric regions. On this simple
example, regions from the left hand side are either nested or intersect with the motifs on the left
(w.r.t their constituting amino-acids). Intersections are depicted as an edge. Structural motifs are
defined from a many-to-many correspondence between these regions. The motifs identified this
way are made rigid, which allows focusing the conformational exploration on flexible linkers. The
process typically results in a two-fold reduction of the number of degrees of freedom to consider
for the physical simulation. (b) Specification of the many-to-many correspondence problem,
with one cluster for each rigid region, and one point for each amino-acid. Two clusterings of the
same dataset. The value decorating an edge is the number of amino acid shared by two regions.

11

23

12

11

if the graph is not connected).
The constraint on the diameter D actually sheds light on previous work. The case D = 1

corresponds to previous work focused on 1-1 matchings. The case for which one cluster of F
(F ′, respectively) corresponds to different smaller clusters of F ′ (F , respectively) is contained
in the case where D = 2. We call this case 1-to-many. We prove in Lemma 6 that the optimal
score for D = 2 can be arbitrarily large compared to the optimal score for D = 1 – an incentive
to introduce this diameter constraint. The case D > 2 (constant) deals with the case where
different clusters of F correspond to different clusters of F ′ (and vice versa) but without a good
matching between these clusters. In that case, the value of D is a measure of the complexity
of the two clusters of clusters (the meta-cluster involving these two). More generally: the case
2-to-many may be solved with D = 4, the case d-to-many may be solved with D = 2d. We
do not have an equivalence because additional conditions are needed and, in practice, different
values of D must be chosen because of the different scales of the clusterings.

On general (i.e. not necessarily bipartite) graphs, the D-family-matching problem is strongly
related to the so-called Maximum Edge Clique Partition problem, in which one is looking for a
partition of the vertices of an unweighted graph into cliques, maximizing the number of edges
within the cliques. More precisely, Maximum Edge Clique Partition can be seen as the 1-family-
matching problem in general graphs. As observed by [12], in an optimal solution of Maximum
Edge Clique Partition, the maximum size of the clusters is not far from the size of a maximum
clique of the input graph, which can be used in order to show that this problem cannot be
approximated within n1−ε for any ε unless P = NP [31]. This approach could be used in

Inria

Clustering stability 9

order to show that the 2-family-matching problem is not approximable within any ratio by using
Maximum Edge Biclique as starting problem, in which the aim is to find a complete bipartite
graph with the maximum number of edges in a bipartite graph. Indeed, Maximum Edge Biclique
was recently shown to be n1−ε-inapproximable unless P = NP for any ε > 0 [31]. Unfortunately,
in the bipartite case, an optimal solution of 2-family-matching may contain only small bicliques
compared to an optimal solution of Maximum Edge Biclique: consider a star with q branches,
and add two leaves to each branch. Observe that an optimal solution of 2-family-matching in
this graph consists of the disjoint union of q paths of length 3 (thus, the maximum biclique in
this solution consists of 2 edges only), while there exists a biclique with q edges.

Finally, our problem is also close to some classical partitioning problems. Indeed, separating
an edge weighted graph (with non negative weights) into k components while minimizing the size
of the cut is a classical optimization problem, known as Minimum k-Cut or Minimum k-Way
Cut [19]. This problem is NP -hard if k is an input parameter but polynomial-time solvable for
every fixed k [21]. Moreover, there exist polynomial-time algorithms with an approximation ratio
better than 2 [40, 47], and a Fixed-Parameter Tractable (FPT) algorithm when parameterized
by the number of edges in the cut [27], while it is W[1]-hard when parameterized by k [14]. On
the other hand, when we seek for a minimum cut separating k prescribed vertices, the problem
is already NP -hard for k = 3, but admits a (2− 2/k)-approximation algorithm for every k ≥ 2
[11]. The main difference between these approaches and our application lies in the specification
of k, since we do not know a priori how many meta-clusters are sought. Admittedly, we also face
a model selection problem for the choice of D, which is the focus of Section 6.

Contributions. Our work, which investigates the relationship between two clusterings, shedding
light on the way clusters from one have been merged / split / edited to define one clustering from
the other, consists of the following contributions. In Section 2, we introduce a new combinatorial
optimization problem on the intersection graph, namely the D-family-matching problem, so as
to compare two clusterings. In Section 3, we prove that the problem is very hard to solve:
NP -completeness and APX-hardness results, and unbounded approximation ratio of simple
strategies. In Section 4, we design exact polynomial time dynamic programming algorithms for
some classes of instances (trees, paths, cycles, graphs of maximum degree two). In Section 5,
we describe efficient algorithms for general graphs, introducing a variant of the problem with
spanning tree constraints. In Section 7, we illustrate the ability of our algorithms to identify
relevant meta-clusters between a given clustering and an edited version of it, and compare our
scores against the Variation of Information. In both cases, we show that parameter D yields
insights on the scale at which clusters coalesce.

2 Comparison of clusterings: formalization as graph prob-
lems

In this section, we formalize the D-family-matching problem modeling the comparison of clus-
terings. Let t ≥ 1 be any positive integer. Let us consider a set of elements Z = {z1, . . . , zt}.
We are given two different families F and F ′ of disjoint subsets of Z. Let r ≥ 1 be the size of F .
Formally F = {F1, . . . , Fr}, where Fi ⊆ Z, Fi 6= ∅, and Fi ∩ Fj = ∅ for every i, j ∈ {1, . . . , r},
i 6= j. Let r′ ≥ 1 be the size of F ′. In a analogous way, F ′ = {F ′1, . . . , F ′r′}, where F ′i ⊆ Z,
F ′i 6= ∅, and F ′i ∩ F ′j = ∅ for every i, j ∈ {1, . . . , r′}, i 6= j.

Definition. 1 (Edge-weighted intersection graph). The edge-weighted intersection graph G =
(U,U ′, E, w) associated with Z, F , and F ′, is constructed as follows. The set U = {u1, . . . , ur}
corresponds to the clustering F . To each vertex ui, we associate the set Fi ∈ F . The set

RR n° 9063

10 Cazals / Mazauric / Tetley / Watrigant

U ′ = {u′1, . . . , u′r′} corresponds to the clustering F ′. To each vertex u′i, we associate the set
F ′i ∈ F . The set of edges of G is E = {{ui, u′j} | Fi ∩ F ′j 6= ∅, 1 ≤ i ≤ r, 1 ≤ j ≤ r′}. The weight
of any edge e = {ui, u′j} ∈ E is we = |Fi ∩ F ′j |.

In the rest of the paper we will write intersection graph instead of edge-weighted intersection
graph and wu,u′ instead of w{u,u′} to denote the weight of an edge {u, u′} ∈ E. See Figure 1
and Figure 3 for two detailed examples. We prove in Lemma 1 that any edge-weighted bipartite
graph G with positive integers, is an intersection graph for some Z, F , and F ′. A bipartite
graph is a graph whose nodes can be partitioned into two disjoint sets such that every edge has
an extremity in the first set and has its other extremity in the second set.

Lemma. 1. Let G = (V,E,w) be any edge-weighted bipartite graph such that we ∈ N+ for every
e ∈ E. Then, there exist Z, F , and F ′ for which G is the intersection graph.

Proof of Lemma 1. Without loss of generality, we assume that G is connected (otherwise, we
prove the result for every maximal connected component). We prove the result by induction on
the number of nodes n. Let V = U ∪ U ′. Consider first that n = |U ∪ U ′| = 2. Let U = {u1}
and U ′ = {u′1}. We construct Z, F , and F ′ as follows. Set Z = {z1, . . . , zt} with t = wu1,u′1

.
Set F = {F1} with F1 = {z1, . . . , zt} and set F ′ = {F ′1} with F ′1 = {z1, . . . , zt}. Thus, G is the
intersection graph for Z, F , and F ′.

Suppose now that it is true for every edge-weighted bipartite graph composed of at most n
nodes and such that the weights are positive integers. We prove that it is also true for every edge-
weighted bipartite graph G = (U,U ′, E, w) such that |U ∪U ′| = n+ 1 and such that the weights
are positive integers. Consider a node x ∈ U∪U ′ such thatG′ = G[(U∪U ′)\{x}] is connected. By
induction hypothesis, G′ is an intersection graph. We define ZG

′
, FG

′
, and F ′G

′
corresponding

to G′ as follows. Let ZG
′

= {z1, . . . , zt}, FG
′

= {F1, . . . , Fr}, and F ′G
′

= {F ′1, . . . , F ′r′}. Without
loss of generality, assume that x ∈ U . Let NG(x) = {u′1, . . . , u′dx}, where dx is the number of
neighbors of x in G. Without loss of generality, assume that u′i corresponds to F ′i for every i ∈
{1, . . . , dx} (we permute the indices otherwise). Set wx =

∑dx
i=1 wx,u′i . We construct Z, F , and F ′

corresponding to G as follows. Set Z = ZG
′ ∪ {zt+1, . . . , zt+wx} = {z1, . . . , zt, zt+1, . . . , zt+wx}.

Set F = {F1, . . . , Fr, Fr+1}, where Fr+1 = {zt+1, . . . , zt+wx}. For every i, j ∈ {1, . . . , dx},
i 6= j, let Xi ⊆ {zt+1, . . . , zt+wx

} with |Xi| = wx,u′i and such that Xi ∩ Xj = ∅. Finally, set
F ′ = {F ′′1 , . . . , F ′′r′}, where F ′′i = F ′i ∪ Xi for every i ∈ {1, . . . , dx}, and F ′′i = F ′i for every
i ∈ {dx+1, . . . , r′}. We get that G is the intersection graph for Z, F , and F ′. Thus, the result is
true for every edge-weighted bipartite graph G = (U,U ′, E, w) such that 2 ≤ |U ∪ U ′| ≤ n+ 1
and such that the weights are integers.

By Lemma 1, we can focus on any intersection graph without necessarily considering the
corresponding Z, F , and F ′. In the rest of the paper, an intersection graph will be denoted
G = (V,E,w). Let us define some notations. We denote by n = |V | the number of nodes of G,
by m = |E| the number of edges of G, and by ∆ = maxv∈V |NG(v)| the maximum degree of G,
where NG(v) is the set of neighbors of v ∈ V in G. The diameter of a graph is the maximum
number of edges of a shortest path in this graph. The set cc(G) represents the set of maximal
connected components of G. We now define the notion of D-family-matching.

Definition. 2 (D-family-matching). Let D ∈ N+. Let G = (V,E,w) be an intersection graph.
A D-family-matching for G is a family S = {S1, . . . , Sk}, k ≥ 1, such that, for every i, j ∈
{1, . . . , k}, if i 6= j, then: Si ⊆ V , Si 6= ∅, Si ∩ Sj = ∅, and the graph G[Si] induced by the set of
nodes Si has diameter at most D.

Inria

Clustering stability 11

Figure 3 Simple instance of the D-family-matching problem and solutions: panels (c,d,e,f) represent
optimal solutions for different values of D. (a) Simple instance of the D-family-matching problem with t = 12,
r = 5, r′ = 4, and so n = 9. The family F contains five sets and the family F ′ contains four sets. (b) Intersection
graph G. (c) Optimal solution S for D ≥ 7 with Φ(S) = ΦD(G) = 12. (d) Optimal solution S for D = 3 with
Φ(S) = Φ3(G) = 11. (e) Optimal solution S for D = 2 with Φ(S) = Φ2(G) = 9. Observe that there is another optimal
solution by removing the two edges {u2, u

′
3} and {u3, u

′
4} and by adding the edge {u3, u

′
3}. (f) Optimal solution S for

D = 1 with Φ(S) = Φ1(G) = 8.

F'

F'1

F2 F3F1

F'2 F'3

2
F

F4 F5

F'4

3

(a)
(b)

1

1
2

1
1

1

2

3

1

1
2

1
1

1

(c)

2

3

1

2

1
1

1

(d) (e)

2

3

1

1
1

1

(f)

2

3

2

1

z1 z2 z5z3 z4 z7z6 z8 z9 z10 z11 z12

z1 z2 z5z3 z4 z7z6 z8 z9 z10 z11 z12

u2 u'2

u1 u'1

u3

u4

u5

u'3

u'4

u2 u'2

u1 u'1

u3

u4

u5

u'3

u'4

u2 u'2

u1 u'1

u3

u4

u5

u'3

u'4

u2 u'2

u1 u'1

u3

u4

u5

u'3

u'4

u2 u'2

u1 u'1

u3

u4

u5

u'3

u'4

The score Φ(S) of a D-family-matching S is Φ(S) =
k∑
i=1

∑
e∈E(G[Si])

we. Let SD(G) be the set

of all D-family-matching for G. We now formalize the D-family-matching problem. Intuitively,
we wish to compute a D-family-matching which minimizes the inconsistencies.

Definition. 3 (D-family-matching problem). Let D ∈ N+. Given an intersection graph G, the
D-family-matching problem consists in computing ΦD(G) = maxS∈SD(G) Φ(S).

From such an optimal solution, we deduce an optimal number of sets k ≥ 1 for our cluster-
ings comparison. Observe that the 1-family-matching problem is equivalent to the problem of
computing a maximum weighted matching in weighted bipartite graphs. Since this problem can
be solved in O(n2 log n+ nm) [18], we deduce the following result.

Lemma. 2. Given any intersection graph G, the 1-family-matching problem can be solved in
O(n2 log n+ nm).

Figure 3 illustrates the problem and we summarize the notations in Table 1.

2.1 Equivalent definition of the D-family-matching problem
We now define an equivalent definition of the D-family-matching.

