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Abstract

Zepeda and Pérez [41] have recently demonstrated the
promise of the exemplar SVM (ESVM) as a feature encoder
for image retrieval. This paper extends this approach in
several directions: We first show that replacing the hinge
loss by the square loss in the ESVM cost function signifi-
cantly reduces encoding time with negligible effect on ac-
curacy. We call this model square-loss exemplar machine,
or SLEM. We then introduce a kernelized SLEM which can
be implemented efficiently through low-rank matrix decom-
position, and displays improved performance. Both SLEM
variants exploit the fact that the negative examples are fixed,
so most of the SLEM computational complexity is relegated
to an offline process independent of the positive examples.
Our experiments establish the performance and computa-
tional advantages of our approach using a large array of
base features and standard image retrieval datasets.

1. Introduction
The exemplar support vector machine (ESVM), origi-

nally proposed by Malisiewicz et al. [24], leverages the
availability of large, unannotated pools of images within
the context of supervised learning. It uses a large generic
pool of images as a set of negative examples, while using a
single image (the exemplar) as a positive example. Given
these training sets, an SVM classifier is learned that can
generalize well, despite the drastically limited size of the
set of positive examples. This classifier has successfully
been used in classification, object detection and label trans-
fer [25]. Zepeda and Pérez [41] have proposed to treat in-
stead the weights of the resulting classifier as a new feature
vector for image retrieval. An ESVM feature is computed
for each database and query image, by treating it as the only
positive sample while keeping a fixed pool of generic neg-
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ative images. Searching amounts to computing distances
between the query and database ESVM features. Note that
ESVM features can be derived from arbitrary base features
(e.g., CNN activations) of the exemplar and the images in
the generic negative pool.

One drawback of the ESVM feature encoding approach
is that computing the classifier requires solving an optimiza-
tion problem for each positive example (i.e., each query and
each database image). This can be time consuming for the
large negative pool sizes required for good ESVM feature
performance. In this work, we propose using the square loss
instead of the hinge loss, in effect converting the ESVM
problem into a ridge regression, one that can be solved in
closed form. We dub the corresponding classifier a square-
loss exemplar machine (or SLEM). The square loss has been
used before to replace the hinge loss in classification tasks
(e.g., [37, 40]), and to compare ESVMs to classical classi-
fiers such as the linear discriminant analysis (LDA) [21]. In
contrast, we propose here to use SLEMs as feature encoders
for image retrieval.

Since computing the SLEM features requires inverting
a large matrix related to the training set’s covariance ma-
trix, we propose an efficient way to compute this inverse.
Similarly to the cross-validation method of residual error
of [9], we exploit the fact that only a single (positive) exam-
ple changes in the training set when computing SLEM fea-
tures for different images. We show experimentally that our
representation matches and even improves upon the perfor-
mance of ESVM features on three standard datasets using
a wide range of base features at a fraction of the original
computational cost.

We also introduce a kernelized variant of SLEM that
enjoys similar computational advantages and improves re-
trieval performances. Further computational and storage ef-
ficiency is obtained using low-rank factorization methods to
decompose the kernel matrix of negative samples. We claim
this kernelized descriptor and its efficient calculation as the
main contribution of this work.

The rest of this paper is organized as follows: In Section
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2 we provide an overview of various existing feature repre-
sentation methods. In Section 3 we first review the origi-
nal ESVM feature representation method and introduce the
proposed linear SLEM model. We then introduce the kernel
SLEM in Section 4 and present the low-rank approximation
that enables its efficient implementation in Section 5. We
evaluate the proposed method in image retrieval in Section
6, and present conclusions in Section 7.

2. Prior work

This paper addresses the problem of designing an image
representation suitable for content-based retrieval, in partic-
ular supporting effective (discriminative) and efficient (fast)
comparisons between a query picture and images stored in
some large database. These representations must be robust
to large image variations due to camera pose, color differ-
ences and scene illumination, amongst others.

