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1. Introduction. In this paper we consider variational analysis for the par-12

tial differential equations associated with the pricing of European or American op-13

tions. For an introduction to these models, see Fouque et al., [11]. We will set up14

a general framework of variable volatility models, which is in particular applicable15

on the following standard models which are well established in mathematical finance.16

The well-posedness of PDE formulations of variable volatility poblems was studied in17

[2, 3, 1, 18], and in the recent work [9, 10].18

Let the Wi(t) be Brownian motions on a filtered probability space. The variable19

s denotes a financial asset, and the components of y are factors that influence the20

volatility:21

(i) The Achdou-Tchou model [3], see also Achdou, Franchi, and Tchou [1]:22

(1.1)

{
ds(t) = rs(t)dt+ σ(y(t))s(t)dW1(t),

dy(t) = θ(µ− y(t))dt+ νdW2(t),
23

with the interest rate r, the volatility coefficient σ function of the factor y24

whose dynamics involves a parameter ν > 0, and positive constants θ and µ.25

(ii) The Heston model [14]26

(1.2)

{
ds(t) = s(t)

(
rdt+

√
y(t)dW1(t)

)
,

dy(t) = θ(µ− y(t))dt+ ν
√
y(t)dW2(t).

27

(iii) The Double Heston model, see Christoffersen, Heston and Jacobs [17], and28

also Gauthier and Possamäı [12]:29

(1.3)


ds(t) = s(t)

(
rdt+

√
y1(t)dW1(t) +

√
y2(t)dW2(t)

)
,

dy1(t) = θ1(µ1 − y1(t))dt+ ν1

√
y1(t)dW3(t),

dy2(t) = θ2(µ2 − y2(t))dt+ ν2

√
y2(t)dW4(t).

30
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2 J. Frédéric Bonnans and Axel Kröner

In the last two models we have similar interpretations of the coefficients;31

in the double Heston model, denoting by 〈·, ·〉 the correlation coefficients, we32

assume that there are correlations only between W1 and W3, and W2 and W4.33

Consider now the general multiple factor model34

(1.4)
ds = rs(t)dt+

∑N
k=1 fk(yk(t))sβk(t)dWk(t),

dyk = θk(µk − yk(t))dt+ gk(yk(t))dWN+k(t), k = 1, . . . , N.
35

Here the yk are volatility factors, fk(yk) represents the volatility coefficient due to36

yk, gk(yk) is a volatility coefficient in the dynamics of the kth factor with positive37

constants θk and µk. Let us denote the correlation between the ith and jth Brownian38

motions by κij : this is a measurable function of (s, y, t) with value in [0, 1] (here39

s ∈ (0,∞) and yk belongs to either (0,∞) or R), see below. We asssume that we have40

nonzero correlations only between the Brownian motions Wk and WN+k, for k = 141

to N , i.e.42

(1.5) κij = 0 if i 6= j and |j − i| 6= N .43

Note that, in some of the main results, we will assume for the sake of simplicity that44

the correlations are constant.45

We apply the developed analysis to a subclass of stochastic volatility models, obtained46

by assuming that κ is constant and47

(1.6) |fk(yk)| = |yk|γk ; |gk(yk)| = νk|yk|1−γk ; βk ∈ (0, 1]; νk > 0; γk ∈ (0,∞).48

This covers in particular a variant of the Achdou and Tchou model with multiple49

factors (VAT), when γk = 1, as well as a generalized multiple factor Heston model50

(GMH), when γk = 1/2, i.e., for k = 1 to N :51

(1.7)
VAT: fk(yk) = yk, gk(yk) = νk,
GMH: fk(yk) =

√
yk, gk(yk) = νk

√
yk.

52

For a general class of stochastic volatility models with correlation we refer to Lions53

and Musiela [16].54

The main contribution of this paper is variational analysis for the pricing equa-55

tion corresponding to the above general class in the sense of the Feynman-Kac theory.56

This requires in particular to prove continuity and coercivity properties of the corre-57

sponding bilinear form in weighted Sobolev spaces H and V , respectively, which have58

the Gelfand property and allow the application of the Lions and Magenes theory [15]59

recalled in Appendix A and the regularity theory for parabolic variational inequalities60

recalled in Appendix B. A special emphasis is given to the continuity analysis of the61

rate term in the pricing equation. Two approaches are presented, the standard one62

and an extension of the one based on the commutator of first-order differential oper-63

ators as in Achdou and Tchou [3], extended to the Heston model setting by Achdou64

and Pironneau [18]. Our main result is that the commutator analysis gives stronger65

results for the subclass defined by (1.6), generalizing the particular cases of the VAT66

and GMH classes, see remarks 6.2 and 6.4. In particular we extend some of the results67

by [3].68

This paper is organized as follows. In section 2 we give the expression of the bi-69