Definition. 4 (D-family-matching). Let D ∈ N+. A D-family-matching is a family P =
{P1, . . . , Pk}, k ≥ 1, of subsets of F ∪ F ′ = {F1, . . . , Fr, F

′
1, . . . , F

′
r′} such that, for every

RR n° 9063

12 Cazals / Mazauric / Tetley / Watrigant

Table 1 Notations
Notation Definition
Z = {z1, . . . , zt} Set of t ≥ 1 elements
F = {F1, . . . , Fr} Family of r ≥ 1 disjoint subsets of Z
F ′ = {F ′1, . . . , F ′r′} Family of r′ ≥ 1 disjoint subsets of Z
G = (V,E,w) Intersection graph of n ≥ 1 nodes and m ≥ 1 edges
NG(v) = {v′ | {v, v′} ∈ E} Set of neighbors of node v ∈ V
∆ = maxv∈V |NG(v)| Maximum degree of G
cc(G) Set of maximal connected components of G
S = {S1, . . . , Sk} D-family-matching

Φ(S) =
k∑
i=1

∑
e∈E(G[Si])

we Score of a D-family-matching S

SD(G) Set of all D-family-matching for G
ΦD(G) = maxS∈S(G,D) Φ(S) Optimal score for the D-family-matching problem
SD(G,Tr) Set of all D-family-matching constrained by Tr

ΦD(G,Tr) = maxS∈SD(G,Tr) Φ(S)
Optimal score for the D-family-matching problem
constrained by Tr

i, j ∈ {1, . . . , k}, i 6= j, then: Pi ⊆ F ∪F ′, Pi 6= ∅, Pi ∩Pj = ∅, and P must satisfy the diameter
constraints: for every H,H ′ ∈ Pi, then there exists a sequence (H0, . . . ,Hd) such that d ≤ D,
H0 = H, Hd = H ′, Hj ∈ Pi, and Hj ∩Hj+1 6= ∅ for every j ∈ {0, . . . , d− 1}.

The score f(P) of a D-family-matching P is defined as follows:

f(P) =

k∑
i=1

|(Pi ∩F F) ∩Z (Pi ∩F ′ F ′)|.

Let PD(F, F ′) be the set of all D-family-matching for F , F ′, and D. We now formalize an
equivalent definition of the D-family-matching problem.

Definition. 5 (D-family-matching problem). Let D ∈ N+. The D-family-matching problem
consists in determining a D-family-matching that maximizes the score f . Formally, we aim at
computing:

fD(F, F ′) = max
P∈PD(F,F ′)

f(P).

Finally, we obtain the following property showing the equivalence between the two definitions
of the D-family-matching problem.

Property 1. Let D ∈ N+. Let L ≥ 0 be any positive real number. Consider any instance of the
D-family-matching problem defined by Z, F , and F ′, and consider the associated intersection
graph G. Then, there is a D-family-matching P for Z, F , and F ′, such that f(P) ≥ L if and
only if there is a D-family-matching S of G such that Φ(S) ≥ L.

3 Hardness of the D-family-matching problem and greedy
strategies

We prove that the D-family-matching problem is APX-hard (Section 3.1) and that simple strate-
gies can be arbitrarily bad (Section 3.2).

Inria

Clustering stability 13

3.1 APX-hardness

As explained before, the 1-family-matching problem is polynomial-time solvable, thus we now
focus on higher values of D. Moreover, we will prove in Section 4 that the problem is polynomial-
time solvable for bipartite graphs of maximum degree ∆ = 2. We prove that these two cases are
actually the only pairs (D,∆) leading to polynomial problems, all other being NP -complete and
even APX-hard. We were also able to prove hardness results for some (D,∆) even in the case
where edge weights are within a fixed range of values.

Theorem. 2. Let D ≥ 2 be any integer. The decision version of the D-family-matching problem
is APX-hard for :

• bipartite graphs of maximum degree 3;

• bipartite graphs of maximum degree 4 when the maximum weight is constant.

Moreover, the 2-family-matching problem is APX-hard for bipartite graphs of maximum degree
3 with unary weights.

Although we leave as an open question whether D-family-matching is in APX (namely,
whether it admits a polynomial-time algorithm achieving a constant approximation ratio), we
show that two natural strategies for obtaining approximation algorithms are hopeless.

The rest of this section is devoted to the proof of Theorem 2. For the sake of readability, we
splitted this proof into three parts: Theorems 3, 7 and 8. Notice that the last two proofs are
quite similar.

Let us first recall the definition of L-reduction in order to transfer approximation lower
bounds.

Definition. 6. [35] Let Π and Π′ be two maximization problems. We say that Π L-reduces to
Π′ is there are two polynomial-time algorithms f , g and constants α, β > 0 such that for each
instance I of Π:

1. Algorithm f produces an instance I ′ = f(I) of Π′ such that the optima of I and I ′, denoted
by OPTΠ(I) and OPTΠ′(I

′), respectively, satisfy OPTΠ′(I
′) ≤ OPTΠ(I);

2. Given any solution of I ′ with cost c′, algorithm g produces a solution of I with cost c such
that OPTΠ(I)− c ≤ β(OPTΠ′(I

′)− c′).

It is known that if Π is APX-hard and L-reduces to Π′, then Π′ is APX-hard as well. In that
case, Π′ does not admit a PTAS (Polynomial Time Approximation Scheme) unless P = NP .

3.1.1 Part I: ∆ = 4, fixed values of weights

Theorem. 3. Let D ≥ 2 be a positive integer. The D-family-matching problem is APX-hard
even if the maximum degree ∆ is at most 4 and the number of different weights is at most 3.

In our reduction, we use a special case of set packing problem, a well known NP -complete
problem [25]. Given a universe X = {x1, . . . , xt} of t ≥ 1 elements and a family Y = {Y1, . . . , Yp}
of p ≥ 1 subsets of X, a packing is a subfamily C ⊆ Y of subsets such that all set in C are pairwise
disjoint, that is Yi ∩ Yj = ∅ for all Yi, Yj ∈ C, i 6= j. Given X, Y , and an integer k ≥ 1, the Set
packing problem consists in determining whether there exists a packing C of size |C| = k. Notice
that this problem remains APX-hard even if |Yi| = 3 for every i ∈ {1, . . . , p} and xi is in at
most 3 sets, for every i ∈ {1, . . . , t} [24].

RR n° 9063

14 Cazals / Mazauric / Tetley / Watrigant

Consider any instance Isp of set packing problem: a universe X = {x1, . . . , xt}, a family
Y = {Y1, . . . , Yp} of subsets of X, and an integer k ≥ 1. We assume that |Yi| = 3 for all
i ∈ {1, . . . , p} and that xi is in at most 3 sets. We first construct the intersection graph G of the
D-family-matching problem (Definition 7).

Definition. 7 (Construction of the intersection graph G for the D-family-matching problem).
The intersection graph G = (V,E,w) is defined as follows.

• Set V = U ∪ U ′ ∪ Z, where

– U = {u1, . . . , up} corresponds to Y ,

– U ′ = {u′1, . . . , u′t} corresponds to X,

– and Z = {zij , 1 ≤ i ≤ p, 1 ≤ j ≤ D}.

• Set E = EU ∪ EZ ∪ EZ , where

– EU = {{ui, u′j} | xj ∈ Yi, 1 ≤ i ≤ p, 1 ≤ j ≤ t},

– EZ = {{zij , zij+1} | 1 ≤ i ≤ p, 1 ≤ j ≤ D − 1},

– and EUZ = {{ui, zi1} | 1 ≤ i ≤ p}.

• Set we = 2 for every e ∈ EU , w{ziD−1,z
i
D} = 5 for every i ∈ {1, . . . , p}, and w(e) = T for

every e ∈ EUZ ∪ EZ \ {{ziD−1, z
i
D} | 1 ≤ i ≤ p}, where

T = 9(2D − 1)2 + 3(2D − 1) + 6.

Observe that the maximum degree ∆ of G is at most 4 and that G is bipartite.
Intuitively, we will prove that any optimal solution S has size p and for every S ∈ S, S

contains exactly D−1 edges of weight T plus either one edge of weight 5 or three edges of weight
2 (such case will correspond to the subsets of the set packing).

Lemma. 3. If there is a solution C for the instance Isp of set packing problem such that
|C| ≥ k, then there is a solution S for the D-family-matching problem for G such that Φ(S) ≥
p(D − 1)T + 5p+ k.

Proof of Lemma 3. Consider any solution C for the instance Isp of set packing problem such
that |C| = k. We construct a solution S for the D-family-matching problem for G such that
Φ(S) = n(D− 1)T + 5n+ k. Assume that C = {Y1, . . . , Yk} (we permute the indices otherwise).
Let S = {S1, . . . , Sp}, where Si = {ui} ∪ NG(ui) ∪ Zi \ {ziD} for every i ∈ {1, . . . , k} and
Si = Zi ∪ {ui} for every i ∈ {k + 1, . . . , p}. The sets are disjoint. In other words, for every
i, j ∈ {1, . . . , p}, i 6= j, then Si ∩ Sj = ∅ because C is a set packing and, by construction of
G, we have NG(ui

′
) ∩ NG(uj

′
) = ∅ for every i′, j′ ∈ {1, . . . , k}, i′ 6= j′. Furthermore, for every

i ∈ {1, . . . , p}, the diameter of G[Si] is at most D. Finally, we get

Φ(S) = Φ({S1, . . . , Sk})+Φ({Sk+1, . . . , Sp}) = k[(D−1)T+6]+(p−k)[(D−1)T+5] = p(D−1)T+5p+k.

Thus, we have proved that S is a solution for the D-family-matching problem for G such that
Φ(S) = p(D − 1)T + 5p+ k.

Lemma. 4. If there is a solution S for the D-family-matching problem for G such that Φ(S) ≥
p(D − 1)T + 5p + k, then there is a solution C for the instance Isp of set packing problem such
that |C| ≥ k.

Inria

Clustering stability 15

Proof of Lemma 4. Consider any optimal solution S for the D-family-matching problem. With-
out loss of generality, we assume that S contains the smallest number of sets. In other words,
|S| ≤ |S ′| for any solution S ′ such that Φ(S ′) = Φ(S). We deduce that every set of S contains
at least two nodes. Otherwise, we can remove such single sets without decreasing the score. We
first prove the following claims.

Claim 4. Consider the graph G′ induced by the set of nodes U ∪ U ′. Any subgraph of G′ of
diameter at most D is composed of at most 9

2 (2D − 1)2 + 3
2 (2D − 1) edges.

Proof of Claim 4. Any graph of degree at most k and diameter at most D, is composed of at
most 1 + k

∑D−1
i=0 (k − 1)i nodes (Moore bound). Recall that |Yi| = 3 for all i ∈ {1, . . . , p} and

that xi is in at most 3 sets. Thus, the graph G′ has degree at most 3. We get that any subgraph
of G′ of diameter at most D is composed of at most 1 + 3

∑D−1
i=0 2i = 1 + 3(2D − 1) nodes. We

deduce that the number of edges of such graphs is upper-bounded by [1+3(2D−1)][3
2 (2D−1)] =

9
2 (2D − 1)2 + 3

2 (2D − 1).

Claim 5. For every S ∈ S, then |S ∩ U | = 1.

Proof of Claim 5. We first prove that |S ∩ U | ≤ 1 for every S ∈ S. By contradiction. Suppose
that there exists S ∈ S such that |S∩U | ≥ 2. Without loss of generality, let S∩U = {u1, . . . , ub},
b ≥ 2. For every i ∈ {1, . . . , b}, then there exists j ∈ {1, . . . , D − 1} such that zij /∈ S. Indeed,
the distance between ziD−1 and ui′ is at least D+ 1 for every i, i′ ∈ {1, . . . , b}, i′ 6= i. Intuitively,
in that case the solution is missing at least one edge of weight T amongst the edges induced by
{zi1, . . . , ziD−1}, for every i ∈ {1, . . . , }.

Consider the partition S ′ obtained from S \ S where we remove from every set all vertices
{zij , i ∈ {1, . . . , b}, j ∈ {1, . . . , D}} ∪ {u1, . . . , ub}, and we add the sets Si = {ui, zi1, . . . , ziD} for
each i ∈ {1, . . . , b}. Observe that Φ(S)−Φ(S ′) ≥ bT −T > 0 because, by Claim 4, the subgraph
induced by the set of nodes S∩(U∪U ′) has at most 9

2 (2D−1)2+ 3
2 (2D−1) edges. A contradiction

because S is an optimal solution. Thus, for every S ∈ S, we have |S ∩ U | ≤ 1.
Finally, suppose that there exists S ∈ S such that |S ∩ U | = 0. We may assume that

S ∩ U ′ = ∅, for otherwise we would have S = {u′j} for some j ∈ {1, . . . , t}, but in that case
S \ S would have the same weight as S, and strictly less sets, which is impossible. Hence, there
must exist i ∈ {1, . . . , p} such that S ⊆ {zi1, . . . , ziD}. Consider the partition S ′ constructed from
S \S, where we remove from each set the vertices {zi1, . . . , ziD}, and add the set {ui, zi1, . . . , ziD}.
Observe that Φ(S ′)− Φ(S) ≥ T , a contradiction.

Claim 6. S contains exactly p sets.

Proof of Claim 6. This holds by Claim 5 and the fact that every set of S must induce a subgraph
of diameter at most D. In particular, every set must induce a connected graph.

We are now able to prove Lemma 4. We assume that there is a solution S for the D-family-
matching problem for G such that Φ(S) ≥ p(D − 1)T + 5p + k. Without loss of generality, we
assume that S is optimal. Combining Claim 5 and Claim 6, we get that for every set S ∈ S,
there exists i ∈ {1, . . . , p} such that either:

• S = {ui, NG(ui), zi1, . . . , z
i
D−1}, in which case

∑
e∈E(G[S]) we = (D − 1)T + 6, or

• S = {ui, zi1, . . . , ziD}, in which case
∑
e∈E(G[S]) we = (D − 1)T + 5.