Many successful approaches to image retrieval rely
on unsupervised models of codebook learning, such as
K-means [10] or Gaussian mixtures [28, 33]. These
approaches aggregate local descriptors of an image by
weighted average [27], triangular embedding [18] or gen-
eralized max-pooling [26] into a global feature descriptor.
Before the neural networks renaissance, these representa-
tions usually outperformed methods that exploit supervised
learning of image features directly [7, 32].

Today, with the success of convolutional architectures,
global image descriptors are often obtained by aggregating
and/or pooling their last convolutional layers [3, 20, 31] or
by addition of new differentiable layers to an existing archi-
tecture [1, 14].

3. The square-loss exemplar machine

In this section, we revisit the exemplar SVM model pro-
posed in [24] as an instance of a more general family of
classifiers. Then, we introduce the square loss exemplar ma-
chine (SLEM) as a simple variant of this model and study
its properties.

3.1. Exemplar classifiers

We are given base features in Rd at training time, one
positive example x0 in Rd and a set of negative examples
X = [x1, x2, ..., xn] in Rd×n, each column of X represent-
ing one example by a vector in Rd. We are also given a loss
function l : {−1, 1} × R → R+. Learning an exemplar
classifier from these examples amounts to minimizing the
function

J(ω, ν) = θ l(1, ωTx0+ν)+
1

n

n∑
i=1

l(−1, ωTxi+ν)+
λ

2
‖ω‖2,

(1)

w.r.t. ω in Rd and ν in R. In Eq. (1), λ and θ are respec-
tively a regularization parameter on ω and a positive scalar
adjusting the weight of the positive exemplar.

Given a cost l, we define the corresponding exemplar
classifiers of x0 with respect toX as the weights ω?(x0, X)
that minimizes the loss function J :(

ω?, ν?
)

= argmin
(ω,ν)∈Rd×R

J(ω, ν).1 (2)

The exemplar SVM [24, 25] is an instance of this model
where l is the hinge loss, which is convex. The solution
of Eq. (2) can thus be found by stochastic gradient de-
scent [8] individually for each positive sample. The next
section shows how to calculate all exemplar classifiers si-
multaneously by changing the loss function.

3.2. The square loss

Now, let us study the same learning problem for the
square-loss function l(y, ŷ) = 1

2 (y − ŷ)2. As in the case
of the hinge loss, the minimization of Eq. (1) is a convex
problem. However it is now a ridge regression problem,
whose unique solution can be found in closed form as

ω? =
2θ

θ + 1
U−1(x0 − µ),

ν? =
θ − 1

θ + 1
− 1

θ + 1
(θx0 + µ)Tω?,

(3)

where: 
µ = 1

n

∑n
i=1 xi,

U = 1
nXX

T − µµT

+ θ
θ+1 (x0 − µ)(x0 − µ)T + λIdd,

(4)

where Idd is the identity matrix of size d.
Woodbury identity. We can simplify Eq. (3) by modi-

fyingU in Eq. (4). Let us defineA = 1
nXX

T−µµT+λIdd
as the regularized covariance matrix and assume its inverse
A−1 known. The matrix U now reads U = A + θ

θ+1δδ
T ,

where δ = x0−µ is the centered (w.r.t. the negatives’ mean)
positive sample. The Woodbury identity [39] gives us

U−1 = A−1 − θ

θδTA−1δ + θ + 1
A−1δT δA−1. (5)

Substituting (5) in (3) yields

ω? =
2θ

θ + 1

(
A−1δ − θ

θδTA−1δ + θ + 1
A−1δ(δTA−1δ)

)
=

2θ

θδTA−1δ + θ + 1
A−1δ.

(6)

1Depending on the loss function l, ν?(x0, X) may not be unique.



Equation (6) shows how to compute many exemplar clas-
sifiers simultaneously, by solving a single linear system in
A. Also note that the positive sample weight θ does not in-
fluence the direction of the optimal vector ω?, only its norm.
This means that if search and ranking are based on the nor-
malized feature 1

‖ω?‖ω
?, e.g. using cosine similarity, θ does

not influence the matching score of the SLEM vectors of
two different images. This sets SLEM appart from ESVM
which requires this parameter to be calibrated [24, 41]. We
can thus set the value of θ to any positive real number.