linear form associated with the original PDE, and check the hypotheses of continuity70

and semi-coercivity of this bilinear form. In section 3 we show how to refine this anal-71

ysis by taking into account the commutators of the first-order differential operators72
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Analysis for options with stochastic volatility 3

associated with the variational formulation. In section 4 we show how to compute73

the weighting function involved in the bilinear form. In section 5 we develop the re-74

sults for a general class introduced in the next section. In section 6 we specialize the75

results to stochastic volatility models. The appendix recalls the main results of the76

variational theory for parabolic equations, with a discussion on the characterization77

of the V functional spaces in the case of one dimensional problems.78

Notation. We assume that the domain Ω of the PDEs to be considered in the79

sequel of this paper has the following structure. Let (I, J) be a partition of {0, . . . , N},80

with 0 ∈ J , and81

(1.8) Ω :=
N

Π
k=0

Ωk; with Ωk :=

{
R when k ∈ I,
(0,∞) when k ∈ J.82

Let L0(Ω) denote the space of measurable functions over Ω. For a given weighting83

function ρ : Ω→ R of class C1, with positive values, we define the weighted space84

(1.9) L2,ρ(Ω) := {v ∈ L0(Ω);

∫
Ω

v(x)2ρ(x)dx <∞},85

which is a Hilbert space endowed with the norm86

(1.10) ‖v‖ρ :=

(∫
Ω

v(x)2ρ(x)dx

)1/2

.87

By D(Ω) we denote the space of C∞ functions with compact support in Ω. By88

H2
loc(Ω) we denote the space of functions over Ω whose product with an element of89

D(Ω) belongs to the Sobolev space H2(Ω).90

Besides, let Φ be a vector field over Ω (i.e., a mapping Ω→ Rn). The first-order91

differential operator associated with Φ is, for u : Ω → R the function over Ω defined92

by93

(1.11) Φ[u](x) :=

n∑
i=0

Φi(x)
∂u

∂xi
(x), for all x ∈ Ω.94

2. General setting. Here we give compute the bilinear form associated with95

the original PDE, in the setting of the general multiple factor model (1.4). Then we96

will check the hypotheses of continuity and semi-coercivity of this bilinear form.97

2.1. Variational formulation. We compute the bilinear form of the variational98

setting, taking into account a general weight function. We wil see how to choose the99

functional spaces for a given ρ, and then how to choose the weight itself.100

2.1.1. The elliptic operator. In financial models the underlying is solution of101

stochastic differential equations of the form102

dX(t) = b(t,X(t))dt+

nσ∑
i=1

σi(t,X(t))dWi.(2.1)103

104

Here X(t) takes values in Ω, defined in (1.8). That is, X1 corresponds to the s variable,105

and Xk+1, for k = 1 to N , corresponds to yk. We have that nσ = 2N .106

So, b and σi, for i = 1 to nσ, are mappings (0, T ) × Ω → Rn, and the Wi, for107

i = 1 to nσ, are standard Brownian processes with correlation κij : (0, T ) × Ω → R108
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4 J. Frédéric Bonnans and Axel Kröner

between Wi and Wj for i, j ∈ {1, . . . , nσ}. The nσ ×nσ symmetric correlation matrix109

κ(·, ·) is nonnegative with unit diagonal:110

(2.2) κ(t, x) � 0; κii = 1, i = 1, . . . , nσ, for a.a. (t, x) ∈ (0, T )× Ω.111

Here, for symmetric matrices B and C of same size, by ”C � B” we mean that C−B112

is positive semidefinite. The expression of the second order differential operator A113

corresponding to the dynamics (2.1) is, skipping the time and space arguments, for114

u : (0, T )× Ω→ R:115

(2.3) Au := ru− b · ∇u− 1
2

nσ∑
i,j=1

κijσ
>
j uxxσi,116

where117

(2.4) σ>j uxxσi :=

nσ∑
k,`=1

σkj
∂u2

∂xk∂x`
σ`i,118

r(x, t) represents an interest rate, and uxx is the matrix of second derivatives in space119

of u. The associated backward PDE for a European option is of the form120

(2.5)

{
−u̇(t, x) +A(t, x)u(t, x) = f(t, x), (t, x) ∈ (0, T )× Ω;

u(x, T ) = uT (x), x ∈ Ω,
121

with u̇ the notation for the time derivative of u, uT (x) payoff at final time (horizon)122