Let us say that S is of type 1 (resp. type 2) if it falls in the first (resp. second) case. Since
all sets of S are pairwise disjoint, they actually correspond to a solution C for the instance Isp.
Since Φ(S) ≥ p(D − 1)T + 5p+ k, we have that |C| ≥ k, as desired.

RR n° 9063

16 Cazals / Mazauric / Tetley / Watrigant

Figure 4 Illustration of the proof of Theorem 3. See details in the text.

U U'

T

T

T

T

T

T

T

T

T

T

T

T

2

2
2

2

2

2

2

2
2

2
2

2

2

2

2

2

2

2

2

2

2

T T

5

5

5

5

5

5

5

We are now able to prove the theorem.

Proof of Theorem 3. First, the reduction (Definition 7) can be clearly done in polynomial time.
Finally, Lemmas 3 and 4 prove that any instance Isp of set packing can be transformed into an
instance G of D-family-matching, and any solution C of I of cost at least k can be transformed
in polynomial time into a solution S of G of cost at least p(D−1)T + 5p+k. We thus obtain the
algorithms f and g of Definition 6. Now, observe that any instance I of set packing considered
in our reduction is such that |Yi| = 3 for every i ∈ {1, . . . , p}, and every element xj belongs to
at most three sets. This implies that any optimal solution C of I is such that |C| ≥ p

7 . Indeed,
the number of elements which belong to a set of C is exactly 3|C|, and any set must intersect one
of these vertices. However, each of these vertices can belong to at most 2 sets outside C. Hence
p ≥ 7|C|.

These two arguments already prove item 1 of Definition 6. We then prove item 2 of Definition 6
with β = 1. Given a solution C of I obtained from a solution S of G, we have to show that
OPTSP (I)− |C| ≤ ΦD(G)− |S|. However we have ΦD(G) = OPTSP (I) + p(D− 1)T + 5p, hence
the required inequality is actually equivalent to |C| ≥ |S| − (p(D − 1)T + 5p) which is true by
the previous lemmas.

To illustrate the proof of Theorem 3, consider the instance Isp of set packing problem, where
X = {x1, . . . , x9}, a family Y = {Y1, . . . , Y7} of subsets of X such that Y1 = {x1, x2, x3},
Y2 = {x2, x3, x4}, Y3 = {x4, x5, x9}, Y4 = {x3, x8, x9}, Y5 = {x6, x7, x8}, Y6 = {x1, x5, x8},
Y7 = {x2, x6, x7}. Note that p = 7. Let D = 3. The graph G depicted in Figure 4 is the graph
obtained from Definition 7. There is a set packing C = {Y1, Y3, Y5} of size k = 3 and there is a

Inria

Clustering stability 17

3-family-matching S such that Φ(S) ≥ p(D − 1)T + 5p+ k = 14T + 38 = 6590 (depicted in red
in Figure 4).

3.1.2 Part II: D = 2, ∆ = 3, unary weights

We prove the following:

Theorem. 7. The 2-family-matching problem is APX-hard in graphs of maximum degree 3
with unary weights.

Proof. We reduce from the Induced Matching Problem, which takes as input a graph G =
(V,E) and an integer k, and asks whether there exists a set M of at least k edges such that no
two edges ofM are joined by an edge. Such a setM is called an induced matching. This problem
is APX-complete on graphs on maximum degree 3 [10].

LetG = (V,E) be a graph of maximum degree 3, with V = {v1, . . . , vn} and E = {e1, . . . , em}.
We construct a bipartite graph G′ composed of the vertex set V ′ ∪ E′, where V ′ = {v′1, . . . , v′n}
and E′ = {e′1, · · · e′m}. Then, if ej = {va, vb} is an edge of G, add to G′ the edges {v′a, e′j} and ,
{v′b, e′j} and give them weight 1. We now prove that G contains an induced matching of size k if
and only if G′ contains a 2-family-matching of weight m+ k.
⇒ Let M ⊆ E be an induced matching of G of size at least k. W.l.o.g., assume that

M = {e1, . . . ek}. Construct, for each j ∈ {1, . . . , k}, the cluster SMj = {v′a, v′b, e′j}, where a, b are
such that ej = {va, vb}. Clearly SMj induces a graph of diameter 2. More precisely, it induces a
path of length 2, its weight is thus 2. Moreover, there are k such clusters. Now, for every edge
ej ∈ E \M , let ij be such that vij ∈ ej and vij does not belong to any edge from M , chosen
arbitrarily if several choices are possible.

Notice that vij is well defined, since M is an induced matching. Let I = {ij |ej ∈ E \M}.
For every i ∈ I, construct the cluster SOi = {v′i} ∪

⋃
j|ij=i{e′j}. Here again, one can check that

the diameter of the graph induced by SOi is 2, since it is a star whose center is v′i, with either
one, two or three branches, in which case its weight is respectively 1, 2 or 3. Moreover, the
total weight of these clusters is m − k. Alltogether, we obtain a 2-family-matching of weight
2k +m− k = m+ k, as desired.
⇐ Conversely, let S be a solution of weight at least m + k. Observe first that since the

vertices of E′ are of degree 2, and none of them have the same neighborhood, each cluster must
induce a star, centered at either a vertex from V ′ or E′. Let M be the set of all j ∈ {1, . . . ,m}
such that e′j is in the same cluster as v′a and v′b, where ej = {va, vb}. Now, we show that we can
modify the solution (without decreasing its weight) so that edges of index in M form an induced
matching: suppose there exist j, j′ ∈ M , j 6= j′, r /∈ M such that er = {va, vb} with va ∈ ej
and vb ∈ ej′ (i.e. edges ej and ej′ are incident). Hence, e′r is not contained in any cluster. We
remove v′a from the cluster which contains e′j , and create a cluster {v′a, e′r}. Applying iteratively
this modification we obtain a solution which is still a 2-family-matching of weight at least k+m.
Moreover, edges whose index are in M form an induced matching. Finally, the number of edges
contained in a cluster of S is at most 2|M |+ |E \M | = m+ |M | and at least m+k, thus |M | ≥ k.

In order to prove that this is indeed an L-reduction, it remains to show that any maximum
induced matching M is of size at least αm for some fixed α > 0. This is indeed the case, since
the input graph has maximum degree 3. Hence, if M denotes a maximum induced matching and
V (M) denotes the vertices of M , observe that any edge of G is either (i) in M , (ii) not in M
but induced by V (M), (iii) incident to some vertex of N(V (M)), the neighbors of V (M). Since
|V (M)| = 2|M |, we have |N(V (M))| ≤ 6M , and thus the total number of vertices is bounded
above by 8M , which gives a linear upper bound on m, as desired.

RR n° 9063

18 Cazals / Mazauric / Tetley / Watrigant

Figure 5 Illustration of the proof of Theorem 7. See details in the text.

V'

E'1

2

3

4

5

6

7

1

2 46

3 57

G'

G

To illustrate the proof of Theorem 7 consider the instance of Induced Matching problem
depicted in Figure 5 (left). Figure 5 (right) represents the intersection graph constructed from
it. There is an induced matching of G of size 3 and there is a 2-family-matching composed of 4
sets with total weight equal to 9.

3.1.3 Part III: D > 2, ∆ = 3

We prove the following result:

Theorem. 8. For any D ≥ 3, the D-family-matching problem is APX-hard for graphs of
maximum degree 3.

Proof. Similarly to the previous case, we reduce from the Maximum Induced Matching
Problem.

LetG = (V,E) be a graph of maximum degree 3, with V = {v1, . . . , vn} and E = {e1, . . . , em}.
We construct a bipartite graph G′ composed of the vertex set V 1 ∪E1 ∪ · · · ∪ED−1 ∪ V 2, where
V i = {vi1, . . . , vin} and Ej = {ej1, · · · ejm} for i ∈ {1, 2}, j ∈ {1, . . . , D− 1}. Then, if ej = {va, vb}
is an edge of G, add to G′ the edges {v1

a, e
1
j}, {v1

b , e
1
j}, {e

D−1
j , v2

a}, {eD−1
j , v2

b} and give them
weight 1. Finally, for every j ∈ {1, . . . ,m} and ` ∈ {1, . . . , D − 2}, add the edge {e`j , e

`+1
j } and

give it weight W = 4m+ 1. Clearly G′ is a bipartite graph of maximum degree 3. We now prove
that G contains an induced matching of size k if and only if G′ contains a D-family-matching of
weight (D − 2)Wm+ 2(m+ k).

Inria

Clustering stability 19

⇒ Let M ⊆ E be an induced matching of G of size at least k. W.l.o.g., assume that M =
{e1, . . . ek}. Construct, for each j ∈ {1, . . . , k}, the cluster SMj = {v1

a, v
1
b , e

1
j , . . . , e

D−1
j , v2

a, v
2
b},

where a, b are such that ej = {va, vb}. Clearly SMj induces a graph of diameter D. Moreover, its
weight is (D − 2)W + 4. Now, for every edge ej ∈ E \M , let ij be such that vij ∈ ej and vij
does not belong to any edge from M , chosen arbitrarily if several choices are possible.

Notice that vij is well defined, since M is an induced matching. Let I = {ij |ej ∈ E \M}.
For every i ∈ I, construct the cluster SOi = {v1

i , v
2
i } ∪

⋃
j|ij=i{e1

j , . . . , e
D−1
j }. Here again, one

can check that the diameter of the graph induced by SOi is D, since it is either a path on D + 1
vertices, or two or three paths of length D + 1 whose respective endpoints have been identified.
Finally, the sum of the weights of these clusters is |E \M | ((D − 2)W + 2). Hence, the total
weight of this D-family-matching is (D − 2)Wm+ 2(m+ k), as desired.
⇐ Conversely, let S be a solution of weight at least (D − 2)Wm + 2(m + k). Because of

the value of W , it holds that for every j ∈ {1, . . . ,m} and every ` ∈ {1, . . . , D − 2}, the edge
{e`j , e

`+1
j } belongs to some cluster of S. Observe that the weight of these edges is (D − 2)Wm,

and the weight of all remaining edges, i.e. edges between V 1 and E1, and edges between ED−1

and V 2, are 1. Hence, we may assume, w.l.o.g., that S contains at least m+k edges among those
between V 1 and E1. Let M be the set of all j ∈ {1, . . . ,m} such that e1

j is in the same cluster
as v1

a and v1
b , where ej = {va, vb}. Observe that there cannot be j, j′ ∈ M , j 6= j′, such that

e1
j and e1

j′ are in the same cluster, since the diameter of such a cluster would be at least D + 1.
Now, we show that we can modify the solution (without decreasing its weight) so that edges of
index in M form an induced matching: suppose there exist j, j′ ∈ M , j 6= j′, r /∈ M such that
er = {va, vb} with va ∈ ej and vb ∈ ej′ (i.e. edges ej and ej′ are incident). We move v1

a from the
cluster which contains e1

j to the cluster which contains e1
r. Let us call S ′ the obtained solution.

We have the following:

• S ′ is of same weight as S;

• S ′ is a D-family-matching: firstly, v1
a is a vertex of degree 1 in the graph induced by its

cluster in S, so the diameter of the cluster containing e1
j is not greater in S ′. Secondly, we

added a vertex of degree 1 in the cluster containing e1
r. If this cluster has diameter at least

D+ 1 in S ′, it implies that in S, there exists r′ 6= r such that eD−1
r′ and e1

r are in the same
cluster, but since e1

r is only adjacent to e2
r in its cluster, the shortest path between e1

r and
e1
r′ is of length at least 2D − 3, a contradiction.

Applying this modification leads to a solution S such that M represents an induced matching in
G. Finally, the number of edges contained in a cluster of S among those between V 1 and E1 is
at most 2|M |+ |E \M | = m+ |M |, and at least m+ k, thus |M | ≥ k. As previously, m can be
bounded above by a linear function of the size of a maximum induced matching, which proves
that the reduction is an L-reduction.

To illustrate the proof of Theorem 8, consider the instance of Induced Matching problem
depicted in Figure 6 (left). Figure 6 (right) represents the intersection graph constructed from it
forD = 4. There is an induced matching of G of size 3 and there is a 2-family-matching composed
of 4 sets with total weight equal to 18 + 12W = 318.

3.2 Greedy strategies
Perhaps the most natural idea to solve the problem is a greedy approach, which would iteratively
seek for maximal collections of subgraphs of diameter D. Unfortunately, we show that even for
D = 2, there exist instances (having unary weights) for which picking a maximum biclique
(complete bipartite graph) first leads to an arbitrarily bad solution.

RR n° 9063

20 Cazals / Mazauric / Tetley / Watrigant

Figure 6 Illustration of the proof of Theorem 8. See details in the text.

V

G'

G

1 V2

E1 E2 E3
1

2

3

4

5

6

7

1

2 46

3 57

1

2

3

4

5

6

7

25

25

25

25

25

25

25

25

25

25

25

25

1
11
1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1
1 1

Lemma. 5. For any integer λ ≥ 1, there exists an intersection graph G = (V,E,w) such that
Φ2(G)/Φ(Sbic) ≥ λ − 2, where Sbic is an optimal solution for the 2-family-matching problem
among those containing a maximum biclique. Such a graph has unary weights, is of maximum
degree λ, and contains λ(λ− 1) + 1 vertices.

Proof of Lemma 5. Consider the intersection graph G = (U,U ′, E, w) constructed as follows.

• Set U = {u1, . . . , uλ}.

• Set U ′ = {u′c} ∪ U ′1 ∪ . . . ∪ U ′λ, where U ′i = {u′i1 , . . . , u′iλ−1} for every i ∈ {1, . . . , λ}.

• Set E = Ec ∪ E1 ∪ . . . ∪ Eλ, where

– Ec = {{u′c, ui} | 1 ≤ i ≤ λ}
– and Ei = {{ui, u′ij } | 1 ≤ j ≤ λ− 1} for every i ∈ {1, . . . , n}.

• Set we = 1 for every e ∈ E.