3.3. LDA and SLEM

It is interesting to note the relationship between SLEM
and the classical linear discriminant analysis (LDA). Let us
return to Eq. (1) and suppose that we have multiple positive
samples. It can be shown that in this case, the corresponding
linear classifier of Eq. (1) for the square loss is also given
by (3), where x0 denotes this time the center of mass of the
positive samples if the positives have the same covariance
matrix Σ as the negative samples X .

This equal-covariance assumption is of course quite re-
strictive, and probably unrealistic in general. It is interesting
to note, however, that this is exactly the assumption made by
linear discriminant analysis. As shown in [16] for example,
LDA is a (non-regularized) linear classifier with decision
function ωTx+ ν, where{

ω = Σ−1(x0 − µ),

ν = −1

2
(x0 + µ)Tω.

(7)

This shows that, for a single positive sample, SLEM and
LDA are very similar: Indeed, taking λ = 0 (i.e. no regu-
larization) and θ = 1, we have ν? = ν, A = Σ and that the
vectors ω of Eq. (7) and ω? of Eq. (6) have the same di-
rection, reducing SLEM to LDA. Many interesting proper-
ties of LDA have been used recently for classification tasks
[12, 15]. With our simple generalization of LDA, we hope
to obtain superior results.

4. The kernel SLEM

4.1. Kernel methods

Let us recall a few basic facts about kernel methods for
supervised classification. We consider a reproducing ker-
nel Hilbert space (RKHS) H formed by real functions over
some set X , and denote by k and ϕ the corresponding re-
producing kernel and feature map (which may not admit a
known explicit form) over X , respectively. We address the
following learning problem over H × R:

min
h∈H,ν∈R

1

n

n∑
i=1

l(yi, 〈ϕ(xi), h〉+ ν) +
λ

2
‖h‖2H , (8)

where the pairs (xi, yi) in X × {−1, 1}, i = 1 . . . n are
training samples, and 〈h, h′〉 is the inner product of element
h and h′ in H . We dub problems with the general form of
(8) affine supervised learning problems since, given some
fixed element h of H and some scalar ν, 〈h, h′〉 + ν is an
affine function of h′, whose zero set defines an affine hyper-
plane of H considered itself as an affine space.

Let K denote the kernel matrix with entries kij =
〈ϕ(xi), ϕ(xj)〉 and rows kTi = [ki1, ki2, ..., kin], i in
{1, . . . , n}. We assume from now on that l is convex and
continuous. Under this assumption, Eq. (8) admits an
equivalent formulation

min
α∈Rn, ν∈R

(
1

n

n∑
i=1

l(yi, k
T
i α+ ν) +

λ

2
αTKα

)
, (9)

and any solution (α?, ν?) to (9) provides a solution (h?, ν?)
to (8) with h? =

∑n
i=1 α

?
iϕ(xi) + ν?. This result follows

from the Riesz representation theorem [34, 38].
Assuming our reproducing kernel is semidefinite posi-

tive, K is a semidefinite positive matrix and can be decom-
posed as K = BBT . Using this factorization, the kernel-
ized problem can be expressed as

min
β∈Rr,ν∈R

(
1

n

n∑
i=1

l(yi, b
T
i β + ν) +

λ

2
‖β‖2

)
, (10)

where bTi denotes the i-th row of B and r is the number
of columns of B. If (β?, ν?) is the solution of Eq. (10),
the corresponding vector α? (or, more correctly, a corre-
sponding vector of dimension n ≥ r) can be computed by
α? = Pβ?, where P is the pseudoinverse of BT .

Note that Eq. (10) is written as the usual form of a linear
classifier. In particular, it allows us to write the kernel learn-
ing problem (8) as an instance of Eq. (1) by setting θ = 1

n
(we set this value of θ for the remaining of this work) and
yi = −1 for all but one training sample. For our approach,
we wish to solve (10) for many positive exemplars against
the same set of negative training samples. In the following
subsections, we show how to take advantage of the fixed
negative samples to efficiently solve (10).