T and the r.h.s. f(t, x) represents dividends (often equal to zero).123

In case of an American option we obtain a variational inequality; for details we124

refer to Appendix D.125

2.1.2. The bilinear form. In the sequel we assume that126

(2.6) b, σ, κ are C1 mappings over [0, T ]× Ω.127

Multiplying (2.3) by the test function v ∈ D(Ω) and the continuously differentiable128

weight function ρ : Ω→ R and integrating over the domain we can integrate by parts;129

since v ∈ D(Ω) there will be no contribution from the boundary. We obtain130

(2.7) − 1
2

∫
Ω

σ>j uxxσivκijρ =

3∑
p=0

apij(u, v),131

with132

(2.8) a0
ij(u, v) := 1

2

∫
Ω

n∑
k,`=1

σkjσ`i
∂u

∂xk

∂v

∂x`
κijρ = 1

2

∫
Ω

σj [u]σi[v]κijρ,133

134

(2.9) a1
ij(u, v) := 1

2

∫
Ω

n∑
k,`=1

σkjσ`i
∂u

∂xk

∂(κijρ)

∂x`
v = 1

2

∫
Ω

σj [u]σi[κijρ]
v

ρ
ρ,135

136

(2.10) a2
ij(u, v) := 1

2

∫
Ω

n∑
k,`=1

σkj
∂(σ`i)

∂x`

∂u

∂xk
vκijρ = 1

2

∫
Ω

σj [u](div σi)vκijρ,137
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138

(2.11) a3
ij(u, v) := 1

2

∫
Ω

n∑
k,`=1

∂(σkj)

∂x`
σ`i

∂u

∂xk
vκijρ = 1

2

∫
Ω

n∑
k=1

σi[σkj ]
∂u

∂xk
vκijρ.139

Also, for the contributions of the first and zero order terms resp. we get140

(2.12) a4(u, v) := −
∫

Ω

b[u]vρ; a5(u, v) :=

∫
Ω

ruvρ.141

Set142

(2.13) ap :=

nσ∑
i,j=1

apij , p = 0, . . . , 3.143

The bilinear form associated with the above PDE is144

(2.14) a(u, v) :=

5∑
p=0

ap(u, v).145

From the previous discussion we deduce that146

Lemma 2.1. Let u ∈ H2
`oc(Ω) and v ∈ D(Ω). Then we have that147

(2.15) a(u, v) =

∫
Ω

A(t, x)u(x)v(x)ρ(x)dx.148

2.1.3. The Gelfand triple. We can view a0 as the principal term of the bilinear149

form a(u, v). Let σ denote the n× nσ matrix whose σj are the columns. Then150

(2.16) a0(u, v) =

nσ∑
i,j=1

∫
Ω

σj [u]σi[v]κijρ =

∫
Ω

∇u>σκσ>∇vρ.151

Since κ � 0, the above integrand is nonnegative when u = v; therefore, a0(u, u) ≥ 0.152

When κ is the identity we have that a0(u, u) is equal to the seminorm a00(u, u), where153

(2.17) a00(u, u) :=

∫
Ω

|σ>∇u|2ρ.154

In the presence of correlations it is natural to assume that we have a coercivity of the155

same order. That is, we assume that156

(2.18) For some γ ∈ (0, 1]: σκσ> � γσσ>, for all (t, x) ∈ (0, T )× Ω.157

Therefore, we have158

(2.19) a0(u, u) ≥ γa00(u, u).159

Remark 2.2. Condition (2.18) holds in particular if160

(2.20) κ � γI,161

but may also hold in other situations, e.g., when n = 1, nσ = 2, κ12 = 1, and162

σ1 = σ2 = 1. Yet when the σi are linearly independent, (2.19) is equivalent to (2.20).163

This manuscript is for review purposes only.



6 J. Frédéric Bonnans and Axel Kröner

We need to choose a pair (V,H) of Hilbert spaces satisfying the Gelfand condi-164

tions for the variational setting of Appendix A, namely V densely and continuously165

embedded in H, a(·, ·) continuous and semi-coercive over V . Additionally, the r.h.s.166

and final condition of (2.5) should belong to L2(0, T ;V ∗) and H resp. (and for the167

second parabolic estimate, to L2(0, T ;H) and V resp. ).168

We do as follows: for some measurable function h : Ω→ R+ to be specified later169

we define170

(2.21)

 H := {v ∈ L0(Ω); hv ∈ L2,ρ(Ω)},
V := {v ∈ H; σi[v] ∈ L2,ρ(Ω), i = 1, . . . , nσ},
V := {closure of D(Ω) in V},

171

endowed with the natural norms,172

(2.22) ‖v‖H := ‖hv‖ρ; ‖u‖2V := a00(u, u) + ‖u‖2H .173

We do not try to characterize the space V since this is problem dependent.174

Obviously, a0(u, v) is a bilinear continuous form over V. We next need to choose175

h so that a(u, v) is a bilinear and semi-coercive continuous form, and uT ∈ H.176