Observe that the graph G is bipartite.
We now prove that the sub-graph of G with diameter at most 2 and that has the maximum

number of edges is the graph G[{u′c, ui, . . . , uλ}] composed of λ edges that is induced by the set of
nodes {u′c, ui, . . . , uλ}. Indeed, suppose that node u′c is not in such a graph. Then, if we remove
u′c from G, we obtain λ disjoint stars each composed of λ−1 edges. Thus, since we = 1 for every
e ∈ E, then we get that the graph G[{u′c, ui, . . . , uλ}] induced by {u′c, ui, . . . , uλ} maximizes the
sum of the weights. Now, if we remove such a set from G, we get disjoint isolated nodes (that is
each node has degree 0). We get that Φ(Smax) = λ.

Inria

Clustering stability 21

We finally prove that there exists a 2-family-matching S for G such that Φ(S) ≥ λ(λ−2). Let
S = {S1, . . . , Sλ} be such that Si = {ui}∪U ′i for every i ∈ {1, . . . , λ}. Observe that Si ∩Sj = ∅
for every i, j ∈ {1, . . . , λ}, i 6= j. Furthermore, the graph G[Si] is a star and so has diameter 2.
Thus, S is a (λ, 2)-family-matching for G. The number of edges of G[Si] is |E(G[Si])| = λ − 2
for every i ∈ {1, . . . , λ}. Since we = 1 for every e ∈ E, we finally get that

Φ(Smax) = λ, Φ(S) ≥ λ(λ− 2), and
Φ(S)

Φ(Smax)
= λ− 2.

This concludes the proof of Lemma 5.

Notice that this result is in sharp contrast to the non-bipartite version of the problem, where
we want to find a partition of the vertices of a graph in cliques which covers the maximum number
of edges. It has been shown [5] that a greedy algorithm similar to the one described previously
achieves a 2-approximation ratio if one is allowed to pick cliques of size at most some constant
r only. Hence, this strategy gives a 2-approximation algorithm in graphs of maximum degree ∆,
while it cannot achieve an approximation ratio better than ∆ in the bipartite case. This gives
the intuition that the complexity of the problem increases with the value of the diameter.

From this observation, another greedy strategy consists in first solving the problem with
a smaller value of D. Here again, we show that such an algorithm cannot achieve a fixed
approximation ratio. More precisely, we analyze the ratio between scores of optimal solutions
for the D-family-matching problem for increasing values of the diameter, that is ΦD(G)/ΦD′(G)
for D′ < D. Unfortunately, we show that this ratio is not bounded even for very simple classes
of instances.

Lemma. 6. For any integer n ≥ 1, there exists an intersection graph G = (V,E,w) composed
of n nodes such that Φ2(G)/Φ1(G) ≥ n− 1.

Proof of Lemma 6. Let t = n − 1. Let Z = {z1, . . . , zt}, F = {F1}, and F ′ = {F ′1, . . . , F ′t} be
an instance of the D-family-matching problem, where F1 = {z1, . . . , zt} and F ′i = {zi} for every
i ∈ {1, . . . , t}. The intersection graph G = (U,U ′, E, w) is such that U = {u1}, U ′ = {u′1, . . . , u′t},
E = {{u1, u

′
i} | 1 ≤ i ≤ t}, and we = 1 for every e ∈ E. We first prove that any solution SD=1

for the 1-family-matching problem is such that Φ(SD=1) ≤ 1. Indeed, every sub-graph of G with
diameter at most 1 is composed of at most 1 edge. Furthermore, if SD=1 contains a set S that
induces a sub-graph composed of one edge, then all others sets induce sub-graphs that do not
contain any edge (observe that every edge contains the central node u1 of the star graph G).
Otherwise the family SD=1 does not satisfy the property that the subsets are disjoint. Thus,
Φ(SD=1) ≤ 1. Finally, let SD=2 = {U ∪ U ′}. The graph induced by U ∪ U ′ is the graph G that
has diameter 2 and Φ(SD=2) = t = n− 1.

In the next sections, we provide polynomial-time algorithms for simple graphs classes, and
then use some of them to obtain efficient algorithms in general bipartite graphs.

4 Polynomial time dynamic programming algorithms for
some classes

In this section, we prove polynomial-time complexity exact dynamic programming algorithms
for the D-family-matching problem for some classes of graphs: trees, paths, cycles, graphs of
maximum degree two.

RR n° 9063

22 Cazals / Mazauric / Tetley / Watrigant

4.1 The D-family-matching problem for trees

We explain our exact polynomial time dynamic programming algorithm to solve the D-family-
matching problem when the graph is a tree.

Theorem. 9 (Computation of ΦD(G) for trees). Let D ∈ N+. Consider any intersection tree
T = (V,E,w) of maximum degree ∆ ≥ 0. Then, there exists an O(D2∆2n)-time complexity
algorithm for the D-family-matching problem for T .

Proof. Consider the tree T rooted at any node r ∈ V . We call this rooted tree Tr. Given any
node v ∈ V , let Tv be the sub-tree of Tr rooted at v such that V (Tv) contains all the nodes
v′ ∈ V such that there is a simple path between v′ and r in Tr that contains v in Tr. A simple
path is a path such that each node is contained at most once in it. We define the function ΨD as
follows. For every v ∈ V and every i ∈ {−1, 0, . . . , D}, then ΨD(Tv, i) is the score of an optimal
solution S for the D-family-matching problem, for the intersection tree Tv, such that:

• if i ≥ 0, then there exists S ∈ S, v ∈ S, and the sub-tree induced by the set of nodes S has
depth at most i;

• if i = −1, then for every S ∈ S, we have v /∈ S.

Note that ΨD(Tv, 0) is the score of an optimal solution S when {v} ∈ S (say otherwise, v is alone
in a set). In the following, we abuse the notation writing ΨD(v, i) instead of ΨD(Tv, i).

First of all, for every leaf v ∈ V of Tr and every i ∈ {−1, 0, . . . , D}, then ΨD(v, i) = 0. A leaf
is a node of degree one and different than the root r.

Let v ∈ V be any node that is not a leaf. Let N(v) = {v1, . . . , vq} be the set of q ≥ 1
neighbors of v in Tv. Suppose we have computed ΨD(vj , i) for every j ∈ {1, . . . , q} and every
i ∈ {−1, . . . , D}. We prove that we can compute ΨD(v, i) for every i ∈ {−1, . . . , D}. The
computation is divided into two different cases (claims).

Claim 10. For every i ∈ {−1, 0}, then

ΨD(v, i) =
∑

j∈{1,...,q}

max
i′∈{0,...,D}

ΨD(vj , i
′).

Proof of Claim 10. Let us first consider i = −1. We consider here an optimal solution for the
D-family-matching problem for Tv such that v does not belong to any set. Thus, we compute for
every sub-tree Tvj , 1 ≤ j ≤ q, the score of an optimal solution for the D-family-matching problem
for Tvj . Note that the depth of the sub-tree (set) rooted at vj in the solution has no importance
here. The score of such a score is maxi′∈{0,...,D}ΨD(vj , i

′). Then, ΨD(v,−1) is the sum of all
such scores.

Let us now consider i = 0. It means that we consider an optimal solution for the D-family-
matching problem for Tv such that v is alone in a set. Observe that ΨD(v, 0) = ΨD(v,−1).

Claim 11. For every i ∈ {1, . . . , D}, then

ΨD(v, i) = max
j∈{1,...,q}

(ΨD(vj , i− 1) + wv,vj+

∑
j′∈{1,...,q}\{j}

max(max
i′∈{1,...,min(i−1,D−i−1)}

ΨD(vj′ , i
′) + wv,vj′ , max

i′∈{1,...,D}
ΨD(vj′ , i

′))).

Inria

Clustering stability 23

Proof of Claim 11. We compute here the score ΨD(v, i) of an optimal solution for the D-family-
matching problem for Tv such that the depth of the sub-tree (set) that contains v in the solution
is exactly i. We denote by Sv the set of nodes of such a sub-tree. To do that, we first need
to choose one sub-tree Tvj , for some j ∈ {1, . . . , q}, such that the set (sub-tree) that contains
vj in the solution for Tv, is such that the sub-tree induced by Sv ∩ V (Tvj) has depth i − 1. In
order to compute such j, we enumerate the q different possibilities. For every possible choice
(j = 1, . . . , q), we compute the largest possible score. Such a score is ΨD(vj , i− 1) plus the the
weight wv,vj of the edge {v, vj} plus the largest possible score for the other neighbors of v. More
precisely, for every j′ ∈ {1, . . . , q}, j′ 6= j, there are two cases.

• Sv ∩ V (Tvj) = ∅. In that case, the largest possible score corresponding to the sub-tree Tvj′
is maxi′∈{1,...,D}ΨD(vj′ , i

′).

• Sv∩V (Tvj) 6= ∅. In that case, the largest possible score is maxi′∈{1,...,min(i−1,D−i−1)}ΨD(vj′ , i
′)+

wv,vj′ . Indeed, we add the weight wv,vj′ by assumption and we then compute the score
of an optimal solution for the D-family-matching problem for Tvj′ such that vj′ is in a
sub-tree (set) of depth at most D − i− 1 and also at most i− 1. Otherwise, the diameter
of Sv would be at least D + 1 and/or the depth would be at least i− 1.

We determine the maximum score between these two scores. We finally obtain an optimal score
and we determine a best choice for j in order to compute ΨD(v, i).

For every v ∈ V , the time complexity of the computation of ΨD(v, i), for all i ∈ {−1, . . . , D},
is O(qD) for the first case and O(q2D2) for the second case. We get that the time complexity
of the algorithm is O(D2∆2n). Note that ∆ ≤ n − 1 and D ≤ n − 1. Finally, when we have
computed ΨD(r, i) for every i ∈ {−1, . . . , D}, we can deduce an optimal solution S for the
D-family-matching problem for T . Indeed, Φ(S) = ΦD(G) = maxi∈{−1,...,D}ΨD(r, i).

Remark 1. The algorithm from Theorem 9 computes a solution for a tree. This solution can be
enriched at no cost by adding edges whose endpoints belong to the same meta-cluster. In general,
the intersection graph is indeed not a tree, so that such edges are unaccounted for.

4.2 The D-family-matching problem for paths
We illustrate the result of Theorem 9 by considering paths. Consider an intersection path
G = (V,E,w). By Theorem 9, given D ≥ 1, there is an O(D2n)-time complexity algorithm for
the D-family-matching problem because ∆ = 2. We prove in Lemma 7 a better time complexity
algorithm for the D-family-matching problem. Indeed, the time complexity is O(Dn).

Lemma. 7 (Computation of ΦD(G) for paths). Let D ∈ N+. Consider any intersection
path G = (V,E,w). Then, there exists an O(Dn)-time complexity algorithm for the D-family-
matching problem for G.

Proof of Lemma 7. Let V = {v1, . . . , vn}. Let E = {{vj , vj+1} | 1 ≤ j ≤ n − 1}. We define
the function ΨD as follows. For every t ∈ {1, . . . , n} and every i ∈ {max(1, t − D), . . . , t + 1},
then ΨD(vt, i) is the score of an optimal solution S of the D-family-matching problem, for the
sub-path induced by the set of nodes {v1, . . . , vt}, such that {vi, . . . , vt} ∈ S. The case i = t+ 1
means that vt does not belong to any set. Note that we consider i ≥ max(1, t − D) because,
otherwise we would not have an admissible solution (because of the diameter constraint). First
of all, ΨD(v1, 1) = ΨD(v1, 2) = 0.

Let t ∈ {1, . . . , n − 1}. Suppose we have computed ΨD(vt′ , i) for every t′ ∈ {1, . . . , t} and
every i ∈ {max(1, t − D), . . . , t′ + 1}. We prove that we can compute ΨD(vt′+1, i) for every

RR n° 9063

24 Cazals / Mazauric / Tetley / Watrigant

i ∈ {max(1, t−D), . . . , t′+ 1} in O(D)-time. There are two different cases (corresponding to the
two following claims).

Claim 12. For every i ∈ {max(1, t+ 1−D), . . . , t}, then

ΨD(vt+1, i) = wvt,vt+1
+ ΨD(vt, i).

Proof of Claim 12. The set of nodes {vi, . . . , vt+1}, max(1, t + 1 −D) ≤ i ≤ t, must be a set of
the solution. Thus, we have to consider the optimal solution for the D-family-matching problem,
for the sub-path induced by the set of nodes {vi, . . . , vt}, such that {vi, . . . , vt} is a set of this
solution. We then modify this solution by adding node vt+1 in the last set, and we obtain the
optimal solution for the D-family-matching problem, for the sub-path induced by the set of nodes
{vi, . . . , vt}, such that {v1, . . . , vt+1} is a set of this solution.

Claim 13.

ΨD(vt+1, t+ 1) = ΨD(vt+1, t+ 2) = max
i∈{max(1,t−D),...,t+1}

ΨD(vt, i).

Proof of Claim 13. We first prove the result for ΨD(vt+1, t+ 1). Any solution must contain the
set {vt+1}. Thus, we have to consider an optimal solution for the D-family-matching problem
for the sub-path induced by the set of nodes {vi, . . . , vt}.

We now prove the result for ΨD(vt+1, t + 2). Since node {vt+1} does not belong to any set,
then we have to consider again an optimal solution for the D-family-matching problem for the
sub-path induced by the set of nodes {vi, . . . , vt}.

For every t ∈ {1, . . . , n}, we address the time complexity of computing Ψ as follows. For each
claim, the time complexity of the computation of Ψ is O(D). We get that the time complexity
of the dynamic programming algorithm is O(nD).

To conclude the proof of Lemma 7, when we have computed ΨD(vn, i) for every i ∈ {max(1, n−
D), . . . , n+1}, then we can deduce an optimal solution S and the optimal value for the D-family-
matching problem for G. Indeed,

ΦD(G) = max
i∈{max(1,n−D),...,n+1}

ΨD(vn, i).

