Towards Improving the Representational Bias of Process Mining

Abstract : Process mining techniques are able to extract knowledge from event logs commonly available in today’s information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application domains. Process discovery—discovering a process model from example behavior recorded in an event log—is one of the most challenging tasks in process mining. A variety of process discovery techniques have been proposed. Most techniques suffer from the problem that often the discovered model is internally inconsistent (i.e., the model has deadlocks, livelocks or other behavioral anomalies). This suggests that the search space should be limited to sound models. In this paper, we propose a tree representation that ensures soundness. We evaluate the impact of the search space reduction by implementing a simple genetic algorithm that discovers such process trees. Although the result can be translated to conventional languages, we ensure the internal consistency of the resulting model while mining, thus reducing the search space and allowing for more efficient algorithms.
Type de document :
Communication dans un congrès
Karl Aberer; Ernesto Damiani; Tharam Dillon. 1st International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA), Jun 2011, Campione d’Italia, Italy. Springer, Lecture Notes in Business Information Processing, LNBIP-116, pp.39-54, 2012, Data-Driven Process Discovery and Analysis. 〈10.1007/978-3-642-34044-4_3〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01515548
Contributeur : Hal Ifip <>
Soumis le : jeudi 27 avril 2017 - 16:36:20
Dernière modification le : jeudi 27 avril 2017 - 17:08:34
Document(s) archivé(s) le : vendredi 28 juillet 2017 - 13:36:46

Fichier

978-3-642-34044-4_3_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Wil Aalst, Joos Buijs, Boudewijn Dongen. Towards Improving the Representational Bias of Process Mining. Karl Aberer; Ernesto Damiani; Tharam Dillon. 1st International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA), Jun 2011, Campione d’Italia, Italy. Springer, Lecture Notes in Business Information Processing, LNBIP-116, pp.39-54, 2012, Data-Driven Process Discovery and Analysis. 〈10.1007/978-3-642-34044-4_3〉. 〈hal-01515548〉

Partager

Métriques

Consultations de la notice

123

Téléchargements de fichiers

34