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Madrid 28040, Spain
{angelfh,juanant,carreras}@die.upm.es

Abstract. In this chapter, the fast fixed-point optimization of Digital
Signal Processing (DSP) algorithms is addressed. A fast quantization
noise estimator is presented. The estimator enables a significant reduc-
tion in the computation time required to perform complex fixed-point
optimizations, while providing a high accuracy. Also, a methodology to
perform fixed-point optimization is developed.
Affine Arithmetic (AA) is used to provide a fast Signal-to-Quantization
Noise-Ratio (SQNR) estimation that can be used during the fixed-point
optimization stage. The fast estimator covers differentiable non-linear
algorithms with and without feedbacks. The estimation is based on the
parameterization of the statistical properties of the noise at the output of
fixed-point algorithms. This parameterization allows relating the fixed-
point formats of the signals to the output noise distribution by means
of fast matrix operations. Thus, a fast estimation is achieved and the
computation time of the fixed-point optimization process is significantly
reduced.
The proposed estimator and the fixed-point optimization methodology
are tested using a subset of non-linear algorithms, such as vector opera-
tions, IIR filter for mean power computation, adaptive filters – for both
linear and non-linear system identification – and a channel equalizer. The
computation time of fixed-point optimization is boosted by three orders
of magnitude while keeping the average estimation error down to 6% in
most cases.

Keywords: Fixed-Point Optimization, Digital Signal Processing, Quan-
tization, Word-Length, Affine Arithmetic, Error Estimation, Signal-to-
Quantization-Noise Ratio

1 Introduction

The use of fixed-point (FxP) arithmetic has proved to provide low-cost hardware
implementations [1–3]. The selection of the FxP formats of the variables of an



algorithm is a time-consuming task that involves an optimization process whose
goal is to find the set of word-lengths (WLs) that reduces cost most. The FxP
optimization (FPO) process is a slow process, since the complexity of the opti-
mization problem has been shown to be very complex (NP-hard [4]) and, also,
because of the necessity of continuously assessing the accuracy of the algorithm
which involves time-consuming simulations.

The estimation of the algorithm accuracy is normally performed adopting
a simulation-based approach [1], which leads to long design times. However, in
the last few years there have been attempts to provide fast estimation methods
based on analytical techniques. These approaches can be applied to Linear Time-
Invariant (LTI) systems [5, 2, 6] and to differentiable non-linear systems [7–10].
As for the noise metric used, they are based on the peak value [10] and on the
computation of SQNR [2, 7, 5, 9, 8]. Since SQNR is a very popular error metric
within DSP systems and because LTI systems have been extensively studied,
our work aims at fast SQNR estimation techniques for differentiable non-linear
systems.

The chapter contains the following contributions:

– A novel Affine-Arithmetic based SQNR estimator.

– An efficient methodology to perform fast and accurate SQNR estimates.

– Performance results using a set of non-linear benchmarks with and without
feedbacks: adaptive filters, matrix operations, a mean power IIR filter, and
a MIMO equalizer.

The chapter is organized as follows: In Section 2, some related works are
discussed. Section 3 deals with fixed-point optimization. Section 4 introduces
AA. Section 5 explains the fast estimation method. The software implementation
of a FPO tool is addressed in Section 6. The performance results are presented
in Section 7. And finally, Section 8 draws the conclusions.

2 Related work

Only those approaches aiming at the automatic SQNR estimation of non-differentiable
algorithms are tackled here. This also excludes approaches exclusively based on
simulations, as the automation of these approaches does not translate into a
significant reduction of computation times since these methods are inherently
very slow. In the approaches being considered, non-linearities are addressed in
terms of the perturbation theory, where the effect of the quantization of each
signal on the output signals is supposed to be very small. This allows the appli-
cation of first-order Taylor expansions to each non-linear operation in order to
characterize the quantization effect. Thus, the set of algorithms is constrained to
those containing differentiable operations. Existent methods enable to obtain an
expression that relates the WLs of signals to the power – also mean and variance
– of the quantization noise at the output. This will be further explained through
eqn. 22 in subsection 5.2.



The work in [7] proposes a hybrid method that combines simulations and
analytical techniques to estimate the variance of the noise. The estimator is
suitable for non-recursive and recursive algorithms. The parameterization phase
is relatively fast, since it requires |S| simulations for an algorithm with |S| vari-
ables (or signals). The noise model is based on [11] and second order effects are
neglected by applying first order Taylor expansions. The paper seems to suggest
that the contributions of the signal quantization noises at the output can be
added, assuming that the noises are independent. The accuracy of the method
is not supported with any empirical data, so the quality of the method cannot
be inferred.

The method in [9] makes use of a more time-consuming method, since |S|2/2
simulations as well as a curve fitting technique with |S|2/2 coefficients are re-
quired. On the one hand, the noise produced by each signal is described in terms
of the traditional quantization noise model from [12], which is less accurate than
[11], and, again, second order statistics are neglected. On the other hand, the
expression of the estimated noise power accounts for noise interdependencies,
which is a better approach than [7]. The method is tested with an LMS adaptive
filter and the accuracy is evaluated graphically. There is no information about
computation times.

Finally, in [8] the parameterization is performed by means of |S| simulations
and the estimator is suitable only for non-recursive systems. The accuracy of this
approach seems to be the highest of all presented methods since it uses the model
from [11] and it accounts for noise interdependencies. Although the information
provided about accuracy is more complete, it is still not sufficient, since the
estimator is only tested in a few SQNR scenarios. This approach was successfully
extended to recursive systems in [13], with reasonably short parameterization
times due to the use of linear-prediction techniques.