Recall that n+ 1 means that node vn does not belong to any set of the solution.

4.3 The D-family-matching problem for cycles
We now deduce in Corollary 1 an efficient algorithm for the D-family-matching problem when
G is an even cycle.

Corollary. 1 (Computation of ΦD(G) for cycles). Let D ∈ N+. Consider any intersection graph
G = (V,E,w) that is an even cycle. Then, there exists an O(D2n)-time complexity algorithm
for the D-family-matching problem for G.

Indeed, we have
ΦD(G) = max

H∈H(G,v)
(ΨD(GH) +

∑
e∈EH

we).

We address in Corollary 2 the results in terms of the equivalent definition proved in Section 2.1.

Corollary. 2. Let D ∈ N+. Consider any instance of the D-family-matching problem such that:

Inria

Clustering stability 25

• for every i ∈ {1, . . . , r}, there exist j1, j2 ∈ {1, . . . , r′} such that Fi ∩ F ′j = ∅ for any
j ∈ {1, . . . , r′} \ {j1, j2}.

• for every j ∈ 1, . . . , r′}, there exist i1, i2 ∈ {1, . . . , r} such that F ′j ∩ Fi = ∅ for any
i ∈ {1, . . . , r} \ {i1, i2}.

Then, there exists an O((r+r′)D2)-time complexity algorithm for the D-family-matching problem.

Say otherwise, Corollary 2 shows that there is a polynomial time algorithm for the D-family-
matching problem if any set in F ∪F ′ has a non-empty intersection with at most two other sets
of F ∪ F ′.

Notice finally that the problem can be solved in O(|cc(G)|maxC∈cc(G) f(C)) for G if D-
family-matching can be solved in O(f(C)) time for any C ∈ cc(G), where cc(G) denotes the set
of maximal connected components of G.

5 Generic approach based on spanning trees
In this section, we provide a generic approach for solving the problem in general instances. This
approach relies on computing a solution having a particular structure defined by a given spanning
tree T of the input graph. Formally:

Definition. 8 (D-family-matching constrained by a tree). Let D ∈ N+. Let G = (V,E,w) be
an intersection graph and T be a spanning tree of G. A D-family-matching for G constrained by
T is a D-family-matching S for G such that all S ∈ S induces a connected subtree in T .

We thus obtain the following sub-problem of D-family-matching.

Definition. 9 (D-family-matching problem constrained by a tree). Let D ∈ N+. Given an inter-
section graph G and a spanning tree T of G, the D-family-matching problem consists in computing
ΦD(G,T) = maxS∈SD(G,T) Φ(S), where SD(G,T) is the set of all D-family-matching constrained
by T .

We are now ready to define our generic algorithm (Algorithm 1). Informally, it iteratively
generates a spanning tree T of G, and compute a D-family-matching constrained by T . Let us
describe the main ingredients of Algorithm 1 by explaining the three parameters needed.

• A property Π(M), depending on the set M of already computed D-family-matchings,
represents the halting condition of the algorithm.

• A spanning tree generator R(G,λ) computes the rooted spanning tree Tλ of G that is
used at step λ ≥ 1 by Algorithm A.

• An algorithm A(G,Tλ, D) computes a D-family-matching Sλ constrained by Tλ.

The interest of this approach is twofold. The first one is the fact that solving optimally the
D-family-matching constraint by T , for every spanning tree T , leads to an optimal solution of
the general D-family-matching problem. This is the point of the following result.

Lemma. 8. Let D ∈ N+. Let G be any intersection graph. Then, there exists a rooted spanning
tree T of G such that ΦD(G) = ΦD(G,T).

Proof of Lemma 8. For some k ≥ 1, consider an optimal solution S = {S1, . . . , Sk} for the D-
family-matching problem for G. For every i ∈ {1, . . . , k}, let Ti be any spanning tree of G[Si].
Let T be any rooted spanning tree of G such that E(Ti) ⊆ E(T) for every i ∈ {1, . . . , k}.
By construction of T , S is an admissible solution for the D-family-matching problem for G
constrained by T . Thus, ΦD(G,T) = ΦD(G).

RR n° 9063

26 Cazals / Mazauric / Tetley / Watrigant

Algorithm 1 Generic algorithm for the D-family-matching problem.
Require: An intersection graph G = (V,E,w), an integer D ≥ 1, a property Π, a spanning tree

generator R, and an algorithm A.
1: M := ∅, λ := 0
2: while ¬ Π(M) do
3: λ := λ+ 1; Compute the spanning tree Tλ := R(G,λ)
4: Compute Sλ by using Algorithm A(G,Tλ, D);M :=M∪Sλ
5: return S ∈ M of maximum score

Then, we show that it is possible, given a spanning tree T , to compute an optimal D-family-
matching constrained by T in an efficient way, provided the diameter D and the maximum degree
∆ of the input graph are bounded by a constant.

Lemma. 9 (Computation of ΦD(G,T)). Let D ∈ N+. Let G = (V,E,w) be any intersection
graph and T be any spanning tree of G. Then, there exists a O(2D∆ log2(∆)n)-time algorithm for
the D-family-matching problem for G constrained by T .

Proof of Lemma 9. Consider the tree T rooted at any node r ∈ V such that r has not degree
∆. Such a node always exist if T contains at least three nodes. We call this rooted tree Tr. We
define the function ΨD as follows. For every v ∈ V and every H ∈ H(G,Tr, v), then ΨD(v,H)
is the score of an optimal solution S for the D-family-matching problem, for the graph G[V (tv)]
induced by the set of nodes V (Tv), constrained by Tv, and such that V (H) ∈ S. We allow H to
be the empty graph (∅, ∅).

By convention, if there is no admissible solution, we set ΨD(v,H) = −∞.
First of all, for every leaf v ∈ V of Tr, then

• ΨD(v,H) = 0 if H ∈ {(∅, ∅), ({v}, ∅)},

• ΨD(v,H) = −∞ if H ∈ {(∅, ∅), ({v}, ∅)}.

A leaf is a node of degree one and different than the root r.
Let v ∈ V be any node that is not a leaf. Let N(v) = {v1, . . . , vq} be the set of q ≥ 1

neighbors of v in Tv. Suppose we have computed ΨD(vj , H) for every j ∈ {1, . . . , q} and every
H ∈ H(G,Tr, vj). We prove that we can compute ΨD(v,H) for every H ∈ H(G,Tr, v). There
are three different cases (corresponding to the three following claims).

Claim 14.

ΨD(v, (∅, ∅)) = max
(H1,...,Hq)∈H

q∑
j=1

ΨD(vj , Hj),

where H is the set of all vectors (H1, . . . ,Hq) such that Hi ∈ H(G,Tr, vi) for every i ∈ {1, . . . , q}.

Proof of Claim 14. We consider here an optimal solution for the D-family-matching problem
for the graph G[V (tv)] induced by the set of nodes V (Tv), constrained by Tv, and such that v
does not belong to any set. Thus, ΨD(v, (∅, ∅)) consists in choosing the set Hj that contains vj
(possibly empty) for every j ∈ {1, . . . , q}, such that the score is maximal.

Claim 15.

ΨD(v, ({v}, ∅)) = max
(H1,...,Hq)∈H

q∑
j=1

ΨD(vj , Hj),

where H is the set of all vectors (H1, . . . ,Hq) such that Hi ∈ H(G,Tr, vi) for every i ∈ {1, . . . , q}.

Inria

Clustering stability 27

Proof of Claim 15. This proof is similar to the proof of Claim 14. Indeed, we consider an optimal
solution S for the D-family-matching problem for the sub-graph induced by the set of nodes
V (Tv), constrained by Tv, and such that {v} ∈ S. Thus, ΨD(v, ({v}, ∅)) consists in choosing
the set Hj that contains vj (possibly empty) for every j ∈ {1, . . . , q}, such that the score is
maximal.

Claim 16. Let H ∈ H(G,Tr, v) be any sub-tree. Without loss of generality, assume that, for
some q′, V (H) ∩ V (Tvj) 6= ∅ for every j ∈ {1, . . . , q′}, and V (H) ∩ V (Tvj) = ∅ for every
j ∈ {q′+ 1, . . . , q}. Let Hvj be the intersection between H and the sub-tree Tvj , that is V (Hvj) =
V (H) ∩ V (Tvj). Then

ΨD(v,H) =

∑
e′∈E(H′v)

we′ +

q′∑
j=1

(ΨD(vj , Hvj)−
∑

e′∈E(Hvj
)

we′) + max
(Hq′+1,...,Hq)∈H′

q∑
j=q′+1

ΨD(vj , Hj),

where H is the set of all vectors (Hq′+1, . . . ,Hq) such that Hi ∈ H(G,Tr, vi) for every i ∈
{q′ + 1, . . . , q}.

Proof of Claim 16. We consider an optimal solution S for theD-family-matching problem for the
graph G[V (tv)] induced by the set of nodes V (Tv), constrained by Tv, and such that V (H) ∈ S.
The sub-tree H contains v and q′ sub-trees Hv1 , . . . ,Hvq′ rooted at v1, . . . , vq′ , respectively.
Thus, ΨD(v,H) consists in choosing, for every j ∈ {q′ + 1, . . . , q}, the set Hj that contains vj
(possibly empty) in order to maximize the value of the solution. Note that Hj must be a graph
that belongs to H(G,Tr, vj) by definition of the problem constrained by a tree.

For every v ∈ V , we address the time complexity of computing Ψ as follows. The time
complexity of the computation done in Claim 14 is O(

∏q
j=1 h(G,Tr, vi)). The time complex-

ity of the computation done in Claim 15 is O(
∏q
j=1 h(G,Tr, vi)). The time complexity of the

computation done in Claim 16 is O(h(G,Tr, v)(q′ + |E(Hvj)| +
∏q
j=q′+1 h(G,Tr, vi))). Since

h(G,Tr, v) ≤ h(G,Tr) for every v ∈ V and q ≤ ∆ − 1 by the choice of the root of T , then
we get that the time complexity of the algorithm is O(h(G,Tr)

∆n) = O(2D∆ log2(∆)n) because
h(G,T) = O(2∆D

).
To conclude the proof of Lemma 9, when we have computed ΨD(r,H) for every H ∈

H(G,Tr, r), we can deduce an optimal solution S and the optimal value of the D-family-
matching problem for G constrained by T . Indeed,

ΦD(G,Tr) = max
H∈H(G,Tr,r)

ΨD(r,H).

Note that H can be empty (in that case r does not belong to any set of S).

Let us first introduce some notations. For every v ∈ V , let H(G, v) be the set of all different
sub-graphs of G that contain v and of diameter at most D. Let H(G) = ∪v∈VH(G, v). We define
h(G, v) = |H(G, v)| for every v ∈ V and h(G) = maxv∈V h(G, v). Let Tr be any spanning tree
of G rooted at node r ∈ V . For every v ∈ V , we define H(G,Tr, v) as the set of all H ∈ H(G, v)
such that the graph induced by the set of nodes V (H)∩V (Tv) is a (connected) sub-tree rooted at
v. Let H(G,Tr) = ∪v∈VH(G,Tr, v). We define h(G,Tr, v) = |H(G,Tr, v)| for every v ∈ V and
h(G,Tr) = maxv∈V h(G,Tr, v). Furthermore, let T (G) be the set of all different rooted spanning
trees of G.

Corollary. 3. Given any positive integer D ≥ 1 and any intersection graph G, Algorithm 1
returns ΦD(G), that is an optimal solution for the D-family-matching problem for G, if:

RR n° 9063

28 Cazals / Mazauric / Tetley / Watrigant

• Π(M) ⇔ |M| = |T (G)|,

• R(G,λ) = Tλ, where T (G) = {T 1, . . . , T |T (G)|},

• and Algorithm A(G,Tλ, D) returns ΦD(G,Tλ) (Lemma 9).

Furthermore, the time complexity of Algorithm 1 is O(|T (G)|maxTr∈T (G) h(G,Tr)
∆n).

Lemma. 10. Let G be any intersection graph. Then, there exists a rooted spanning tree T of G
such that Φ2(G) ≤ 2∆Φ2(T).

Proof of Lemma 10. For some k ≥ 1, consider an optimal solution S = {S1, . . . , Sk} for the 2-
family-matching problem for G. For every i ∈ {1, . . . , k}, let Ti be a maximum spanning tree of
G[Si]. Let T be any rooted spanning tree of G such that E(Ti) ⊆ E(T) for every i ∈ {1, . . . , k}.
For every i ∈ {1, . . . , k}, we have ∆

∑
e∈E(Ti)

we ≥
∑
e∈E(G[Si])

we. Indeed, since D = 2, G[Si]
is necessarily a complete bipartite graph and its number of nodes is at most 2∆. It is sufficient
to select the maximum star as Ti in order to get the inequality. Thus, by construction of T , the
algorithm returns at least the desired score.

Corollary. 4. Given any intersection graph G, Algorithm 1 returns a 2∆-approximation for the
2-family-matching problem for G if:

• Π(M) ⇔ |M| = |T (G)|,

• R(G,λ) = Tλ, where T (G) = {T 1, . . . , T |T (G)|},

• and Algorithm A(G,Tλ, D) returns ΦD(Tλ) (Theorem 9).

Furthermore, the time complexity of Algorithm 1 is O(|T (G)|D2∆2n).

Finally, we obtain an efficient (polynomial) heuristic using our dynamic programming algo-
rithm for trees described in Theorem 9. Indeed, an optimal solution for theD-family-matching prob-
lem on a spanning tree T is a D-family-matching for G constrained by T . We present an imple-
mentation of this heuristic and results of experiments in the next section.