2.2. Continuity and semi-coercivity of the bilinear form over V. We will177

see that the analysis of a0 to a2 is relatively easy. It is less obvious to analyze the178

term179

(2.23) a34(u, v) := a3(u, v) + a4(u, v).180

Let q̄ij(t, x) ∈ Rn be the vector with kth component equal to181

(2.24) q̄ijk := κijσi[σkj ].182

Set183

(2.25) q̂ :=

nσ∑
i,j=1

q̄ij , q := q̂ − b.184

Then by (2.11)-(2.12), we have that185

(2.26) a34(u, v) =

∫
Ω

q[u]vρ.186

We next need to assume that it is possible to choose ηk in L0((0, T ) × Ω), for k = 1187

to nσ, such that188

(2.27) q =

nσ∑
k=1

ηkσk.189

Often the n × nσ matrix σ(t, x) has a.e. rank n. Then the above decomposition is190

possible. However, the choice for η is not necessarily unique. We will see in examples191

how to do it. Consider the following hypotheses:192

hσ ≤ cσh, where hσ :=

nσ∑
i,j=1

|σi[κijρ]/ρ+ κij div σi| , a.e., for some cσ > 0,(2.28)193

hr ≤ crh, where hr := |r|1/2, a.e., for some cr > 0,(2.29)194

hη ≤ cηh, where hη := |η|, a.e., for some cη > 0.(2.30)195196
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Remark 2.3. Let us set for any differentiable vector field Z : Ω→ Rn197

(2.31) Gρ(Z) := divZ +
Z[ρ]

ρ
.198

Since κii = 1, (2.28) implies that199

(2.32) |Gρ(σi)| ≤ cσh, i = 1; . . . , nσ.200

Remark 2.4. Since201

(2.33) σi[κijρ] = σi[κij ]ρ+ σi[ρ]κij ,202

and |κij | ≤ 1 a.e., a sufficient condition for (2.28) is that there exist a positive con-203

stants c′σ such that204

(2.34) h′σ ≤ c′σh; h′σ :=

nσ∑
i,j=1

|σi[κij ]|+
nσ∑
i=1

(|div σi|+ |σi[ρ]/ρ|) .205

We will see in section 4 how to choose the weight ρ so that |σi[ρ]/ρ| can be easily206

estimated as a function of σ.207

Lemma 2.5. Let (2.28)-(2.30) hold. Then the bilinear form a(u, v) is both (i)208

continuous over V , and (ii) semi-coercive, in the sense of (A.5).209

Proof. (i) We have that a1 + a2 is continuous, since by (2.9)-(2.10), (2.28) and210

the Cauchy-Schwarz inequality:211

(2.35)

|a1(u, v) + a2(u, v)| ≤
nσ∑
i,j=1

|a1
ij(u, v) + a2

ij(u, v)|

≤
nσ∑
j=1

‖σj [u]‖ρ
nσ∑
i=1

‖(σi[κijρ]/ρ+ κij div σi) v‖ρ

≤ cσnσ‖v‖H
nσ∑
j=1

‖σj [u]‖ρ.

212

213

(ii) Also, a34 is continuous, since by (2.27) and (2.30):214

(2.36) |a34(u, v)| ≤
nσ∑
k=1

‖σk[u]‖ρ‖ηkv‖ρ ≤ cη‖v‖H
nσ∑
k=1

‖σk[u]‖ρ.215

Set c := cσnσ + c2η. By (2.35)–(2.36), we have that216

(2.37)

{
|a5(u, v)| ≤ ‖|r|1/2u‖2,ρ‖|r|1/2v‖2,ρ ≤ c2r‖u‖H‖v‖H ,
|a1(u, v) + a2(u, v) + a34(u, v)| ≤ ca00(u)1/2‖v‖H .

217

Since a0 is obviously continuous, the continuity of a(u, v) follows.218

(iii) Semi-coercivity. Using (2.37) and Young’s inequality, we get that219

(2.38)

a(u, u) ≥ a0(u, u)−
∣∣a1(u, u) + a2(u, u) + a34(u, u)

∣∣− ∣∣a5(u, u)
∣∣

≥ γa00(u)− ca00(u)1/2‖u‖H − cr‖u‖2H
≥ 1

2γa
00(u)−

(
1
2

c2

γ
+ cr

)
‖u‖2H ,

220

which means that a is semi-coercive.221
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The above consideration allow to derive well-posedness results for parabolic equations222

and parabolic variational inequalities.223

Theorem 2.6. (i) Let (V,H) be given by (2.21), with h satisfying (2.28)-(2.30),224

(f, uT ) ∈ L2(0, T ;V ∗)×H. Then equation (2.5) has a unique solution u in L2(0, T ;V )225

with u̇ ∈ L2(0, T ;V ∗), and the mapping (f, uT ) 7→ u is nondecreasing. (ii) If in226

addition the semi-symmetry condition (A.8) holds, then u in L∞(0, T ;V ) and u̇ ∈227

L2(0, T ;H).228

Proof. This is a direct consequence of Propositions A.1, A.2 and C.1.229

We next consider the case of parabolic variational inequalities associated with the set230