The approach explained in this chapter (Section 5) tries to overcome most
of the drawbacks of the works presented above by considering:

– Both non-recursive and recursive algorithms
– An accurate noise model [11]
– Noise interdependencies

3 Fixed-Point Optimization

The starting point of FPO is a graph G(V, S) describing a FxP algorithm. Set V
contains the operations of the algorithm, and set S its signals. The FxP format
of a number is defined by means of the pair (p, n), where p represents the number
of bits required to represent the integer part, and n is the total number of bits
(see left side of Figure 1). In fact, the complete FxP format of a signal requires
more information: the format before quantization – (ppre, npre) – and the format
after quantization – (p, n) (see [2]). The error introduced by each quantization
operation (i.e. truncation) is directly related to the number of least significant
bits removed (see subsection 5.1 for a description of an error model that makes
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Fig. 1. Fixed-point optimization diagram.

use of pairs (ppre, npre) and (p, n)). Figure 2 depicts the quantization of the
output of a multiplication. Here, 16-bit signals a and b are multiplied, and the
result c is quantized to 8 bits (i.e. 16-8=8 bits).

Initially, the FxP formats of signals are unknown and it is the task of FPO
to find a suitable set of these that minimizes cost. The FxP format determines
the quantization error generated by a quantized signal. This error is propagated
to the output of the algorithm. Also, the FxP format determines the number
of bits of a signal, and therefore the size of the hardware resources required to
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16 bits 8 bits 

Fig. 2. Quantization of a multiplier.



process it. The size of a resource ultimately determines its area, delay and power
costs. For instance, going back to Figure 2, the FxP format of signals a and b is
determining the cost of the multiplier, while the truncation of output c is affect-
ing the mathematical precision of the operation, which is ultimately affecting
the overall mathematical precision of the algorithm. During FPO, the optimiza-
tion is guided by the cost and the output error obtained from the different FxP
formats tried through successive iterations.

Figure 1 depicts the FPO approach adopted in this work. FPO is composed
of the stages of ranges analysis or scaling, which determines the set of p (P =
{p0, . . . , p|S|−1}), and word-length selection, which determines the set of n (N =
{n0, . . . , n|S|−1}). This separation allows simplifying FPO while still providing
significant cost reductions.

A wrap-around scaling strategy is adopted since it requires less hardware
resources than other approaches (i.e. saturation techniques). After scaling, the
values of p are the minimum possible values that avoid the overflow of signals
or, at least, those that reduce the likelihood of overflow to a negligible value. A
simulation-based approach is used to carry out scaling [1]. During the simulation,
the dynamic range of each signal is obtained and the value of p is computed by
means of pi = blog2(maxi)c+ 1.

Once scaling is performed, the values of p can be fixed during word-length
selection. The right side of Fig. 1 shows a diagram of the basic steps during
word-length selection. Basically, word-length selection iterates trying different
word-lengths for the variables of the algorithm (i.e. n) until cost is minimized.
Any time the WL of a signal or a group of signals is changed, the WLs must be
propagated throughout the graph, task referred to as graph conditioning [2]. The
optimization control block selects the size of the new WLs using the values of the
previous error and cost estimations and decides when the optimization procedure
has finished. The first task in the diagram is the extraction of the quantization
noise model. The role of this operation is to generate a model of the quantization
noise at the output, related to the FxP format of each signal (i.e. (pi, ni) and
(pipre , nipre)). This is the key to avoid the use of time-consuming simulations.
The implications of using a quick error estimator within the optimization loop
are twofold: i) the optimization process can be faster, or, ii) it is possible to
perform a wider design space exploration. During the optimization process, the
control block makes decisions about the signals that change their WLs according
to the error and cost estimations.

4 Affine Arithmetic

Affine Arithmetic (AA) [14] is aimed at the fast and accurate computation of the
ranges of the signals of an algorithm. Its main feature is that it automatically
cancels the linear dependencies of the included uncertainties along the compu-
tation path, thus avoiding the oversizing produced by Interval Arithmetic (IA)
approaches [15]. Regarding fixed-point optimization, it has been applied to both
scaling computation [16, 17, 10], and word-length selection [5, 16, 10, 18]. Also, a



modification, called Quantized Affine Arithmetic (QAA), has been applied to
the computation of limit cycles [19] and dynamic range analysis of quantized
LTI algorithms [17].

4.1 Description

The mathematical expression of an affine form is

x̂ = x0 +

Nx∑
i=1

xiεi (1)

where x0 is the central value of x̂, and εi and xi are its i-th noise term identifier
and amplitude, respectively. In fact, xiεi represents the interval [−xi,+xi], so an
affine form describes a numerical domain in terms of a central value and a sum
of intervals with different identifiers. Affine operations are those which operate
affine forms and produce an affine form as a result. Given the affine forms x̂, ŷ
and ĉ = c0, the affine operations are

x̂± ĉ = x0 ± c0 +

Nx∑
i=1

xiεi (2)

x̂± ŷ = x0 ± y0 +

max(Nx,Ny)∑
i=1

(xi ± yi)εi (3)

ĉ · x̂ = c0x0 +

Nx∑
i=1

c0xiεi (4)

These operations suffice to model any LTI algorithm. Differentiable opera-
tions can be approximated using a first-order Taylor expansion:

f(x̂, ŷ) ≈ f(x0, y0) +

max(Nx,Ny)∑
i=1

(
δf(x0, y0)

δx̂
· xi +

δf(x0, y0)

δŷ
· yi
)
εi (5)

4.2 Example of application

This section describes an example of application of AA. Let us consider the
standard Red, Green and Blue (RGB) to Luma, Red and Blue Chroma (YCrCb)
converter shown in Figure 3 [2, 17], whose sequence of operations is given in the
first column of Table 1. The second column shows the computation of the affine
form associated to each algorithm’s signal. The last column shows the interval
associated to the dynamic range of each signal. Without loss of generality, in this
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Fig. 3. ITU RGB to YCrCb converter.

Table 1. Propagation and computation of the affine forms for the ITU RGB-YCrCb
converter.