6 On the choice of D

6.1 Rationale

As motivated in section 1.3, parameter D acts as a scale parameter providing information of
the structure of the intersection graph and on the scale at which clusters coalesce. When the
intersection graph is dense or has a specific topology (star-shaped), trivial values of Φ are obtained
for small values of D, and a unit change of D may trigger an abrupt change of Φ. However, in
more complex situations, large values of D may be required.

As a general strategy to choose D, we suggest identifying drops in Φ when changing D.
Indeed, a solution is to find range(s) of D corresponding to a plateau for Φ, in order to get
subset of diameters that give similar Φ. Phrased differently, consider a set of pairs {(D,ΦD)} for
consecutive values of D. In the 2D space (D,ΦD), consider the bounding box of these points: the
longer and the thinner this bounding box, the better. In the sequel, we present three strategies
to compute such plateaus:

• Section 6.2: a strategy computing a set of non-overlapping plateaus optimizing a functional
favoring long and thin plateaus.

Inria

Clustering stability 29

• Section 6.3: a strategy allowing the user to specify the number of plateaus to be obtained.

• Section 6.4: a strategy delivering a hierarchical decomposition into plateaus, which is of
interest if there are several vertical scales.

We note in passing that optimizing the width and/or height of plateaus is similar in spirit to
other strategies which were developed in particular to estimate the correct number of clusters:
the elbow method tracks jumps of the derivative of the objective function [28]; the gap method
uses the change in within-cluster dispersion [42]; the split-and-merge procedure for k-means
[1] requires a parameterization of high-density areas; the integrated completed likelihood (ICL)
method [3] tracks significant drops in the entropic penalty complementing the BIC criterion; the
density based - mode seeking method exploits a separation gap (in the persistence diagram) for
local maxima [6], etc.

6.2 Computation of tradeoff-plateaus of large widths and small heights
We first develop a strategy to compute plateaus of large width and small height. More pre-
cisely, we develop a quadratic time algorithm for the problem of computing the diameter D that
minimizes a tradeoff between the widths and the heights of the plateaus.

Definition. 10 (Tradeoff-plateau problem). Let τw and τh be two increasing functions of one
variable such that τw(y) > 0 and τh(y) > 0 for any y. Given a set {Φ1(G), . . . ,ΦDG

(G)}, the
Tradeoff-plateau problem consists in determining µ ∈ {1, . . . , DG} plateaus (intervals) I1, . . . , Iµ
of [1, DG] such that I1 ∪ . . .∪ Iµ = {1, . . . , DG}, Ix ∩ Ix′ = ∅ for every 1 ≤ x < x′ ≤ µ, and such
that the following function is minimum:

−
µ∑
x=1

τw(|Ix|)
τh(maxD,D′∈Ix∩N ΦD′(G)− ΦD(G))

,

where |Ix| is the size of plateau Ix.

Note that as the simplest choices for τw and τh, one can use two simple linear functions of
the width and height of the bounding box containing the consecutive points {(D,ΦD)} (recall
that we must have τh(y) > 0). This yields the following objective function

−
µ∑
x=1

|Ix| − 1

maxD,D′∈Ix∩N ΦD′(G)− ΦD+1(G) + 1
.

The following theorem proves in a constructive way, using dynamic programming, that the
computation of such plateaus can be done in quadratic time:

Theorem. 17. There is an O(D2
G)-time complexity algorithm that computes an optimal solution

for the Tradeoff-plateau problem.

Proof of Theorem 17. We first pre-compute τw(|Ix|)
τh(maxD,D′∈Ix∩N ΦD′ (G)−ΦD(G)) for every possible plateau

Ix. There are O(D2
G) such computations. Then, we prove a direct dynamic programming al-

gorithm. For every D ∈ {1, . . . , DG}, ρ(D) is the score of an optimal solution for the tradeoff-
plateau problem for the set {Φ1(G), . . . ,ΦD(G)}. We have ρ(0) = 0. In general, for every
D ∈ {1, . . . , DG − 1}, we have

ρ(D + 1) = min
i∈{0,...,D}

(ρ(i)− τw(D − i)
τh(maxi,i′∈[i+1,D+1] Φi′(G)− Φi(G))

).

RR n° 9063

30 Cazals / Mazauric / Tetley / Watrigant

Recall that τw and τh are two increasing functions of one variable such that τw(y) > 0 and
τh(y) > 0 for any y. If |Ix| = 1, then τw(D−i)

τh(maxi,i′∈Ix∩N Φi′ (G)−Φi(G)) = 0. The computation consists
of computing an optimal solution for every possible plateau [i + 1, D + 1] and, among these
optimal solutions, calculate an optimal one of score ρ(D + 1). For every D ∈ {1, . . . , DG − 1},
there are O(D) optimal solutions to compute, and each of them can be computed in constant
time. Finally, ρ(Dg) is the optimal score and the total time computation is quadratic in the
diameter DG.

Once plateaus have been computed, the plateau plot displays one rectangle (containing the
corresponding points (D,ΦD)) for each plateau. Since gaps between plateaus are of interest, we
define:

Definition. 11. (Increment in a plateau plot) The increment of a plateau is defined as the mean
value of its scores, minus the average value computed on the preceding plateau.

We note that a natural choice for the value ofD is the last plateau with a significant increment
– in a spirit analogous to the strategies recalled in section 6.1.

Remark 2. In practice, the range of D values explored is set to 1, . . . , DG, with DG the diame-
ter of the intersection graph. When D = DG an exact algorithm solving the D-family matching
problem would return a number of meta-clusters corresponding to the number of connected compo-
nents of the intersection graph – the exact solution. However, since we only use a heuristic based
on spanning trees, at D = DG, the number of meta-clusters may be over-estimated. However
this is not an issue since for D = DG, the exact solution is known.

6.3 Computation of multiple sets of plateaus of small heights

We develop an algorithm computing an optimal set of µ plateaus in terms of sum of heights (of
the plateaus) for every possible value for µ ∈ {1, . . . , DG}.

Definition. 12 (Plateau problem). Let G = (V,E) be a graph of diameter DG. Given a set
{Φ1(G), . . . ,ΦDG

(G)} and a number of plateaus µ ∈ {1, . . . , DG}, the Plateau problem consists
in determining µ plateaus (intervals) I1, . . . , Iµ of [1, DG] such that I1 ∪ . . . ∪ Iµ = {1, . . . , DG},
Ix ∩ Ix′ = ∅ for every 1 ≤ x < x′ ≤ µ, and such that the following function is minimum:

µ∑
x=1

max
D,D′∈Ix∩N

ΦD′(G)− ΦD(G).

Theorem. 18. There is an O(D5
G)-time complexity algorithm that computes an optimal solution

for the Plateau problem for every µ ∈ {1, . . . , n}.

Proof of Lemma 11. We prove the result by induction. Clearly, ρ1,Φ1(G),Φ1(G)(1) = 0.
Assume that we have computed ρy,x−,x+(D) for every D ∈ {1, . . . , D′}, for every y ∈

{1, . . . , D}, for every x−, x+ ∈ PD with x− ≤ x+. We prove that the five cases described
in Lemma 11 allow to compute ρy,x−,x+(D + 1) for every y ∈ {1, . . . , D + 1} and for every
x−, x+ ∈ PD+1 with x− ≤ x+.

• Consider first the case ΦD+1(G) ∈]x−, x+[. We necessarily have ρy,x−,x+(D+1) = ρy,x−,x+(D)
because we cannot start a new plateau since x− < ΦD+1(G) < x+.

Inria

Clustering stability 31

• Assume that ΦD+1(G) = x− and x− < x+. We cannot start a new plateau because
x− < x+. Thus we have to find the best y plateaus such that the lower bound is at least
ΦD+1(G) = x− and at most x+. We get that ρy,x−,x+(D+1) = minx∈PD+1,x−≤x≤x+(ρy,x,x+(D)+
x− x−).

• If ΦD+1(G) = x+ and x− < x+, then it is similar than the previous case (symmetric case).

• Consider the case x− = x+ = ΦD+1(G). It is possible to continue the current plateau or it
is possible to start a new one. In the first case, the score is ρy,x−,x+(D). In the second case,
the score is minimum score among all the optimal solutions composed of y − 1 plateaus,
that is minx,x′∈PD+1,x≤x′(y− 1, x, x′). Thus, ρy,x−,x+(D+ 1) is the minimum among these
two scores.

• If ΦD+1(G) < x− or ΦD+1(G) > x+, then there is no admissible solution and, by conven-
tion, we have ρy,x−,x+(D + 1) =∞.

Our dynamic programming algorithm computes for every D ∈ {1, . . . , DG}, for every y ∈
{1, . . . , D} and for every x−, x+ ∈ PD = {Φ1(G),Φ2(G), . . . ,ΦD(G)} with x− ≤ x+, the optimal
solution ρy,x−,x+(D) for the sub-problem defined by the set Φ1(G),Φ2(G), . . . ,ΦD(G), a number
y of plateaus, and such that x− = minx∈Iy∩N x and x+ = maxx∈Iy∩N x (Iy is the last plateau of
the optimal solution for this sub-problem, that is the current plateau if we consider the original
instance of the plateau problem). In other words, ρy,x−,x+(D) is the optimal solution for the
sub-problem induced by the first D values of Φ, such that the number of plateaus is y and the
last plateau has minimum value x− and maximum value x+. If there is no admissible solution,
we set ρy,x−,x+(D) =∞.

To prove Theorem 18, we first prove in Lemma 11 the correctness of the computation of
ρy,x−,x+(D + 1).

Lemma. 11. First, ρ1,Φ1(G),Φ1(G)(1) = 0. For every D ∈ {1, . . . , DG − 1}, for every y ∈
{1, . . . , D + 1}, for every x−, x+ ∈ PD+1 with x− ≤ x+:

• If ΦD+1(G) ∈]x−, x+[, then ρy,x−,x+(D + 1) = ρy,x−,x+(D);

• If ΦD+1(G) = x− and x− < x+, then ρy,x−,x+(D+ 1) = minx∈PD+1,x−≤x≤x+(ρy,x,x+(D) +
x− x−);

• If ΦD+1(G) = x+ and x− < x+, then ρy,x−,x+(D+ 1) = minx∈PD+1,x−≤x≤x+(ρy,x,x+(D) +
x+ − x);

• If x− = x+ = ΦD+1(G), then ρy,x−,x+(D + 1) = min(ρy,x−,x+(D),minx,x′∈PD+1,x≤x′(y −
1, x, x′));

• If ΦD+1(G) < x− or ΦD+1(G) > x+, then ρy,x−,x+(D + 1) =∞ (there is no solution).

Proof of Lemma 11. We prove the result by induction. Clearly, ρ1,Φ1(G),Φ1(G)(1) = 0.
Assume that we have computed ρy,x−,x+(D) for every D ∈ {1, . . . , D′}, for every y ∈

{1, . . . , D}, for every x−, x+ ∈ PD with x− ≤ x+. We prove that the five cases described
in Lemma 11 allow to compute ρy,x−,x+(D + 1) for every y ∈ {1, . . . , D + 1} and for every
x−, x+ ∈ PD+1 with x− ≤ x+.

• Consider first the case ΦD+1(G) ∈]x−, x+[. We necessarily have ρy,x−,x+(D+1) = ρy,x−,x+(D)
because we cannot start a new plateau since x− < ΦD+1(G) < x+.

RR n° 9063

32 Cazals / Mazauric / Tetley / Watrigant

• Assume that ΦD+1(G) = x− and x− < x+. We cannot start a new plateau because
x− < x+. Thus we have to find the best y plateaus such that the lower bound is at least
ΦD+1(G) = x− and at most x+. We get that ρy,x−,x+(D+1) = minx∈PD+1,x−≤x≤x+(ρy,x,x+(D)+
x− x−).

• If ΦD+1(G) = x+ and x− < x+, then it is similar than the previous case (symmetric case).

• Consider the case x− = x+ = ΦD+1(G). It is possible to continue the current plateau or it
is possible to start a new one. In the first case, the score is ρy,x−,x+(D). In the second case,
the score is minimum score among all the optimal solutions composed of y − 1 plateaus,
that is minx,x′∈PD+1,x≤x′(y− 1, x, x′). Thus, ρy,x−,x+(D+ 1) is the minimum among these
two scores.

• If ΦD+1(G) < x− or ΦD+1(G) > x+, then there is no admissible solution and, by conven-
tion, we have ρy,x−,x+(D + 1) =∞.

By Lemma 11, the score of an optimal solution for every number y ∈ {1, . . . , DG} of plateaus
is:

min
x−,x+∈PD,x−≤x+

ρy,x−,x+(DG).

We finally prove the time-complexity of our dynamic programming algorithm in Lemma 12.

Lemma. 12. The time complexity of the algorithm of Lemma 11 is O(D5
G).

Proof of Lemma 12. We first consider all the cases but the fourth. For everyD ∈ {0, . . . , DG−1},
for every y ∈ {1, . . . , D + 1}, for every x−, x+ ∈ PD+1 with x− ≤ x+, we have to compute
ρy,x−,x+(D + 1). There are O(D4

G) such computations. All the cases (but the fourth), can be
calculated in O(DG) time. Thus, we get the O(D5

G)-time complexity.
Now consider the fourth case in which x− = x+. Thus, for every D ∈ {0, . . . , DG−1}, for ev-

ery y ∈ {1, . . . , D+1}, for every x− = x+ ∈ PD+1, we have to compute ρy,x−,x+(D+1). There are
O(D3

G) such computations. Furthermore, ρy,x−,x+(D+1) = min(ρy,x−,x+(D),minx,x′∈PD+1,x≤x′(y−
1, x, x′)) can be computed in O(D2

G) time. Thus, we get the O(D5
G)-time complexity.