(2.39) K := {ψ ∈ V : ψ(x) ≥ Ψ(x) a.e. in Ω},231

where Ψ ∈ V . The strong and weak formulations of the parabolic variational in-232

equality are defined in (B.2) and (B.5) resp. The abstract notion of monotonicity is233

discussed in appendix B. We denote by K the closure of K in V .234

Theorem 2.7. (i) Let the assumptions of theorem 2.6 hold, with uT ∈ K. Then235

the weak formulation (B.5) has a unique solution u in L2(0, T ;K) ∩ C(0, T ;H), and236

the mapping (f, uT ) 7→ u is nondecreasing.237

(ii) Let in addition the semi-symmetry condition (A.8) be satisfied. Then u is the238

unique solution of the strong formulation (B.2), belongs to L∞(0, T ;V ), and u̇ belongs239

to L2(0, T ;H).240

Proof. This follows from Propositions B.1 and C.2.241

3. Variational analysis using the commutator analysis. In the following a242

commutator for first order differential operators is introduced, and calculus rules are243

derived.244

3.1. Commutators. Let u : Ω→ R be of class C2. Let Φ and Ψ be two vector245

fields over Ω, both of class C1. Recalling (1.11), we may define the commutator of246

the first-order differential operators associated with Φ and Ψ as247

(3.1) [Φ,Ψ][u] := Φ[Ψ[u]]−Ψ[Φ[u]].248

Note that249

(3.2) Φ[Ψ[u]] =

n∑
i=1

Φi
∂(Ψu)

∂xi
=

n∑
i=1

Φi

(
n∑
k=1

∂Ψk

∂xi

∂u

∂xk
+ Ψk

∂2u

∂xk∂xi

)
.250

So, the expression of the commutator is251

(3.3)

[Φ,Ψ] [u] =

n∑
i=1

(
Φi

n∑
k=1

∂Ψk

∂xi

∂u

∂xk
−Ψi

n∑
k=1

∂Φk
∂xi

∂u

∂xk

)

=

n∑
k=1

(
n∑
i=1

Φi
∂Ψk

∂xi
−Ψi

∂Φk
∂xi

)
∂u

∂xk
.

252

It is another first-order differential operator associated with a vector field (which253

happens to be the Lie bracket of Φ and Ψ, see e.g.[4]).254
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3.2. Adjoint. Remembering that H was defined in (2.21), given two vector fields255

Φ and Ψ over Ω, we define the spaces256

V(Φ,Ψ) := {v ∈ H; Φ[v], Ψ[v] ∈ H} ,(3.4)257

V (Φ,Ψ) := {closure of D(Ω) in V(Φ,Ψ)} .(3.5)258259

We define the adjoint Φ> of Φ (view as an operator over say C∞(Ω,R), the latter260

being endowed with the scalar product of L2,ρ(Ω)), by261

(3.6) 〈Φ>[u], v〉ρ = 〈u,Φ[v]〉ρ for all u, v ∈ D(Ω),262

where 〈·, ·〉ρ denotes the scalar product in L2,ρ(Ω). Thus, there holds the identity263

(3.7)

∫
Ω

Φ>[u](x)v(x)ρ(x)dx =

∫
Ω

u(x)Φ[v](x)ρ(x)dx for all u, v ∈ D(Ω).264

Furthermore,265

(3.8)

∫
Ω

u

n∑
i=1

Φi
∂v

∂xi
ρdx = −

n∑
i=1

∫
Ω

v
∂

∂xi
(uρΦi)dx

= −
n∑
i=1

∫
Ω

v

(
∂

∂xi
(uΦi) +

u

ρ
Φi

∂ρ

∂xi

)
ρdx.

266

Hence,267

(3.9) Φ>[u] = −
n∑
i=1

∂

∂xi
(uΦi)− uΦi

∂ρ

∂xi
/ρ = −udiv Φ− Φ[u]− uΦ[ρ]/ρ.268

Remembering the definition of Gρ(Φ) in (2.31), we obtain that269

(3.10) Φ[u] + Φ>[u] +Gρ(Φ)u = 0.270

3.3. Continuity of the bilinear form associated with the commutator.271

Setting, for v and w in V (Φ,Ψ):272

(3.11) ∆(u, v) :=

∫
Ω

[Φ,Ψ][u](x)v(x)ρ(x)dx,273

we have274

(3.12)

∆(u, v) =

∫
Ω

(Φ[Ψ[u]]v −Ψ[Φ[u]]v)ρdx =

∫
Ω

Ψ[u]Φ>[v]− Φ[u]Ψ>[v])ρdx

=

∫
Ω

(Φ[u]Ψ[v]−Ψ[u]Φ[v]) ρdx+

∫
Ω

(Φ[u]Gρ(Ψ)v −Ψ[u]Gρ(Φ)v) ρdx.