Operations AA-based computations Signal ranges

t1 = 0.22R t̂1 = 0.22 · (96 + 32ε1) = 21.31 + 7.10ε1 [14.208, 28.416]

t2 = 0.71G t̂2 = 0.71 · (96 + 32ε2) = 67.84 + 22.61ε2 [45.228, 90.458]

t2 = 0.071B t̂3 = 0.071 · (96 + 32ε3) = 6.842.28ε3 [4.563, 9.126]

t4 = t2 + t3 t̂4 = (67.84 + 22.61ε2) + (6.84 + 2.28ε3)
= 74.69 + 22.61ε2 + 2.28ε3

[49.792, 99.584]

t4 = t2 + t3 t̂4 = (67.84 + 22.61ε2) + (6.84 + 2.28ε3)
= 74.69 + 22.61ε2 + 2.28ε3

[49.792, 99.584]

Y = t1 + t4 Ŷ = (21.31 + 7.1ε1) + (74.69 + 22.61ε2 + 2.28ε3)
= 96 + 7.1ε1 + 22.61ε2 + 2.28ε3

[64, 128]

t5 = −Y Ŷ = −(96 + 7.1ε2 + 22.61ε2 + 2.28ε3)
= −96− 7.1ε1 − 22.61ε2 − 2.28ε3

[−128,−64]

t6 = t5 +R t̂6 = (−96−7.1ε1−22.61ε2−2.28ε3) + (96 + 32ε1)
= 24.9ε1 − 22.61ε2 − 2.28ε3

[−49.792, 49.792]

Cr = 0.64t6 Ĉr = 0.64 · (24.9ε1 − 22.61ε2− 2.28ε3)
= 16ε1 − 14.53ε2 − 1.47ε3

[−32.001, 32.001]

t7 = t5 +B t̂7 = (−96−7.1ε1−22.61ε2−2.28ε3) + (96 + 32ε3)
= −7.1ε1 − 22.61ε2 + 29.72ε3

[−59.437, 59.437]

Cb = 0.54t7 Ĉb = 0.54 · (−7.1ε1 − 22.61ε2 + 29.72ε3)
= −3.82ε1 − 12.18ε2 + 16ε3

[−32.0008, 32.0008]

example it is considered that the three input values are contained in the range
[64, 128], and that the computations are performed using infinite precision.



Assuming that the RGB values are independent from each other, the affine
forms that represent the signal ranges are modeled using one distinct noise term
per uncertainty source, i.e.,

R̂ = 96 + 32ε1 (6)

Ĝ = 96 + 32ε2 (7)

B̂ = 96 + 32ε3. (8)

By applying the operation definitions described in subsection 4.1, the affine form
that represents the values of t1 is

t̂1 = 0.2220 · R̂ = 0.2220(96 + 32ε1) = 21.3120 + 7.1040ε1 (9)

and the interval that specifies its range is

range(t̂1) = t1,0 ±
max(Nx,Ny)∑

i=1

range(t1i · εi) (10)

= range(21.3127± 7.1040) (11)

= [14.2080, 28.4160] (12)

The same procedure can be applied to the rest of the signals to obtain results
found in Table 1.

This example illustrates the application of AA to compute the dynamic range
of signals. However, AA is used is this work as a means to propagate the quanti-
zation error of each signal to the output. For this purposes, affine forms are used
to represent quantization errors that are added to signals. The propagation of
these errors follows the same rules that have been applied in the previous exam-
ple. However, as shown in the next section, affine forms will be interpreted from
an statistical point of view, since their error terms will be assigned probability
density functions (PDFs). This will lead to the estimation of SQNR by means
of AA.

5 SQNR Estimation

In this section, an AA-based method able to estimate the SQNR of non-linear
algorithms with and without feedback loops is presented. The method is able to
extract an estimation of the power of the quantization noise of a system from
an AA-based simulation. This would not be of much use for a fast FPO if AA
simulations must be repeated during the WL selection phase (see Figure 1). The
ultimate goal of the method is to use a single AA simulation to extract a model
of the quantization noise that enables fast SQNR estimation, so it supports fast
FPO.



5.1 Affine arithmetic applied to error propagation analysis

Noise estimation is based on the assumption that the quantization of a signal i
from npre bits to n bits can be modeled by the addition of a uniformly distributed
white noise with the following statistical parameters [11]:

σ2
i =

22pi

12

(
2−2ni − 2−2n

pre
i

)
(13)

µi = −2pi−1
(

2−ni − 2−n
pre
i

)
. (14)

This noise model is a refinement of the traditional modeling of the quantization
error as an additive white noise [12] and, therefore, it is more accurate. The
values of p are obtained during the scaling phase and the values of n and npre
are computed during word-length selection by means of WL propagation (see
the optimization flow in Figure 1).

The deviation from the original behavior of an algorithm with feedback loops
caused by quantized signals can be modeled by adding an affine form n̂i[k] to
each signal i at each simulation time instant k (i.e. loop iteration index) [5].
These affine forms can properly model the quantization noise of each signal if
the error term ε is assigned a uniform distribution:

n̂i[k] = µi +
√

12σ2
i εi,k = ε′i,k (15)

Thus, an AA simulation automatically identifies the origin of any particular
error term (i) and the moment when it was generated (k). Error term ε′ encap-
sulates the mean value and the variance of the error term ε, that now can be
seen as a random variable with variance σ2

i and mean µi. Thus, the AA-based
simulation can be made independent on the particular statistical parameters
of each quantization. This is highly desirable in order to obtain a parameter-
izable noise model. In fact, this is a reinterpretation of AA, since error terms
are not only intervals, but they also have an associated probability distribution.
Once the simulation is finished, it is possible to compute the impact of the any
quantization noise produced by signal si on the output of the algorithm by ex-
tracting the value of the error amplitude (given by xi,k in eqn. (1)). This enables
the parameterization of the noise. Once the parameterization is performed, the
quantization error produced by any combination of (p, n) can be easily assessed
by replacing all ε′i,k by the original expression that accounts for the mean and

variance (µi +
√

12σ2εi,k), thus enabling a fast estimation of the quantization
error. We present in detail the complete process in the next paragraphs.