4.2. Offline preprocessing of negative samples

Let us now return to the (kernelized) SLEM, taking l as
the square loss. In order to calculate offline all operations
that are dependent only on negative samples, let us denote
byK the kernel matrix of the negative samplesX . The pre-
processing phase consists of the calculation of the decom-
position B and the constants of Eq. (6): µ = 1

n

∑n
i=1 b

T
i

and A = 1
nB

TB−µµT +λIdr. These operations are done
offline and their results are stored.



4.3. Online addition of a positive sample

We now wish to write Eq. (10) as an exemplar classifier,
with one positive example x0 and n negative examples X .
We denote by K ′ the augmented kernel matrix obtained by
adding this sample,

K ′ =

[
k00 kT0
k0 K

]
, (11)

where k00 = 〈ϕ(x0), ϕ(x0)〉 is a scalar and k0 =
[〈ϕ(x0), ϕ(xi)〉]1≤i≤n is a vector in Rn. The following
lemma shows how the factorization of K ′ can be derived
from the factorization of its sub-matrix K and the solution
of a n× n linear system.

Lemma 1. The augmented kernel matrix K ′ can be factor-
ized as K ′ = B′B′T with

B′ =

[
u vT

0 B

]
, v = B†k0, u =

√
k00 − ||v||2, (12)

where B† is the pseudoinverse of B.

Proof. For B′ defined by (12), we have that

B′B′T =

[
u2 + ‖v‖2 vTBT

Bv BBT

]
=

[
k00 vTBT

Bv K

]
. (13)

Since K ′ is positive semidefinite, k0 must lie in the column
space B of B. Indeed, if we suppose k0 does not belong
to B, then it can be decomposed uniquely as k0 = s + t,
s ∈ B and t ∈ B⊥, with t 6= 0. In one hand, K ′ being
semidefinite positive implies that [1,−atT ]K ′[1;−at] =
k00−2a‖t‖2 ≥ 02 for all real value a. In the other hand, for
a large enough, k00 − a‖t‖2 ≤ 0, which is a contradiction.
Hence v = B†k0 is an exact solution of Bv = k0. The fact
that k00−‖v‖2 is non-negative comes from the fact that the
Schur complementK−k0kT0 /k00 of k00 inK ′ is itself pos-
itive semidefinite. Indeed, since the matrix k00K−k0kT0 =
B(k00Idr − vvT )BT is also positive semidefinite. Thus
vT (k00Idr − vvT )v = ‖v‖2(k00 − ‖v‖2) ≥ 0.

This lemma allows us to add a positive sample to
Eq. (10). With a positive exemplar, it now reads

1

n
(b′T0 β + ν − 1)2 +

1

n

n∑
i=1

(b′Ti β + ν + 1)2 +
λ

2
‖β‖2,

(14)

with b′Ti being the (i + 1)-th row of B′, i in {0, 1, ..., n}.
In particular, b′0 = [u; v] and, for i > 0, b′i = [0; bi].
The solution (β?, ν?) in Rr+1 ×R can be computed just as
before by Eq. (3), replacing x0 by b′0, µ by µ′ = 1

n

∑n
i=1 b

′
i

2We use matlab notation for horizontal and vertical staking.

andX by the (r+1)×nmatrixQ of columns b′1, b
′
2, ..., b

′
n.

The solution α? is now calculated as α? = P ′β?, where
P ′ = [u−1 0T ;−u−1Pv P ] is the pseudoinverse of B′T .
α? can be expressed by the linear system[

α0

α̂

]
=

[
1
u 0T

− 1
uPv P

] [
β0
β̂

]
. (15)

4.4. Similarity score

Once the optimal parameters (β, ν) from (14) and the
coordinates u, v of b′0 from (12) have been found3, they can
be used directly for measuring similarity between matching
images.

Suppose two image descriptors x0 and x′0 are given
and we wish to calculate the similarity score between their
SLEM representations h and h′, denoted by s(h, h′). We
write h′ = α′0ϕ(x′0) +

∑n
i=1 α

′
iϕ(xi) + ν′. Using Eq. (15)

and ignoring biases ν and ν′ which have empirically no in-
fluence, s(h, h′) is given by:

s(h, h′) = 〈h, h′〉
= α̂TKα̂′ + α0k(X,x0)T α̂′ + α′0k(X,x′0)T α̂

+ α0α
′
0k(x0, x

′
0)

= β̂T β̂′ + λ−2(k(x0, x
′
0)− vT v).