275

Lemma 3.1. For ∆(·, ·) to be a continuous bilinear form on V (Φ,Ψ), it suffices276

that, for some c∆ > 0:277

(3.13) |Gρ(Φ)|+ |Gρ(Ψ)| ≤ c∆h a.e.,278

and we have then:279

(3.14) |∆(u, v)| ≤ ‖Ψ[u]‖ρ
(
‖Φ[v]‖ρ + c∆ ‖v‖H

)
+ ‖Φ[u]‖ρ

(
‖Ψ[v]‖ρ + c∆ ‖v‖H

)
.280
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Proof. Apply the Cauchy Schwarz inequality to (3.12), and use (3.13) combined281

with the definition of the space H.282

We apply the previous results with Φ := σi, Ψ := σj . Set for v, w in V :283

(3.15) ∆ij(u, v) :=

∫
Ω

[σi, σj ][u](x)v(x)ρ(x)dx, i, j = 1, . . . , nσ.284

We recall that V was defined in (2.21).285

Corollary 3.2. Let (2.28) hold. Then the ∆ij(u, v), i, j = 1, . . . , nσ, are con-286

tinuous bilinear forms over V .287

Proof. Use remark 2.3 and conclude with lemma 3.1.288

3.4. Redefining the space H. In section 2.2 we have obtained the continuity289

and semi-coercivity of a by decomposing q, defined in (2.26), as a linear combination290

(2.27) of the σi. We now take advantage of the previous computation of commutators291

and assume that, more generally, instead of (2.27), we can decompose q in the form292

(3.16) q =

nσ∑
k=1

η′′kσk +
∑

1≤i<j≤nσ

η′ij [σi, σj ] a.e.293

We assume that η′ and η′′ are measurable functions over [0, T ]×Ω, that η′ is weakly294

differentiable, and that for some c′η > 0:295

(3.17) h′η ≤ c′ηh, where h′η := |η′′|+
N∑

i,j=1

∣∣σi[η′ij ]∣∣ a.e., η′ ∈ L∞(Ω).296

Lemma 3.3. Let (2.28), (2.29), and (3.17) hold. Then the bilinear form a(u, v)297

defined in (2.14) is both (i) continuous and (ii) semi-coercive over V .298

Proof. (i) We only have to analyze the contribution of a34 (defined in (2.23)),299

since the other contributions to a(·, ·) do not change. For the terms in the first sum300

in (3.16) we have, as was done in (2.36):301

(3.18)

∣∣∣∣∫
Ω

σk[u]η′′kvρ

∣∣∣∣ ≤ ‖σk[u]‖ρ ‖σk[u]η′′kv‖ρ ≤ ‖σk[u]‖ρ ‖v‖H .302

(ii) Setting w := η′ijv and taking here (Φ,Ψ) = (σi, σj), we get that303

(3.19)

∫
Ω

η′ij [σi, σj)[u]vρ = ∆(u,w),304

where ∆(·, ·) was defined in (3.11). Combining with lemma 3.1, we obtain305

(3.20)
|∆ij(u, v)| ≤ ‖σj [u]‖ρ

(
‖σi[w]‖ρ + cσ‖η′ij‖∞ ‖v‖H

)
+ ‖σi[u]‖ρ

(
‖σj [w]‖ρ + cσ‖η′ij‖∞ ‖v‖H

)
.

306

Since307

(3.21) σi[η
′
ijv] = η′ijσi[v] + σi[η

′
ij ]v,308
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by (3.17):309

(3.22) ‖σi[w]‖ρ ≤ ‖η
′
ij‖∞ ‖σi[v]‖ρ +

∥∥σi[η′ij ]v∥∥ρ ≤ ‖η′ij‖∞ ‖σi[v]‖ρ + cη‖v‖H .310

Combining these inequalities, point (i) follows.311

(ii) Use u = v in (3.21) and (3.12). We find after cancellation in (3.12) that312

(3.23)
∆ij(u, η

′
iju) =

∫
Ω

u(σi[u]σj [η
′
ij ]− σj [u]σi(η

′
ij))ρ

+

∫
Ω

(σi[u]Gρ(σj)− σj [u]Gρ(σi)) η
′
ijuρ.

313

By (3.17), an upper bound for the absolute value of the first integral is314

(3.24)
(
‖σi[u]‖ρ + ‖σj [u]‖ρ

)
‖hu‖ρ ≤ 2 ‖u‖V ‖u‖H .315

With (2.28), we get an upper bound for the absolute value of the second integral in316

the same way, so, for any ε > 0:317

(3.25) |∆ij(u, η
′
iju)| ≤ 4 ‖u‖V ‖u‖H .318

We finally have that for some c > 0319

(3.26)

a(u, u) ≥ a0(u, u)− c ‖u‖V ‖u‖H ,
≥ a0(u, u)− 1

2 ‖u‖
2
V −

1
2c

2 ‖u‖2H ,
= 1

2 ‖u‖
2
V −

1
2 (c2 + 1) ‖u‖2H .