Given an algorithm with |S| signals, the expression of output Ŷ is

Ŷ [k] = Y0[k] +

|S|−1∑
i=0

k∑
j=0

Yi,j [k]ε′i,j , (16)

where Y0[k] is the value of the output of the algorithm using floating-point arith-
metic and the summation is the contribution of the quantization noise sources.



Note that the error term amplitude Yi,j [k] is a function that depends on the
inputs of the algorithm for non-linear systems.

The error ÊrrY at the output is

ÊrrY [k] = Y0[k]− Ŷ [k] = −
|S|−1∑
i=0

k∑
j=0

Yi,j [k]ε′i,j , (17)

and it is formed by a collection of affine forms at each time step n. This expression
of the error can be used to estimate the error peak-value, using the traditional
interpretation of AA [20, 10], and, also, to obtain the PDF of the error [5, 20].
However, in the next subsection we focus on obtaining the value of the power of
the error considering the actual PDF of each error term (i.e. a uniform density
function).

5.2 Analytical SQNR estimation

The power of the quantization noise is computed as the Mean Square Error
(MSE), that is, the mean value of the expectancy of the power of the summations
of εi,j during K time steps.

P
(
ÊrrY

)
=

1

K

K−1∑
m=0

E

[(
ÊrrY [m]

)2]

=
1

K

K−1∑
m=0

(
V ar(ÊrrY [m])+

E
[
ÊrrY [m]

]2)
(18)

The two main terms in eqn. (18) are developed in (19) and (20). The former
makes use of the fact that it can be assumed that error terms ε′i,k are uncorrelated
to each other [12].

V ar(ÊrrY [m]) = V ar(−
|S|−1∑
i=0

m∑
j=0

Yi,j [m]ε′i,j)

=

|S|−1∑
i=0

m∑
j=0

V ar(−Yi,j [m]ε′i,j)

=

|S|−1∑
i=0

σ2
i

m∑
j=0

Y 2
i,j [m] (19)



E[ÊrrY [m]] = E[−
|S|−1∑
i=0

m∑
j=0

Yi,j [m]ε′i,j ]

= −
|S|−1∑
i=0

µi

m∑
j=0

Yi,j [m] (20)

Combining (18), (19) and (20):

P
(
ÊrrY [k]

)
=

1

K

K−1∑
m=0

|S|−1∑
i=0

σ2
i

m∑
j=0

Y 2
i,j [m] +

|S|−1∑
i=0

µi

m∑
j=0

Yi,j [m]

2
 (21)

Equation (21) can be expressed in vectorial form (eqns. (22-24)). The sta-

tistical parameters of the quantized signals are in vectors s =
〈
σ2
0 . . . σ

2
|S|−1

〉
and µ =

〈
µ0 . . . µ|S|−1

〉
. Once vector v and matrix M are computed –during

the noise parameterization phase– the estimation of the quantization noise does
not require any further AA simulations, but the computation of (22), which is a
much faster process. Also, note that we are not actually computing the SQNR,
but the power of the output signal. The SQNR can be easily computed from
the power of the output signal using infinite precision (i.e. floating-point double
precision) and applying the formula SQNR = 20 · log(PY0

/PE)).

PE =
1

K

(
s · vT + µ ·MµT

)
(22)

v ≡

〈
K−1∑
k=0

k∑
j=0

Y 2
0,j [k], . . . ,

K−1∑
k=0

k∑
j=0

Y 2
|S|−1,j [k]

〉
(23)

M ≡

 m0,0 · · · m|S|−1,0
. . .

m0,|S|−1 · · · m|S|−1,|S|−1

 (24)

mi1,i2 =

K−1∑
k=0

 k∑
j1=0

Yi1,j1 [k]

k∑
j2=0

Yi2,j2 [k]

 (25)



Algorithm 1 Gradient-descent optimization

Input: GSFG(V, S) with no fixed-point information, error constraint Emax

Output: word-length optimized GSFG(V, S)

1: Perform scaling and initialize P = {p0, . . . , p|S|−1}
2: Find minimum n that complies with noise constraint Emax

when ∀ni ∈ N = {n0, . . . , n|S|−1}, ni = n
3: Compute output error E
4: Cmin =∞
5: repeat
6: scandidate = undefined
7: for all si ∈ S do
8: ni = ni − 1
9: Compute output error E

10: if E < Emax then
11: Compute cost C
12: if C < Cmin then
13: Cmin = C

scandidate = si
14: end if
15: end if
16: restore ni

17: end for
18: if scandidate¬ = undefined then
19: ncandidate = ncandidate − 1
20: end if
21: until scandidate¬ = undefined

5.3 Accuracy for LTI systems

The purpose of the proposed fast estimation method is to estimate the quantiza-
tion noise produced by non-linear algorithms. However, it is important to verify
that eqn. (22) matches the well-known expression that is used to compute the
output noise power of a quantized LTI system in steady state. This verification
can be found in [21], where it is analytically proven that if eqn. (22) is used for
LTI systems by removing the first J samples (to remove the transient) then

PLTI

(
ÊrrY

)
=

1

K − J

K−1∑
m=J

E

[(
ÊrrY [m]

)2]

≈
|S|−1∑
i=0

σ2
i ·

1

2π

∫ π

−π

∣∣Gi(ejΩ)
∣∣2 dΩ

+

|S|−1∑
i=0

µi ·Gi(1)

2

. (26)

The basis of this demonstration is that it is possible to relate the error terms
amplitudes (Yi,j [k]) to the transfer function from signal i to the output (Gi).