(16)

For a given image whose descriptor is x0, we need
to store x0, β̂ and v to calculate its similarity score to
whichever other image for SLEM. Since we assume the
base feature x0 has dimension d and β̂ and v each have di-
mension r, we store a vector of dimension d + 2r for each
image.

5. Efficient implementation
When compared to the linear square-loss classifier of

Section 3.2, one drawback of the kernelized approach is that
the dimension of our problem grows with the number n of
negative samples. The offline factorization BBT of K de-
mands O(nr) storage and at best O(nr2) time. This factor-
ization can be obtained in two ways: full-rank and low-rank
decomposition. In this section we propose three different
decompositions of K and discuss their respective merits.

5.1. Full-rank decomposition

CCD: The complete Cholesky decomposition (CCD)
is the most used factorization of positive-definite matri-
ces in kernel-based learning due to its time efficiency [5].
We use it as our default decomposition. We make sure
K is positive-definite by adding ε to its diagonal, where
ε = min(0,−λmin) and λmin is the smallest eigenvalue
of K. Therefore, B also has rank n and can be calculated
by CCD from the identity BBT = K + εIdn.

3We drop the “?” in this subsection to avoid cluttering the notation.



5.2. Low-rank decomposition

One of the major constraints of large scale retrieval is the
minimization of storage. As discussed in Section 4.4, for
each database image we store its base representation plus a
2r vector. Hence, we aim to decompose K at a small rank
r. Two classical methods can be used to obtain a low-rank
decomposition of K.

ICD: The incomplete Cholesky decomposition (ICD) is
widely used in machine learning [5, 11]. It is similar to
CCD, and greedily chooses which column ofK to add to the
decomposition based on the gain in approximation error [6].
The algorithm stops after r steps, obtaining the factor B in
time O(nr2).

KPCA: Kernel PCA (KPCA) [35] computes the factorB
by performing a singular value decomposition of K (trun-
cated singular value decomposition for very small values of
r), and making each column of the factor correspond to one
of the top r singular vectors. The resulting matrixB is guar-
anteed to be the best r-rank approximation of K according
to the Frobenius norm. The computational cost of KPCA is,
however, O(n2r) [13].

When comparing computation time, KPCA is slower
than ICD for small values of r and faster for values of r
such that the residue is small. Also, as discussed above,
KPCA gives a smaller residue tr(K −BBT )/tr(K). From
these comparisons, we set KPCA as our default low-rank
decomposition. The only case ICD is more appropriated
than KPCA is for very large number of negatives n, for
which the time complexity of KPCA becomes an issue, and
very small rank r. This particular case is further studied in
Section 6.5.

6. Experimental Evaluation
6.1. Datasets and evaluation protocol

We perform experiments on three standard datasets for
image retrieval.

• The INRIA Holidays dataset [17] consists of 1491
images divided in 500 groups of matching images.
We manually rotate by 90 degrees some images that
are not in their natural orientation to compensate for
the fact that CNN features are not rotation invari-
ant [1, 4, 14, 20, 31].

• The Oxford5k dataset [29] consists of 5063 images
separated in 55 groups of matching images, each group
associated to a landmark of Oxford. We use the “full”
crop, ignoring the region of interest of each image.

• The Oxford105k dataset [29] is a large-scale dataset
containing the same images and queries from Ox-
ford5k plus Flickr100k, a collection of 105 distractor
Flickr images.

As pool of negative images to build SLEMs, we use the
Flickr100k for both Holidays and Oxford5k. When evaluat-
ing Oxford105k, where Flickr100k is part of the database,
we us instead the Paris dataset [30] as negative samples.

6.2. Kernels

We have tested two different kernels, each with a scalar
parameter γ.
Gaussian SLEM:

k1(x, y) = e−γ‖x−y‖
2

; (17)

Poly SLEM:

k2(x, y) = xT y + γ(xT y)2. (18)

6.3. Base visual features

We test our feature encoder for four different base fea-
tures: the hand-crafted VLAD image representation and
three learned features derived from the activation coeffi-
cients of deep Convolutional Neural Networks.