320

The conclusion follows.321

Remark 3.4. The statements analogous to theorems 2.6 and 2.7 hold, assuming322

now that h satisfies (2.28), (2.29), and (3.17) (instead of (2.28)-(2.30)).323

4. The weight ρ. Classes of weighting functions characterized by their growth324

are introduced. A major result is the independence of the growth order of the function325

h on the choice of the weighting function ρ in the class under consideration.326

4.1. Classes of functions with given growth. In financial models we usually327

have nonnegative variables and the related functions have polynomial growth. Yet,328

after a logarithmic transformation, we get real variables whose related functions have329

exponential growth. This motivates the following definitions.330

We remind that (I, J) is a partition of {0, . . . , N}, with 0 ∈ J and that Ω was331

defined in (1.8).332

Definition 4.1. Let γ′ and γ′′ belong to RN+1
+ , with index from 0 to N . Let333

G(γ′, γ′′) be the class of functions ϕ : Ω→ R such that for some c > 0:334

(4.1) |ϕ(x)| ≤ c
(

Π
k∈I

(eγ
′
kxk + e−γ

′′
k xk)

)(
Π
k∈J

(x
γ′k
k + x

−γ′′k
k )

)
.335

We define G as the union of G(γ′, γ′′) for all nonnegative (γ′, γ′′). We call γ′k and γ′′k336

the growth order of ϕ, w.r.t. xk, at −∞ and +∞ (resp. at zero and +∞).337

Observe that the class G is stable by the operations of sum and product, and that338

if f , g belong to that class, so does h = fg, h having growth orders equal to the sum339

of the growth orders of f and g. For a ∈ R, we define340

(4.2) a+ := max(0, a); a− := max(0,−a); N(a) := (a2 + 1)1/2,341
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12 J. Frédéric Bonnans and Axel Kröner

as well as342

(4.3) ρ := ρIρJ ,343

where344

ρI(x) := Π
k∈I

e−α
′
kN(x+

k )−α′′kN(x−k ),(4.4)345

ρJ(x) := Π
k∈J

x
α′k
k

1 + x
α′k+α′′k
k

,(4.5)346

347

for some nonnegative constants α′k, α′′k , to be specified later.348

Lemma 4.2. Let ϕ ∈ G(γ′, γ′′). Then ϕ ∈ L1,ρ(Ω) whenever ρ is as above, with α349

satisfying, for some positive ε′ and ε′′, for all k = 0 to N :350

(4.6)

{
α′k = ε′ + γ′k, α′′k = ε′′ + γ′′k , k ∈ I,
α′k = (ε′ + γ′′k − 1)+, α′′k = 1 + ε′′ + γ′k, k ∈ J.

351

In addition we can choose for k = 0 (if element of J):352

(4.7)

{
α′0 := (ε′ + γ′′0 − 1)+; α′′0 := 0 if ϕ(s, y) = 0 when s is far from 0,

α′0 := 0, α′′0 := 1 + ε′′ + γ′0, if ϕ(s, y) = 0 when s is close to 0.
353

Proof. It is enough to prove (4.6), the proof of (4.7) is similar. We know that ϕ354

satisfy (4.1) for some c > 0 and γ. We need to check the finiteness of355

(4.8)

∫
Ω

(
Π
k∈I

(eγ
′
kyk + e−γ

′′
k yk)

)(
Π
k∈J

(y
γ′k
k + y

−γ′′k
k )

)
ρ(s, y)d(s, y).356

But the above integral is equal to the product pIpJ with357

pI := Π
k∈I

∫
R

(eγ
′
kxk + e−γ

′′
k xk)e−α

′
kN(x+

k )−α′′kN(x−k )dxk,(4.9)358

pJ := Π
k∈J

∫
R+

x
α′k+γ′k
k + x

α′k−γ
′′
k

k

1 + x
α′k+α′′k
k

dxk.(4.10)359

360

Using (4.6) we deduce that pI is finite since for instance361

(4.11)

∫
R+

(eγ
′
kxk + e−γ

′′
k xk)e−α

′
kN(x+

k )−α′′kN(x−k )dxk

≤ 2

∫
R+

eγ
′
kxke−(1+γ′k)xkdxk = 2

∫
R+

e−xkdxk = 2,
362

and pJ is finite since363

(4.12) pJ = Π
k∈J

∫
R+

x
ε′+γ′k+γ′′k
k + xε

′−1
k

1 + x
ε′+ε′′+γ′k+γ′′k
k

dxk <∞.364

The conclusion follows.365
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4.2. On the growth order of h. Set for all k366