This proves that the accuracy of the presented estimation is very high for LTI
systems. Nonetheless, the method presented here is not intended for LTI systems,
since there are already more efficient ways to compute their output noise [2, 5,
21]. The accuracy for non-linear algorithms is presented in the next section.

6 Fixed-point optimization tool

FPO can now be accelerated by means of the estimator presented in the previous
section. Here, we outline how the FPO process must be performed and we present
the implementation of the process as an automatic design tool.

6.1 Estimation-based optimization

Before carrying out the task of WL selection, it is necessary to parameterize the
quantization noise at the output of the system. The parameterization process is
carried out by means of the following steps:

1. Perform a K−step AA simulation adding an affine form n̂i to each signal i.
2. Compute eqns. (23-25) using the previously collected Yi,j [k].

Once vector s and matrixM are available, expression (22) can be used during
the optimization process to assess the system quality.

Many optimization techniques can be applied to the problem of finding the
appropriate word-lengths. Here, we present a gradient-descent optimization [22]
that provides a trade-off between low complexity and optimality. Its behavior is
described using pseudo-code in Algorithm 1. Given an algorithm with |S| signals,
it performs |S| independent tests, where the WL of each signal is reduced one bit
and the resulting error (E) and cost (C) are recorded. The test producing the
largest cost reduction among those tests that comply with the error constraint
(E < EMAX) is selected and the WL change performed in that test is made
permanent. The algorithm goes on until it is not possible to reduce the WLs
without violating the error constraint.

Regarding the cost function, some authors use area [22, 2, 23, 21], others the
error itself [24] and others a linear combination of both [25]. The reader can
extend the information on FPO techniques consulting [26, 24, 27, 28].

6.2 Software implementation

The proposed fast estimator, as well as the FPO methodology, were implemented
using C++. Operator overloading was used in order to enable the execution of
the same algorithm description using different data types. For instance, during
scaling, a floating-point simulation that collects the dynamic range information
for each signal must be performed. Also, during the error modeling phase, an
AA simulation is used to extract parameters v and M . During WL selection,
it is necessary to know the set Npre that is obtained through WL propagation.



Square.h

class Square::QAlgorithm{

...

set_signals(){

x.set_input(_UNQUANTIZED, _ROUND);

y.set_output(_QUANTIZED, _TRUNC);

}

set_inputs(){

for (int i=0; i<x.data.size(); i++)

x.data[i] = rand()/(RAND_MAX+1);

}

exe(){   c=a*a; }

...

Quant_signal x;

Quant_signal y;

...

}

Square.h

class Square::QAlgorithm{

...

set_signals(){

x.set_input(_UNQUANTIZED, _ROUND);

y.set_output(_QUANTIZED, _TRUNC);

}

set_inputs(){

for (int i=0; i<x.data.size(); i++)

x.data[i] = rand()/(RAND_MAX+1);

}

exe(){   c=a*a; }

...

Quant_signal x;

Quant_signal y;

...

}

FPO.cpp

#include “FPO.h”

#include “Square.h”

main(){

FPO fpo;

Square sqr(fpo);

fpo.set_simulation(10000);

sqr.init();    // call set_signals,set_inputs,etc.

fpo.scaling();

fpo.error_model();

fpo.set_sqnr(80.0); // SQNR=80 dB

fpo.optim(_GRAD_DESCENT, _AA);

double pow_AA = fpo.get_pow(_AA)

double sqnr_AA = fpo.get_sqnr(_AA)

double pow_FX = fpo.get_pow(_FXP) // FxP simulation

double sqnr_FX = fpo.get_sqnr(_FXP) // FxP simulation

double pow_err = 100.*(pow_FX-pow_AA)/pow_FX;

double sqnr_err = sqnr_FX-sqnr_AA;

cout<<“Estimation error: “<<pow_err<<“%; ”;

cout<<sqnr_err<<“ dB” << endl; 

}

FPO.cpp

#include “FPO.h”

#include “Square.h”

main(){

FPO fpo;

Square sqr(fpo);

fpo.set_simulation(10000);

sqr.init();    // call set_signals,set_inputs,etc.

fpo.scaling();

fpo.error_model();

fpo.set_sqnr(80.0); // SQNR=80 dB

fpo.optim(_GRAD_DESCENT, _AA);

double pow_AA = fpo.get_pow(_AA)

double sqnr_AA = fpo.get_sqnr(_AA)

double pow_FX = fpo.get_pow(_FXP) // FxP simulation

double sqnr_FX = fpo.get_sqnr(_FXP) // FxP simulation

double pow_err = 100.*(pow_FX-pow_AA)/pow_FX;

double sqnr_err = sqnr_FX-sqnr_AA;

cout<<“Estimation error: “<<pow_err<<“%; ”;

cout<<sqnr_err<<“ dB” << endl; 

}

Fig. 4. Example of use of the software framework.

During this phase, the FxP format of each variable was used to perform WL
propagation. And, finally, the last FxP simulation used to assess the estimator
quality requires the use of a FxP data type.

A framework to coordinate the different FPO phases, and to allow the de-
signer to configure the optimization process to quantize the algorithm, was
also developed. Figure 4 displays a simple example. File Square.h contains
the description of the algorithm. The designer must specify the way that the
signals (e.g. inputs, outputs and signals) are treated during FPO (see function
set signals). They can be quantized or not, and also different rounding schemes
can be applied (i.e. rounding or truncation). The designer must also specify the
original WL of inputs. Also, the input values must be fed through set inputs.
The operation sequence is described in exe. The next step for the designer is
to declare an object for the algorithm and also to declare an object FPO that
encapsulates all the FPO features (see main.cpp). The FPO process is straight
forward, since there are methods for the main FPO tasks: scaling, error model,
optim (see Figure 1). Note that the parameters of method fpo.optim() are the
type of optimization technique (i.e. GRAD DESCENT is for a gradient-descent op-
timization such as Algorithm 1) and the type of error computation (i.e. AA for
AA-based estimation, and FXP for a FxP simulation-based estimation). Need-
less to say that the use of simulations requires much longer processing times
than AA-based optimizations. In the last few lines of the code, the quantiza-
tion noise power and the SQNR are computed using the AA estimations (i.e.



get pow( AA) and get sqnr( AA)) and FxP simulations (i.e. get pow( FXP) and
get sqnr( FXP)), and the estimation error is assessed (see subsection 7.2).