We use the same VLAD variant of [10] used in [41] that
relies on densely-extracted rootSIFT [2] local descriptors,
per-cluster normalization, PCA-based rotations, and root
normalization. Like [41], we use 64 clusters, for a final
feature of size 8192.

The first CNN features we use consist of the activation
coefficients of the previous-to-last layer of the AlexNet ar-
chitecture [22], based on a publicly available pre-trained
model [19]. These are also the features used in [41].

The SPoC features [3], which are tailored specifically
for the image retrieval application, consist of spatially-
weighted sums of the activations of the last convolutional
layer of the 19-layer VGG network [36].

Finally, we use the NetVLAD features [1], trained for
place recognition. These features are obtained by adding
a differentiable version of the VLAD algorithm [10] as a
layer at the end of a convolutional architecture.

6.4. Image retrieval results

We use all the those base features of the previous sub-
section as baseline. Since Babenko and Lemptisky [3] and
Arandjelović et al. [1] have improved retrieval results by ap-
plying PCA followed by whitening to their features, we also
apply this post-processing to our base features as a second
baseline (PCAW), compressing base feature dimension to
half of the original. We then compare the baselines with the
original ESVM, LDA and several variants of our approach
(SLEM), since all the those methods are based on similar
ideas. The results are presented in Table 1. For the large-
scale dataset that is Oxford105k, we limit our experiments
to our best performing base features, SPoC and NetVLAD.

Linear SLEM performs similarly to ESVM while be-
ing much more time efficient (Fig. 1). The fact that a



Dataset Holidays Oxford 5k Oxford 105k

Model, features VLAD SPoC AlexNet NetVLAD VLAD SPoC AlexNet NetVLAD SPoC NetVLAD

Baseline 72.7 76.5 68.2 85.4 46.3 54.4 40.6 67.5 50.1 65.6
PCAW 75.5 81.7 69.2 88.3 50.9 63.7 45.0 69.1 55.5 66.1
LDA 54.7 82.2 64.1 74.3 29.6 62.2 42.5 72.7 52.4 40.7

ESVM [41] 77.53 84.03 71.3 91.42 57.23 62.1 43.9 72.5 56.5 67.5
Linear SLEM 78.02 82.3 72.1 91.33 59.3 64.13 46.23 72.93 56.73 68.03

Gaussian SLEM (16) 76.8 80.3 71.2 91.42 52.8 63.0 43.5 71.9 55.8 67.4
Gaussian SLEM (32) 77.4 81.7 72.03 91.42 54.9 63.1 44.0 71.1 56.0 67.8
Gaussian SLEM (fr) 78.1 86.22 72.9 91.7 59.02 64.9 47.02 74.4 59.52 70.02

Poly SLEM (16) 76.9 82.3 71.4 91.33 53.0 63.6 43.6 71.4 56.1 67.5
Poly SLEM (32) 77.3 82.4 72.12 91.7 54.9 63.6 44.1 71.6 56.3 67.9
Poly SLEM (fr) 78.1 86.3 72.9 91.7 59.3 64.82 47.3 74.12 62.5 70.2

Table 1: Mean average precision (mAP) results for INRIA Holidays and Oxford buildings datasets, expressed as percentages.
In this table, we present our results for VLAD [10], sum-pooling of convolutional features (SPoC) [3], activation coefficients
from the previous-to-last CNN layer (AlexNet) [22] and activation of NetVLAD layer [1]. In parentheses, the rank of he
decomposition (‘fr’ for full rank decomposition). For each column, we show in bold the best results and index the second
and third best.

hinge-loss classifier does not outperform a square-loss clas-
sifier can seem counter-intuitive, but both have been shown
to be equivalent for binary classification under mild con-
straints [40].

We use both Gaussian SLEM and Polynomial SLEM
with two decompositions: one full-rank CCD decomposi-
tion indicated by (fr) and two low-rank KPCA decomposi-
tions indicated by the rank of the decomposition. We train
our exemplar classifiers for 15000 negative samples. For all
the experiments we calibrate the regularization cost λ, as
well as the parameter γ similarly to the calibration in [41].