6.4 Hierarchical Plateaus

As a final interpretation of role ofD, we perform a hierarchical construction of plateaus, in a spirit
analogous to the construction of a dendogram. In hierarchical agglomerative clustering (such as
maximum/minimum/average linkage), recall that at any step, the two clusters merged are those
whose distance is minimized. Likewise, consider two consecutive plateaus, each consisting of a
set of values {(D,ΦD)}. As a measure of the coherence of all values (D,ΦD) for the union of
these two plateaus, one may compute the maximum difference between any two values Φ· on
these plateaus. Merging the two plateaus realizing the minimum value then yields a dendogram.

More formally, we construct the rooted tree T = (V,E) representing the hierarchical plateaus
as follows. There is a leaf per possible value of D and there are DG− 1 internal nodes (including
the root). Let L = {v1, . . . , vDG

} be the set of leaves of T and let U = {u1, . . . , uDG−1} be the
set of internal nodes of T . Let V = L∪U . Algorithm 2 formally describes the set of edges of T .

Inria

Clustering stability 33

Algorithm 2 Construction of the tree representing the hierarchical plateaus.
Require: The values (Φ1(G), . . . ,ΦDG

(G)).
1: The set of nodes is V = L ∪ U , where L = {v1, . . . , vDG

} and U := {u1, . . . , uDG−1}.
2: d := DG, x := 1, E := ∅.
3: Let (I1, I2, . . . , Id) be the d = DG initial plateaus each composed of 1 point.
4: We associate a leaf node to every initial interval: v(Ii) = vi for every i ∈ {1, . . . , d}.
5: while d ≥ 2 do
6: i′ := arg mini∈{1,...,d}maxD,D′∈Ii∪Ii+1

ΦD′(G)− ΦD(G).
7: E := E ∪ {v(Ii′), ux, v(Ii′+1), ux}.
8: Ii′ := Ii′ ∪ Ii′+1 and Ij := Ij+1 for every j ∈ {i′ + 1, d− 1}.
9: v(Ii′) = ux and v(Ij) = v(Ij+1) for every j ∈ {i′ + 1, d− 1}.

10: d := d− 1, x := x+ 1.
11: return T = (V,E)

7 Experiments

We present experiments in three directions:

• In Section 7.2, we compare a clustering and an edited version of it, in order to assess the
value of D required to counter-balance the magnitude of edits.

• In Section 7.3, we investigate the role of D to compare clusterings yielded by k-means++
and recover the right number of clusters when the number of clusters passed to k-means++
is too large.

• In Section 7.4, we argue that a normalized score associated with our matchings provides
more stable information than the information theoretical measure variation of information
(VI).

7.1 Implementation

Generic code. We implemented a version of Algorithm 1, which takes as input a graph
G = (V,E,w) and a diameter D. This implementation is integrated to the Core / Combinato-
rial algorithms and data structures (CADS) component of the Structural Bioinformatics Library
(http://sbl.inria.fr). Documentation can be accessed directly from http://sbl.inria.fr/
doc/D_family_matching-user-manual.html. A Jupyter notebook accompanies this implemen-
tation to help users get started. As it may be noticed, the main class T_Spanning_tree_solver
which is a direct implementation of Algorithm 1, is templated by an intersection graph type and
(i) a spanning tree generator R, (ii) a stop condition (ΠM) and (iii) an algorithm A.

Instantiation for our experiments. For the following experiments, we use an instantiation of
the previous generic algorithm, STS(G,D) which has the following ingredients: (i) the spanning
tree generator R returns a maximum spanning tree, or a random spanning tree; (ii) the property
Π(M) returns true once we have computed a solution on the maximum spanning tree, as well
as a solution on ni = (10, 000) distinct random spanning trees (for a given ni); (iii) A is the
algorithm described in Theorem 9 (Section 4) with an additional step: the addition of edges
whose endpoints belong to the same meta-cluster – see Remark 1. The solution returned for a
given graph G and a diameter D is the best yielded by the aforementioned 1 +ni spanning trees.

RR n° 9063

http://sbl.inria.fr
http://sbl.inria.fr/doc/D_family_matching-user-manual.html
http://sbl.inria.fr/doc/D_family_matching-user-manual.html

34 Cazals / Mazauric / Tetley / Watrigant

The corresponding executable from the Structural Bioinformatics Library is sbl-d-family-
matching.exe. Individual running times (< one minute on a laptop computer) are not further
analyzed.

7.2 Experiments on random and edited clusterings

Rationale. We test our algorithm on pairs of clusterings (F, F ′), with F a random clustering,
and F ′ an edited version of F . The goal is to assess the ability of our algorithm to retrieve
matchings such as the one of Figure 1, stressing the role of parameter D.

Dataset: random clusterings. The number of clusterings of a set Z of size t into r clusters is
the number of distinct partitions of this set into r nonempty subsets. Its number is the Stirling
number of second kind [22]. Adding up all these numbers yields the number of partitions of
the set Z into any number of subsets, which is the Bell number B(t) [17]. Such clusterings
were generated using a Boltzmann sampler [15, Example 5]. Since clustering usually aims at
grouping data points into a relatively small number of clusters, two pairs of parameters were
used (t = 1 000, r = 20) and (t = 3 000, r = 50). Both yielded similar results, so that we
only report on the former. Due to the randomness, we perform a number Nr of repetitions.
Practically, we use Nr = 10 times for each pair (t, r).

Dataset: edited clusterings. We build random pairs of clusterings (F, F ′) by copying F into
F ′ and editing F ′, in two steps. First, we perform e union operations to reduce the number of
clusters to r − e. Second, the elements of the remaining clusters are jittered: for each cluster,
a fraction τ of its items are distributed amongst the remaining k − 1 clusters uniformly at
random. Practically, we take e ∈ {0, br/4c, br/2c} and τ ∈ {0.05, 0.1, 0.2}. Note that for
e = 0, F ′ is a jittered version of F (i.e. the numbers of clusters are identical). Denote #(t, r)
the number of pairs (t, r) used, and similarly for #e and #τ . Summarizing, this setup yields
Nr ×#(t, r)×#e×#τ = 180 comparisons, which are ascribed to 9 scenarios (3 values for e× 3
values for τ) denoted EeJy, where y = 100τ .
Statistics. These 180 comparison pairs are fed to algorithm STS(G,D) for D ∈ {1, 2, 3, 4}.
Since each protocol is repeated Nr = 10 times, we report a moustache plot of the score Φ as well
as the number of meta-clusters k, collected over the Nr repeats (for each value of D).
Results. For D = 1 (left panel, top left), our algorithm always outputs k = 20 meta-clusters.
On closer inspection, this is due to the policy with regards to singletons. That is, our algorithm
with D = 1 returns a matching (meta-clusters involving two clusters) plus singletons (meta-
clusters with a single cluster; note that these do not affect the score Φ(S)). After removing these
singletons, we do get the correct number of meta-clusters (20, 15, and 10). For D = 2 (left panel,
top right), as expected, our algorithm recovers the correct number k of meta-clusters (20, 15,
and 10) for each comparison scenario (e = 0, e = 5, and e = 10 fusions). The returned scores
(right panel, top right) confirm that our algorithm matches the merged clusters in F ′ with their
split counterparts in F at any jitter level.

This is made clear by comparing scores for scenarios in which we perform fusion operations
(E5 or E10) to the ones where we do not (E0). Across all these scenarios, at an equivalent jitter
level, the scores are nearly identical. Moreover, the fact that for D = 1, the score (right panel,
top left) decreases linearly with respect to the number of fusions bolsters this hypothesis.

For D = 3, Φ is comparable to previous case (D = 2). The situation for k is more contrasted.
We still identify three plateaus corresponding to the three different fusion scenarios. The scenarios
in which we perform no fusions (E0) (resp. 5, E5, and 10, E10) tend to have a k which oscillates

Inria

Clustering stability 35

Figure 7 Algorithm STS(G,D) for clusterings with (t = 1 000, r = 20). (Left panel) Best
value for k as a function of the 9 scenarios. (Right panel) Scores ΦD(·) as a function of the 9
scenarios.

E0
J5
E0
J 1
0
E0
J2
0
E5
J5
E5
J 1
0
E5
J2
0
E1
0J
5

E1
0J
10

E1
0J
20

18

19

20

21

22

k

D = 1

E0
J5
E0
J 1
0
E0
J2
0
E5
J5
E5
J 1
0
E5
J2
0
E1
0J
5

E1
0J
10

E1
0J
20

8

12

16

20

D = 2

E0
J5
E0
J 1
0
E0
J2
0
E5
J5
E5
J 1
0
E5
J2
0
E1
0J
5

E1
0J
10

E1
0J
20

4

8

12

k

D = 3

E0
J5
E0
J 1
0
E0
J2
0
E5
J5
E5
J 1
0
E5
J2
0
E1
0J
5

E1
0J
10

E1
0J
20

2

6

10

D = 4

E0
J5
E0
J 1
0
E0
J2
0
E5
J5
E5
J 1
0
E5
J2
0
E1
0J
5

E1
0J
10

E1
0J
20

500

700

900

Φ

D = 1

E0
J5
E0
J 1
0
E0
J2
0
E5
J5
E5
J 1
0
E5
J2
0
E1
0J
5

E1
0J
10

E1
0J
20

800

850

900

950

Φ

D = 2

E0
J5
E0
J 1
0
E0
J2
0
E5
J5
E5
J 1
0
E5
J2
0
E1
0J
5

E1
0J
10

E1
0J
20

800

850

900

950

Φ

D = 3

E0
J5
E0
J 1
0
E0
J2
0
E5
J5
E5
J 1
0
E5
J2
0
E1
0J
5

E1
0J
10

E1
0J
20

820

860

900

940

980

Φ

D = 4

RR n° 9063

36 Cazals / Mazauric / Tetley / Watrigant

around 12 (resp. 10 and 8). The jitter seems to have little effect. For D = 4, we notice a similar
behavior as for D = 3 but with different k-values. These results prompted the strategy for the
choice of D presented in Section 6 as we can see that increasing D ≥ 2 yields near identical
scores but merges the clusters.

Conclusion. These experiments illustrate that our algorithm behaves as expected:

• On the one hand, scores are remarkably stable with respect to unions, as unions are re-
trieved within meta-clusters.

• On the other hand, the scores continuously degrade as a function of the jitter level, which
is also expected since in general the items which have been shuffled cannot be recovered.

7.3 On the separability of clusters and the role of D

Rationale. We assess the role of D to provide insights of the correct number of clusters in
a dataset. In other words, we provide a quantitative assessment on the following observation
[41]: “In fact, the right number of clusters in a dataset often depends on the scale at which the
dataset is inspected”. Along the way, we compare the results to those yielded by the gap statistic
[42].

Datasets. We generate three point clouds composed of five random samples each drawn from
a 2D Gaussian distribution. The relative position of the Gaussians is determined by a distance
parameter d controlling the separability of the four clusters associated with the five random
samples (Figure 8). Practically, we use d = 5, 20, 50. We then use k-means++ on these three
point clouds, with two values: k1 = 20 and k2 = 50 (ki refers to the k parameter of k-means++).
Since both these values yield an over-segmentation of the datasets, we challenge our method to
retrieve the segmented clusters, using in particular plateaus plots (Section 6).

While these are 2D cases for the sake of exposure, our machinery naturally applies in high-
dimensional spaces where inferring the structure of a clustering is much more challenging.

Results. Three scenarios can be identified:

• The dataset is not separable beyond the connected components of the inter-
section graph. This is an easy case since the score ΦD reaches the maximum possible
value when meta-clusters correspond to connected components of the intersection graph
(Figure 9 (A); D = 8 and k = 4 meta-clusters).

• Dataset is separable: the plateaus strategy yields an unambiguous choice for D.
The best choice for D stems from the analysis of plateaus increments (Def. 11; Figure 11
(B), D = 8 yields k = 3 meta-clusters).

• The dataset is not separable: no clear choice for D. In this case, each successive
plateaus has a significant increment and there is no clear break (Figure 9(C)).

Gap statistic. The gap statistic performs comparably to our algorithm (Figure 10). However,
it requires a reference distribution obtained via randomization, so that the number of clusters
returned may be subject to variation.

Inria

Clustering stability 37

Conclusion. Summarizing, the plateaus based analysis of scores provides insights on the plau-
sible number of clusters.

Remark 3. On the sensitivity to outliers.
When clustering with k-means++ the assignment of outliers to the different clusters is inher-

ently unstable. When comparing two such clusterings, this creates edges with small weights in the
intersection graph. For large values of D, these edges trigger the coalescence of meta-clusters.
As a heuristic, such edges may be pruned from the intersection graph – a strategy not used in
our experiments.

Figure 8 Parameterized dataset defined from a mixture of five Gaussians. (A) The
distance parameter d controls the relative position of the five Gaussian blobs. The covariance
matrix of the Gaussians is provided in the figure. (B, C, D) Random samples of t = 5, 000
points for d = 50, 20, 5 respectively. Four regions/clusters are well separated for large values of
d. Each point random sample was clustered using k-means++ (k = 5).

2d

d

−d 2d

d/2

−d

45◦

45◦

135◦

45◦

Σ =

[
100 0
0 25

]

(A) (B)

(C) (D)

RR n° 9063

38 Cazals / Mazauric / Tetley / Watrigant

Figure 9 The plateaus plots for the three data sets–see text for details. (A) d = 50,
k = 4 meta-clusters suggested for D = 8. (B) d = 20, k = 3 meta-clusters suggested for D = 8.
(C) d = 5 No obvious choice for the number of meta-clusters.

(A)

(B)

(C)

Inria

Clustering stability 39

Figure 10 The gap statistic from [42] for the three data sets. (A) d=50; the maximum
value of the gap statistic hints at 4 clusters, with a comparable value for 6 clusters. (B) d=20;
3 clusters suggested, with a comparable value for 5 clusters. (C) d=5; 2 clusters suggested.