The implemented software framework has been used to quantize different
benchmarks, presented in subsection 7.1, proving the validity of the techniques
proposed in this chapter.

7 Results

In this section, the benchmarks used to test our fast estimator, as well as the
performance results are presented.

7.1 Benchmarks

The benchmarks are the following:

– 3× 3 vector scalar multiplication (V EC3×3)
– 8× 8 vector scalar multiplication (V EC8×8)
– Mean power estimator based on a 1st-order IIR filter (POW )
– Channel equalizer for MIMO receiver (EQ) [29]
– 1st-order LMS filter (LMS1) [30]
– 5th-order LMS filter (LMS5) [30]
– 3rd-order Volterra filter (V OL3) [31]

The main features of the benchmarks are summarized in Table 2, which
contains the type of algorithm (LTI or non-linear, with or without loops), the
number of inputs/outputs, the number and type of operations involved (z−1

representing delays and ∗K constant multiplications), and the total number of
signals (|S|). The set of benchmarks covers non-linear algorithms, both recur-
sive (with feedback loops) and non-recursive. It must be noted that the set of
operations is quite complete since it includes additions, multiplications, and also
divisions, usually neglected in similar research studies. In addition to that, it is
interesting to highlight that the algorithms cover channel equalization for 4G
MIMO communications, vector multiplications and adaptive filtering with both
linear and non-linear systems.

All benchmarks are fed with 16-bit inputs and 12-bit constants and the noise
constraint is specifed as an SQNR ranging from 40 to 120 dB. The inputs used to
perform the noise parameterization as well as steps of the fixed-point simulation
are summarized in the last column of the table.

Vector Scalar Multiplication. Due to the importance of vector and matrix op-
erations in the development of scientific applications, an N × N vector scalar
multiplication is included as a benchmark. Given two N -element vectors a and
b, the scalar product is defined as:

(
a0 . . . aN−1

)
·

 b0
...

bN−1

 =

N−1∑
i=0

ai · bi . (27)



Table 2. Properties of benchmarks.

Benchmark LTI Cyclic Inputs Outputs z−1 +/- * ∗K ÷ |S| Input signals

V EC3×3 NO NO 6 1 0 2 3 0 0 12 Uniform noise
V EC8×8 NO NO 16 1 0 7 8 0 0 32 Uniform noise
POW NO YES 1 1 1 1 1 2 0 7 Synthetic tone
EQ NO YES∗ 3 2 64 2 7 3 3 85 MIMO channel Tx [29]
LMS1 NO YES 2 1 3 4 4 2 0 16 Synthetic tone
LMS5 NO YES 2 1 11 12 12 6 0 44 Synthetic tone
V OL3 NO YES 2 1 2 4 6 4 0 19 Gaussian noise

∗ MAC operations applied to chuncks of 32 data

The arithmetic operations involved are: N multiplications and N − 1 ad-
ditions. The inputs used to extract the noise model are uniformly distributed
noises.

IIR Mean Power Computation. The mean power computation is based in the
use of an IIR filter. The equation describing its behavior is:

y[k] = x[k]2 · α+ y[k − 1] · β (28)

where x[k] is the input to the filter and y[k] is the output. The constants α and
β = 1−α fix the time length of the mean calculation. The operations used in the
algorithm are one multiplication, two constant multiplications and one addition.
It must be stressed that the filter contains a delay that conforms a loop.

The input used for this benchmark is a phase modulated tone signal with an
uniform noise added.

LMS Adaptive Filtering. Adaptive filtering is widely used in many DSP applica-
tions. In particular, the Least Mean Squares (LMS) adaptive filter is a common
solution due to its low computational load in comparison to other adaptive ap-
proaches. A reference signal d is estimated by means of output y:

y[k] =

N∑
i=0

x[k − i] · wi, (29)

where x is the input to the filter and wi are its coefficients. The coefficients are
updated in every time step by means of constant µ:

wnexti = wi + µ · x[k − i](d[k]− y[k]). (30)

An Nth-order LMS filter requires 2N + 2 multiplications, N + 1 constant
multiplications, 2N+1 additions, 1 subtraction and 2N+1 delays. It also contains
loops.

Two input signals must be specified here: the reference d is a synthetic tone
signal with phase and amplituted noises, and the input x is signal d with N
added echoes.



Equalizer for Alamouti MIMO Communications System. The selected equalizer
aims at 4G communications and it is embedded in a Multi-Carrier Code-Division
Multiple-Access (MC-CDMA) radio system [29], which is able to handle up to 32
users and provides transmission bit-rates up to 125 Mbps. The transmitter sends
complex data Yi using different subcarriers (i is the subcarrier index) and the
receiver combines the data received by the different antennas to produce complex
Zi, which is the input of the equalizer. This signal is related to Yi by means of the
real signal Hi, which is contains information about the communication channel,
and Ni is a noise term signal.

Zi = Hi · Yi +Ni (31)

The output of the equalizer is an estimate of Yi:

Yi = Gi · Zi. (32)

The coefficients Gi can be extracted using Hi and constant λ, which is related
to the Signal to Noise Ratio conditions.