The full-rank variant outperforms all methods for all
base features, although the gains when compared to linear
SLEM are not always significant (e.g. for VLAD features).
We notice significant improvement for SPoC in both Holi-
days and Oxford and for AlexNet and NetVLAD in Oxford.

6.5. Time and storage scalability

In this section we compare the time efficiency of our
method and the ESVM, as well as discuss which method
and decomposition to use according to the number of nega-
tive samples.

In Fig. 1, we see that the linear SLEM efficiency does
not change with n. Indeed, if d is the dimension of the
base representation, A is a d × d matrix for linear SLEM,
whereas for a full-rank kernel, A is n × n. This explains
the increasing running time for Gaussian and polynomial
kernels: storage and solving a n × n system does not scale
for large number of negative samples.

Retrieval results for full-rank kernelized SLEM in Fig. 1
suggest we can benefit from larger sets of negative samples.

We, however, limit our full-rank experiments to n = 15000
negative samples due to the O(n3) complexity of the of-
fline step. When we consider only the online procedure of
our model, i.e. the calculation of β?, our kernelized model
has a similar time efficiency to ESVM. Therefore, we can
process the kernel SLEM for the Gaussian and polynomial
kernels in similar running time to ESVM if we pre-process
our negative samples offline.

For low-rank decompositions, we present in Fig. 2 a
comparison in average precision between KPCA and ICD
decompositions using SPoC on the Holidays dataset, fixing
n and varying r. The superior results justify our preference
for KPCA, despite its less efficient offline step. The only
advantage of ICD over KPCA is its time complexity, lin-
ear in the number of negative samples, that allows a bigger
number of negative samples. In Fig. 3 we show results for
ICD for bigger pools of negative samples, to which a KPCA
decomposition would be too time consuming. The results
suggest that the performance of ICD SLEMs are not sen-
sitive to the number of negative examples at a fixed small
rank.

As shown by Fig. 2, the mAP for the low-rank KPCA ap-
proximation increases with the rank. Its maximum value for
the features of the figure is 86.3 for full rank, r = 15, 000
(Table 1, col. 2). Figure 2 also shows, however, that rea-
sonable mAP values (around 84) are obtained for a much
smaller rank of 200. In keeping with the usual practice in
image retrieval, we limit even further the rank in the results
shown in Tables 1 and 2, with very small ranks (16 and 32)
that yield a total feature dimension similar to the base rep-
resentation, and allow a direct comparison to methods using
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Figure 1: Results for INRIA Holidays, using SPoC features and different variants of full-rank SLEM. We use T = 105

iterations for all n to report mAP for ESVM, as suggested by [41], but report timings using T = 1.66n and the values
reported in Table 1 of [41]. Left: mAP; Right: computation time in solid line, online computational cost in dashed line.
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Figure 2: mAP for Holidays using SPoC + Poly SLEM for
n = 15000 negatives. We perform two low-rank decompo-
sitions and compare its results at similar ranks.

these features directly. This rather extreme compression is
also justified in part by the fact that these very-low rank
factorizations already capture a reasonable part of the prob-
lem structure. Indeed, the relative residual error for SPoC
features on Holiday with 15,000 negatives is only 0.39 for
r = 16 and 0.31 for r = 32. For reference, the relative error
decreases to 0.08 for r = 600, and 0.05 for r = 1024.

6.6. Comparation to the state of the art

We compare the state-of-the-art global descriptors for
Holidays and Oxford 5k to both SPoC and NetVLAD fea-
tures improved by linear SLEM and low-rank Poly SLEM
in Table 2. We do not include re-ranking nor query expan-
sion. We perform PCA and whitening to compress both de-
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Figure 3: mAP for Holidays using SPoC + Poly SLEM,
using ICD and fixed 32-rank.

scriptors to 256 and 512, as done in [1, 3] and compare the
results by brackets of dimension. We also add a bracket of
the full 4096-dimension NetVLAD for completeness, so we
include our best performance. Our approach outperforms
the state of the art for Holidays by 2.5 points in 256 dimen-
sions and 0.8 in 512 dimensions, despite not using the best
performing descriptors [14] as base features.