(A)

(B)

(C)

d50

RR n° 9063

40 Cazals / Mazauric / Tetley / Watrigant

Figure 11 The meta-clusters for the three data sets. Left column: the two clusterings
compared; right column: meta-clusters (Top) d = 50: two of the five Gaussians have merged
and are separated from the other three– a data set which is not separable beyond the connected
components of the intersection graph. The plateau plot suggests D = 8 and 4 meta clusters
(Section 7.3). (Middle) d = 20: the 5 Gaussians define a dataset that may be separated into
four connected components. The plateau plot suggests D = 8 and 3 meta clusters (Section 7.3).
(Bottom) d = 5: the data set is not separable. The plateau plot does not suggest any specific
number of meta clusters(Section 7.3).

Inria

Clustering stability 41

7.4 Comparison to the Variation of Information (VI)

Rationale. As noticed in the conclusion of Section 7.2, edited clustering can be used to study
the sensitivity of cluster analysis methods to merges and shuffles. We therefore compare the
Variation of Information [32] against our method in this respect. More specifically, consider the
normalized variation of information VI defined as sV I = VI/ log t against our normalized score
sΦ = 1 − ΦD(·)/t. Recall that t is the number of points. To compare sV I and sΦ, we resort to
scatter plots of the values as well as the standards deviations, for different edit and jitter scenarii,
with a focus on (i) the relative values of sV I vs sΦ, and (ii) the stability upon increasing edits
and jitter level.

Dataset. We use the dataset from Section 7.2.

Results. Focusing on sV I and sΦ, our analysis relies on scatter plots of values (Figure 12) and
standard deviations at fixed jitter levels (Figure 13) and fixed number of unions (Figure 14).
We use different symbols depending on the considered scenario; the copy number of a symbol
represents the number of repeats.

For D = 1, sΦ is smaller than VI only in scenarios with no union operations. This is expected
as our algorithm returns a perfect matching, so that unions are detrimental to the score.

For D > 1, we note several key differences with VI:

• sΦ is always smaller than sV I (Figure 12);

• sΦ is more robust since σ(sΦ) < σ(sV I) (Figs. 13 and 14).

• sΦ is remarkably stable against merges, as evidenced by two facts. First, the standard
deviation at any fixed jitter level is always very close to 0 (Figure 13). This stability is
not observed for sV I . Second, the jitter level has the same effect irrespective of the union
scenario (Figure 14).

Conclusion. The variation of information, which is a global measure, is sensitive to cluster
edits (merges, splits). On the opposite, the ability of our method to identify merges and splits
makes it more suitable when insights on correspondences between clusterings are sought.

RR n° 9063

42 Cazals / Mazauric / Tetley / Watrigant

Figure 12 Normalized score sV I versus normalized score sΦ of algorithm STS(G,D).
See text for definitions. Each marker is a different union scenario and each color represents a
different jitter scenario following the legend on the upper right. We plot the y = x function for
reference.

Inria

Clustering stability 43

Figure 13 σ of normalized score sV I versus σ of normalized score sΦ of algorithm
STS(G,D) with respect to jitter levels (i.e. experiments corresponding to all edits
aggregated). See text for definitions. Each color represents a different jitter scenario following
the legend on the upper right. We plot the y = x function for reference.

RR n° 9063

44 Cazals / Mazauric / Tetley / Watrigant

Figure 14 σ of normalized score sV I versus σ of normalized score sΦ of algorithm
STS(G,D) with respect to number of edits (i.e. experiments corresponding to all
jitters aggregated). See text for definitions. Each marker represents a different union scenario
following the legend on the upper right. We plot the y = x function for reference.

Inria

Clustering stability 45

8 Conclusion

This paper contributes to a new tier of algorithms to compare two clusterings, based on the
identification of groups of clusters matching one-another. This problem had only been considered
very recently [20], where a many-to-many clusters correspondence between the unions of two
groups of clusters is shown to be computable in polynomial time (in the number of clusters) using
submodular optimization techniques. We instead target the problem of reporting an arbitrary
number of meta-clusters. While the information obtained is finer than two union of cluster
corresponding to one another, the endeavor has a price. Our problems are indeed proved to be
hard for general bipartite graphs (even if the maximum degree is at most three), with however
polynomial time dynamic programming algorithms for specific graphs (in particular trees). These
algorithms can in turn be used to design efficient algorithms, based on spanning trees, for general
graphs.

From a practical standpoint, experiments illustrate several key features of our algorithms.
First, the meta-clusters obtained are highly effective to identify splits and merges between clus-
ters. This ability yields a marked improvement when comparing two clusterings, with respect
to global methods such as the variation of information, which are very sensitive to such edits.
Second, in a manner analogous to the elbow method or variants, the stability of scores associated
to meta-clusters, as a function of the diameter parameter D, provides a novel method to suggest
the correct number of clusters in a clustering. Overall, we anticipate that our algorithms will
prove instrumental to identify stable meta-clusters amidst clusterings (from different algorithms,
or from the same algorithm with different parameters).

In terms of future work, we foresee three problems of particular importance, which were
barely touched upon in previous work. The first one deals with the complexity of the problems
we tackle. In the spirit of Lemma 8 (proving the existence of at least one spanning tree T of
G such that an optimal solution for the family-matching problem for G constrained by T gives
an optimal solution for the family-matching problem for G) we would like to determine the
smallest constant κ for which there exists at least one spanning tree T of G such that an optimal
solution for the family-matching problem for T (that can be obtained in polynomial time) is a
κ-approximation for the family-matching problem for G if G has bounded degree. Furthermore,
we conjecture that the D-family-matching problem is not in APX (recall that we proved that
it is APX-hard). Note that both conjectures can be true because the existence of the previous
tree would not guarantee a polynomial algorithm for determining it.

The second one deals with the design of post-processing algorithms in order to improve the
quality of the solutions: e.g. by merging meta-clusters of a given solution or by merging two
different solutions. Indeed, in some cases (e.g. complete bipartite graphs), one can easily merge
the meta-clusters obtained by our dynamic programming algorithm and obtain a better solution.
However, in general, such an improvement is more difficult to compute and the complexity of
such algorithms must be investigated.

The third one deals with the stability of meta-clusters. Understanding which assumptions
are indeed required to guarantee that our approach yields stable meta-clusters, in particular in
terms of separability of the input sample points, would indeed leverage clustering by removing
the arbitrariness inherent to the various algorithms and options available.

References

[1] R. Aldahdooh and W. Ashour. DSMK means density-based split-and-merge k-means cluster-
ing algorithm. Journal of Artificial Intelligence and Soft Computing Research, 3(1):51–71,

RR n° 9063

46 Cazals / Mazauric / Tetley / Watrigant

2013.

[2] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In ACM-
SODA, page 1035. Society for Industrial and Applied Mathematics, 2007.

[3] J-P. Baudry, A. Raftery, G. Celeux, K. Lo, and R. Gottardo. Combining mixture components
for clustering. Journal of computational and graphical statistics, 19(2):332–353, 2010.

[4] F. Cazals and R. Tetley. Multiscale analysis of structurally conserved motifs. Submitted.

[5] F. Chataigner, G. Manic, Y. Wakabayashi, and R. Yuster. Approximation algorithms and
hardness results for the clique packing problem. Disc. Appl. Math., 157(7):1396–1406, 2009.

[6] F. Chazal, L. Guibas, S. Oudot, and P. Skraba. Persistence-based clustering in riemannian
manifolds. J. ACM, 60(6):1–38, 2013.

[7] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE PAMI, 17(8):790–799, 1995.

[8] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley & Sons, 2006.

[9] A. Cuevas, M. Febrero, and R. Fraiman. Estimating the number of clusters. Canadian
Journal of Statistics, 28(2):367–382, 2000.

[10] K. Dabrowski, M. Demange, and V. V. Lozin. New results on maximum induced matchings
in bipartite graphs and beyond. Theoretical Computer Science, 478:33 – 40, 2013.

[11] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM J. Comput., 23(4):864–894, 1994.

[12] A. Dessmark, J. Jansson, A. Lingas, E-M. Lundell, and M. Persson. On the approximability
of maximum and minimum edge clique partition problems. Int. J. Found. Comput. Sci.,
18(2):217–226, 2007.

[13] S. Dongen. Performance criteria for graph clustering and markov cluster experiments. 2000.

[14] R.G. Downey, V. Estivill-Castro, M.R. Fellows, E. Prieto-Rodriguez, and F.A. Rosamond.
Cutting up is hard to do: the parameterized complexity of k-cut and related problems.
Electr. Notes Theor. Comput. Sci., 78:209–222, 2003.

[15] P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer. Boltzmann samplers for the random
generation of combinatorial structures. Combinatorics, Probability and Computing, 13(4-
5):577–625, 2004.

[16] R.O. Duda and P.E. Hart. Pattern classification and scene analysis. Wiley, 1973.

[17] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University press, 2009.

[18] M. Fredman and R. Tarjan. Fibonacci heaps and their uses in improved network optimization
algorithms. J. ACM, 34(3):596–615, July 1987.

[19] M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. Freeman, 2002.

[20] R. Glantz and H. Meyerhenke. Many-to-many correspondences between partitions: Intro-
ducing a cut-based approach. In SIAM International Conference on Data Mining, pages
1–9. SIAM, 2018.

Inria

Clustering stability 47

[21] O. Goldschmidt and D. S. Hochbaum. A polynomial algorithm for the k-cut problem for
fixed k. Mathematics of operations research, 19, 1994.

[22] R. Graham, D. Knuth, and O. Patashnik. Concrete mathematics: a foundation for computer
science. Addison-Wesley, 1989.

[23] C. Hennig. Methods for merging gaussian mixture components. Advances in data analysis
and classification, 4(1):3–34, 2010.

[24] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf. Process.
Lett., 37(1):27–35, January 1991.

[25] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103, 1972.

[26] L. Kaufman and P. Rousseeuw. Finding groups in data: an introduction to cluster analysis.
Wiley, 1990.

[27] K-I. Kawarabayashi and M. Thorup. The minimum k-way cut of bounded size is fixed-
parameter tractable. In IEEE 52nd Annual Symposium on Foundations of Computer Sci-
ence, FOCS, pages 160–169, 2011.

[28] T. Kodinariya and P. Prashant. Review on determining number of cluster in k-means
clustering. International Journal, 1(6):90–95, 2013.

[29] B. Larsen and C. Aone. Fast and effective text mining using linear-time document clustering.
In ACM SIGKDD, pages 16–22. ACM, 1999.

[30] U. Von Luxburg. Clustering Stability. Now Publishers Inc, 2010.

[31] P. Manurangsi. Inapproximability of maximum biclique problems, minimum k -cut and
densest at-least-k -subgraph from the small set expansion hypothesis. Algorithms, 11(1):10,
2018.

[32] M. Meila. Comparing clusterings. 2002.

[33] M. Muhr and M. Granitzer. Automatic cluster number selection using a split and merge
k-means approach. In Database and Expert Systems Application, 2009. DEXA’09. 20th
International Workshop on, pages 363–367. IEEE, 2009.

[34] A. Ng. Clustering with the k-means algorithm. Machine Learning, 2012.

[35] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences, 43(3):425 – 440, 1991.

[36] R. Rabbany and O. Zaïane. Generalization of clustering agreements and distances for
overlapping clusters and network communities. Data mining and knowledge discovery,
29(5):1458–1485, 2015.

[37] A. Rodriguez and A. Laio. Clustering by fast search and find of density peaks. Science,
344(6191):1492–1496, 2014.

[38] S. Romano, J. Bailey, V. Nguyen, and K. Verspoor. Standardized mutual information
for clustering comparisons: one step further in adjustment for chance. In International
Conference on Machine Learning, pages 1143–1151, 2014.

RR n° 9063

48 Cazals / Mazauric / Tetley / Watrigant

[39] Y. Rubner, C. Tomasi, and L.J. Guibas. The earth mover’s distance as a metric for image
retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.

[40] H. Saran and V. Vazirani. Finding k-cuts within twice the optimal. SIAM J. Comp., 24,
1995.

[41] A. Strehl and J. Ghosh. Cluster ensembles—a knowledge reuse framework for combining
multiple partitions. Journal of machine learning research, 3(Dec):583–617, 2002.

[42] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a data set via
the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
63(2):411–423, 2001.

[43] U. Von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
2007.

[44] S. Wagner and D. Wagner. Comparing clusterings: an overview. Technical Report 2006-04,
2007.

[45] Q. Xiang, Q. Mao, K. Chai, H. Chieu, I. Tsang, and Z. Zhao. A split-merge framework for
comparing clusterings. In ICML, 2012.

[46] R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transactions on neural
networks, 16(3):645–678, 2005.

[47] L. Zhao, H. Nagamochi, and T. Ibaraki. Approximating the Minimum k-way Cut in a Graph
via Minimum 3-way Cuts. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[48] D. Zhou, J. Li, and H. Zha. A new mallows distance based metric for comparing clusterings.
In ICML, pages 1028–1035. ACM, 2005.

Inria

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Clusterings: generation, comparison and stability assessment
	Exploiting many-to-many correspondences: illustration on a specific application
	Main contributions

	Comparison of clusterings: formalization as graph problems
	Equivalent definition of the D-family-matching problem

	Hardness of the D-family-matching problem and greedy strategies
	APX-hardness
	Part I: = 4, fixed values of weights
	Part II: D = 2, = 3, unary weights
	Part III: D > 2, = 3

	Greedy strategies

	Polynomial time dynamic programming algorithms for some classes
	The D-family-matching problem for trees
	The D-family-matching problem for paths
	The D-family-matching problem for cycles

	Generic approach based on spanning trees
	On the choice of D
	Rationale
	Computation of tradeoff-plateaus of large widths and small heights
	Computation of multiple sets of plateaus of small heights
	Hierarchical Plateaus

	Experiments
	Implementation
	Experiments on random and edited clusterings
	On the separability of clusters and the role of D
	Comparison to the Variation of Information (VI)

	Conclusion