Gi =
1

Hi + λ
· SF∑(i mod SF )+SF−1

j=i mod SF

Hj

Hj+λ

(33)

Notice that the second factor is constant for every group of SF consecutive
subcarriers. For this particular application SF = 32.

The equalizer can be implemented using seven multiplications, three constant
multiplications, three divisions and two additions. It is interesting to highlight
that the presence of multiplications and divisions make this algorithm highly
non-linear.

The input signals H and Z are generated using a realistic MIMO channel
model [29].

Volterra Adaptive Filtering. Volterra adaptive filters are used when the non-
linearities present in the system that is being approximated cannot be neglected.
The behavior of the filter is similar to that of LMS, but now, the computation
of output y involves a non-linear equation. In particular, a Hermite polynomial
series is used for the estimation:

y[k] =

K∑
i=0

Hi(x̄) · wi, (34)

where Hi is the Hermite polynomial of order i, x̄ = x
Px

is the normalized input to
the filter, Px is the power of signal x and wi are its coefficients. The coefficients
are updated each time step by means of constant µ:

wnexti = wi + µ ·Hi(x̄)(d[k]− y[k]). (35)

Here, we address the estimation of the function arctan(x) by means of a
3rd-order Hermite expansion. The expression of y[k] for such a Volterra adaptive



filter is:

y[k] =

(
x[k]

Px

)
· w1 +

((
x[k]

Px

)
− 3

(
x[k]

Px

)3
)
· w3 (36)

Table 2 displays the number of operations required for the 3rd-order Volterra
filter. The inputs used are as follows: signal x is a gaussian noise and d is
arctan(x).

7.2 Experimental setup

All the benchmarks were used to test both the accuracy and computation per-
formance of the proposed FPO method. The following procedure was carried
out:

– For all benchmarks do

1. Compute scaling by means of a floating-point simulation.
2. Extract noise parameters (eqns. 23-25) performing an AA-based simula-

tion.
3. Record computation time TParam−AA.
4. For SQNR = [3, . . . , 120] do

(a) Perform a WL selection based on the fast estimator (eqn. 22) using
a gradient-descent approach.

(b) Record computation time TOptim−AASQNR , estimation PAASQNR and the
number of optimization iterations ISQNR.

(c) Perform a single FxP bit-true simulation of the quantized algorithm
and use it as reference to compute the performance and accuracy of
the estimator.

(d) Record computation time of a single fixed-point simulation (TFxPSQNR).

(e) Record an estimate of a simulation-based FPO (TOptim−FxPSQNR = TFxPSQNR×
ISQNR) and the simulation-based SQNR (PFxPSQNR).

5. Compute the average values T̄Optim−AA and T̄Optim−FxP .

7.3 Accuracy results

The accuracy obtained by means of a gradient-descent FPO [2] under different
SQNR constraints for the different benchmarks is presented in Table 3. A total
of 80 different SQNR constraints were used, ranging from 40 dB to 120 dB.
The first column indicates the benchmark used. The remaining columns show
the accuracy of the estimations measured in terms of the maximum absolute
values of the relative errors in dB, and the average of the absolute values of the
percentage errors, for four SQNR ranges: [120,100] dB, [100,80] dB, [80, 60] dB
and [60,40] dB (see the expressions of the metrics at the bottom of the table).
The last row contains the maximum and average value using the information
from all benchmarks



Table 3. Performance of the estimation method: precision.

Estimation error
Benchmark [120,100]1 dB [100,80] dB [80,60] dB [60,40] dB

(dB)2 (%)3 (dB) (%)3 (dB)2 (%)3 (dB)2 (%)3

V EC3×3 0.07 0.54 0.07 0.11 0.06 0.50 0.09 0.72
V EC8×8 0.05 0.57 0.04 0.40 0.04 0.57 0.13 1.19
POW ∗ 0.27 0.98 0.24 0.71 0.29 0.17 0.18 1.52
EQ∗ 0.39 5.00 0.17 1.55 0.76 5.96 1.12 12.12
LMS∗1 0.09 0.41 0.14 0.90 0.16 1.74 0.82 6.96
LMS∗5 0.09 0.46 0.08 0.07 0.13 1.08 1.09 5.51
V OL∗3 1.14 3.33 0.49 1.84 0.81 6.70 1.43 16.67

All 0.39 1.27 0.24 0.05 0.76 1.48 1.12 4.21
∗ Recursive
1 Error constraint
2 |10log(

Pref

Pest
)| (max)

3 |100(
Pref−Pest

Pref
)| (average)

Results show that the estimator is very accurate. The mean percentage error
(see last row) is smaller than 4.3 %, and the maximum relative error is smaller
than 1.12 dB. Note that the accuracy decreases as long as the error constraints
get looser. This is due to the amplification of the Taylor error terms (specially in
the presence of loops) and also to the fact that the uniformly distributed model
for the quantization noise does not remain valid for small SQNRs. Anyway, the
quality of the estimates is still very high, thus confirming the excellent accuracy
of the estimator. The accuracy of recursive algorithms is slightly reduced, since
the estimation errors are somehow amplified by the feedback loops. The estima-
tion errors for benchmark EQ appear to be greater that the rest, probably due
to the presence of both divisions and feedback loops.

Figure 5 displays the mean estimation error vs. the target SQNR for the
benchmarks V EC3×3 and POW . Note that the target SQNR range has been
extended to [3, 120] dB. These two algorithms present similar non-linearities. The
former performs the summation of the multiplication of three pairs of numbers,
while the latter performs the accumulation of the square of a signal. The main
difference between them is the presence of a feedback in POW . First, it can be
seen in the figure that as long as the SQNR decreases the error in the estimation
increases. This is expected since the quantization model relies on the fact that the
quantization error is much smaller than the dynamic range of the signal. V EC3×3
presents an error smaller than 20% for the whole SQNR range. However, POW
achieves similar errors for SQNR values smaller than 65 dB, but for SQNR values
smaller than 30 dB, the error reaches values close to 100%. As aforementioned,
the error introduced by the 1st-order Taylor approximation becomes magnified
in the pressence of feedbacks.
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Fig. 5. Estimation error (%) vs. target SQNR for V EC3×3 and POW .