7. Conclusion and future work

In this paper, we have addressed the problem of im-
age retrieval using the kernelized square-loss exemplar ma-
chines, and its efficient implementation. The main novelty
of the paper is two-fold: First, using the square loss, which
avoids retraining for each additional positive training exam-



Features rank dim Hol. Ox5k

Babenko et al.[3] - 256 80.2 58.9
Radenović et al. [31] - 256 81.5 77.4
Arandjelović et al. [?] - 256 86.0 62.5
Kalantidis et al. [20] - 256 83.1 65.4
SPoC + Linear SLEM - 256 81.5 64.7
SPoC + Poly SLEM 16 288 80.1 63.6
SPoC + Poly SLEM 32 320 81.8 63.6
NetVLAD + Linear SLEM - 256 88.5 65.9
NetVLAD + Poly SLEM 16 288 87.7 65.5
NetVLAD + Poly SLEM 32 320 88.3 65.6

Radenović et al. [31] - 512 82.5 79.7
Arandjelović et al. [1] - 512 86.7 65.6
Kalantidis et al. [20] - 512 84.9 68.2
Gordo et al. [14] - 512 89.1† 83.1†

SPoC + Linear SLEM - 512 82.3 64.1
SPoC + Poly SLEM 16 544 82.3 63.0
SPoC + Poly SLEM 32 576 82.4 63.1
NetVLAD + Linear SLEM - 512 89.3 72.3
NetVLAD + Poly SLEM 16 544 89.9 71.9
NetVLAD + Poly SLEM 32 576 89.9 72.3

Arandjelović et al. [1] - 4096 88.3 69.1
NetVLAD + Linear SLEM - 4096 91.3 72.9
NetVLAD + Poly SLEM 16 4128 91.3 71.2
NetVLAD + Poly SLEM 32 4160 91.7 71.7

Table 2: Compared results to state-of-the-art features at
similar dimensions, without re-ranking or query augmenta-
tion. The results using Poly SLEM add 32 or 64 dimensions
to the original feature (for r = 16 or r = 32, respectively).
Underlined results are the best at each dimension bracket
and bold results are the general best. † indicates the previ-
ous state-of-the-art.

ple and calibrating one of its parameters; second, kerneliz-
ing the method while keeping a reasonable memory foot-
print through the use of low-rank approximations. Similar
ideas have of course been used in other contexts in machine
learning [5, 11, 35, 37, 40]. Our work is, however, to our
knowledge, the first to apply these ideas to examplar-based
classifiers, in particular in the context of image retrieval.
We have obtained significant improvements over the base
features we tested and outperformed similar encoders on
different datasets. As future work, we plan to work on a
convolutional implementation similar to [1] so its param-
eters can be learned in a supervised manner. The use of
other kernel functions is worth investigating. The polyno-
mial kernel performs similarly to the Gaussian kernel, even
though the Hilbert space obtained from the Gaussian kernel
has infinite dimensions and the Hilbert space obtained from
the polynomial kernel does not. Different kernels such as
the spatial pyramid kernel [23] are another option, which

would increase the versatility of our approach. Finally, our
method constructs a generic feature encoding and therefore
can be used in many other computer vision problems, such
as object classification and scene recognition.
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[2] R. Arandjelović and A. Zisserman. Three things everyone
should know to improve object retrieval. In Proc. IEEE Conf.
Comp. Vision Patt. Recog., 2012.

[3] A. Babenko and V. Lempitisky. Aggregating deep convolu-
tional features for image retrieval. In Proc. European Conf.
Comp. Vision, 2015.

[4] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitisky.
Neural codes for image retrieval. In Proc. European Conf.
Comp. Vision, 2014.

[5] F. Bach and M. Jordan. Kernel independent component anal-
ysis. In Journal of Machine Learning Research, 2002.

[6] F. Bach and M. Jordan. Predictive low-rank decomposition
for kernel methods. In Proc. Int. Conf. on Machine Learning,
2005.

[7] C. Bilen, J. Zepeda, and P. Pérez. Learning sparsity induc-
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