Figure 6 shows a similar graph for benchmarks LMS5, V OL3 and EQ. LMS
presents a strong feedback with a smooth non-linearity (i.e. multiplication).
V OL3 has a similar feedback (somehow smaller, since the order is smaller), but
the non-linearities are stronger (i.e. x3). Finally, EQ presents the more abrupt
non-linearity (i.e. several divisions) but the feedback is not as prominent, since
the accumulations are reset every 32 clock cycles. The three of them perform
correctly for SQNR = [65, 120]. When SQNR = [40, 65], approximately, the
error is greater than 20%. For SQNR values smaller than 30 the performance is
really poor, presenting V OL3 and EQ the worst errors (i.e. larger than 100%).

It is interesting to see that the amount of non-linearity in the algorithm
clearly impacts on the quality of the error estimation. V OL3 performs very bad
for small SQNR values in comparison to LMS5. However, EQ performs well
for most of the SQNR range, since the feedback effect is limited, but for very
small SQNRs the non-linearity of division shows off, causing estimation errors
up to 105. Since the quantization model is expected to fail for small SQNRs,
this situation is not seen as an anomaly of the estimator, but as an intrinsic
characteristic that it not possible to overcome. As shown in Table 3 the method
works properly in the range [40, 120].

7.4 Computation time results

Table 4 holds the computation times required for both noise parameterization
and word-length selection. The first column shows the names of the benchmarks.
The second one shows the length of the input vectors required for a fixed-point
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Fig. 6. Estimation error (%) vs. target SQNR: LMS5, V OL3 and EQ.

simulation and for the parameterization process. The parameterization time is
in the third column. The fourth column characterizes the complexity of the pro-
cess through the number of estimates obtained during the optimization. Each
iteration implies a noise estimation (using a simulation or our fast estimator).
The next two columns present the computation time required to perform the
gradient-descent optimization using our estimation-based proposal and using a
classical simulation-based approach. The computation time for the simulation-
based approach is an estimation obtained from multiplying the average number
of optimization iterations by the computation time of a single fixed-point sim-
ulation. The speed-up obtained by our estimation-based approach is in the last
column. The last row contains the average speedup considering all experiments.

The parameterization time goes from 59.66µsecs. to 28 mins. (1646 secs.)
and it depends on the size of the input dataset, the complexity of the algorithm
(i.e. number and types of operations) and the presence of feedback loops. The
cases including multiplications show how an increase in complexity implies an
increase in parameterization time. This situation is more acute in the presence
of loops (see LMS1 and LMS5). However, the effect of algorithm complexity in
FPO time is negligible. These times might seem quite long, but it must be kept
in mind that the parameterization process is performed only once, and after that
the algorithm can be evaluated for different fixed-point formats as many times
as desired using the fast estimator.

The mean number of estimates in the fifth column is shown to give an idea
of the complexity of the optimization process. A simulation-based optimization
approach would require that very same number of simulations, thus taking a very



Table 4. Performance of the estimation method: computation time.

Bench. FxP TParam−AA No. of estimates T̄Optim−AA T̄Optim−FxP Speed-up
Samples (secs)+ (mean) (secs)+ (secs)+

V EC3×3 2 · 104 59.66 150.14 0.03 66.86 ×2122
V EC8×8 2 · 104 330.67 1739.96 1.72 2331 ×1377
POW ∗ 2 · 104 546.14 97.15 0.02 21.93 ×1048
EQ∗ 16 · 103 61.64 231.98 0.12 105.78 ×904
LMS∗1 5 · 103 908.02 712.28 0.42 163.73 ×394
LMS∗5 5 · 103 1646.38 2547.48 7.26 1611.46 ×221
V OL∗3 5 · 103 212.72 673.38 0.29 151.13 ×526

All - - - - - ×942
∗ With feedback
+ On a 1.66 GHz Intel Core Duo, 1 GB of RAM

long time. For instance, the optimization of LMS5 would approximately require
2500 FxP simulations of 5000 input data. Considering the number of estimations
required, the optimization times are extremely fast, ranging from 0.02 secs to
7.26 secs. The speedups obtained in comparison to a simulation-based approach
are staggering: boosts from ×221 to ×2122 are obtained. The average boost is
×942 which proves the advantage of our approach, not only in terms of accuracy
but also in terms of computation time. Therefore, our approach enables fast and
accurate FxP of non-linear DSP algorithms.

8 Conclusions

A fast and accurate SQNR estimation method based on the use of Affine Arith-
metic has been presented. The estimator is used within a fixed-point optimization
framework and fast quantization is achieved. Affine-arithmetic is used during
the noise parameterization phase. The estimator can be used to perform com-
plex FPO in reduced times, leading to significant hardware cost reductions. The
method can be applied to differentiable non-linear DSP algorithms with and
without feedbacks.

Summarizing, the main contributions of the chapter are:

– The proposal of a fast quantization noise estimation, based on affine arith-
metic, for non-linear algorithms with and without feedbacks.

– The introduction of a methodology and an automatic design tool to perform
fast FPO.

– The average estimation error for non-linear systems is smaller than 17% for
all examples, and smaller than 7% for most cases.

– The computation time of FPO is boosted up to ×2122 (average of ×942).



Future research will pursue higher accuracy in the estimation of non-linear
operations, probably by extending the presented approach to include additional
terms of the Taylor series expansion. The goal is not only to improve further the
accuracy of the method as presented, but to enable its application to algorithms
with strong non-linearities.
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