(4.13) αk := α′k + α′′k .367

Remember that we take ρ in the form (4.3)-(4.4).368

Lemma 4.3. We have that:369

(i) We have that370

(4.14)

∥∥∥∥ρxkρ
∥∥∥∥
∞
≤ αk, k ∈ I;

∥∥∥∥xρρxk
∥∥∥∥
∞
≤ αk, k ∈ J.371

(ii) Let h satisfying either (2.28)-(2.30) or (2.28)-(2.29), and (3.17). Then the growth372

order of h does not depend on the choice of the weighting function ρ.373

Proof. (i) For k ∈ I this is an easy consequence of the fact that N(·) is non374

expansive. For k ∈ J , we have that375

(4.15)
x

ρ
ρxk =

x

ρ

α′kx
α′k−1(1 + xαk)− xα′kαkxαk−1

(1 + xαk)2
=
α′k − α′′kxαk

1 + xαk
.376

We easily conclude, discussing the sign of the numerator.377

(ii) The dependence of h w.r.t. ρ is only through the last term in (2.28), namely,378 ∑
i |σi[ρ]/ρ. By (i) we have that379

(4.16)

∣∣∣∣σki [ρ]

ρ

∣∣∣∣ ≤ ∥∥∥∥ρxkρ
∥∥∥∥
∞
|σki | ≤ αk|σki |, k ∈ I,380

381

(4.17)

∣∣∣∣σki [ρ]

ρ

∣∣∣∣ ≤ ∥∥∥∥xkρxkρ

∥∥∥∥
∞

∣∣∣∣σkixk
∣∣∣∣ ≤ αk ∣∣∣∣σkixk

∣∣∣∣ , k ∈ J.382

In both cases, the choice of α has no influence on the growth order of h.383

4.3. European option. In the case of a European option with payoff uT (x),384

we need to check that uT ∈ H, that is, ρ must satisfy385

(4.18)

∫
Ω

|uT (x)|2h(x)2ρ(x)dx <∞.386

In the framework of the semi-symmetry hypothesis (A.8), we need to check that387

uT ∈ V , which gives the additional condition388

(4.19)

nσ∑
i=1

∫
Ω

|σi[uT ](x)|2ρ(x)dx <∞.389

In practice the payoff depends only on s and this allows to simplify the analysis.390

5. Applications using the commutator analysis. The commutator analysis391

is applied to the general multiple factor model and estimates for the function h char-392

acterizing the space H (defined in (2.21)) are derived. The estimates are compared393

to the case when the commutator analysis is not applied. The resulting improvement394

wil be established in the next section.395
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5.1. Commutator and continuity analysis. We analyze the general multiple396

factor model (1.4), which belongs to the class of models (2.1) with Ω ⊂ R1+N , nσ =397

2N , and for i = 1 to N :398

(5.1) σi[v] = fi(yi)s
βivs; σN+i[v] = gi(yi)vi,399

with fi and gi of class C1 over Ω. We need to compute the commutators of the first-400

order differential operators associated with the σi. The correlations will be denoted401

by402

(5.2) κ̂k := κk,N+k, k = 1, . . . , N.403

Remark 5.1. We use many times the following rule. For Ω ⊂ Rn, where n =404

1 + N , u ∈ H1(Ω), a, b ∈ L0, and vector fields Z[u] := aux1 and Z ′[u] := bux2 , we405

have Z[Z ′[u]] = a(bux2
)x1

= abx1
ux2

+ abux1x2
, so that406

(5.3) [Z,Z ′][u] = abx1
ux2
− bax2

ux1
.407

We obtain that408

(5.4) [σi, σ`][u] = (β` − βi)fi(yi)f`(y`)sβi+β`−1us, 1 ≤ i < ` ≤ N,409

410

(5.5) [σi, σN+i][u] = −sβif ′i(yi)gi(yi)us, i = 1, . . . , N,411

and412

(5.6) [σi, σN+`][u] = [σN+i, σN+`][u] = 0, i 6= `.413

Also,414

(5.7)
div σi +

σi[ρ]

ρ
= fi(yi)s

βi−1(βi + s
ρs
ρ

),

div σN+i +
σN+i[ρ]

ρ
= g′i(yi) + gi(yi)

ρi
ρ
.

415

5.1.1. Computation of q. Remember the definitions of q̄, q̂ and q in (2.24) and416

(2.25), where δij denote the Kronecker operator. We obtain that, for 1 ≤ i, j, k ≤ N :417

(5.8)


q̄ij0 = δijβjf

2
i (yi)s

2βi−1; q̄iik = 0;
q̄i,N+j = 0;
q̄N+i,j,0 = δij κ̂if

′(yi)gi(yi)s
βi ; q̄N+i,j,k = 0;

q̄N+i,N+j,k = δijkgi(yi)g
′
i(yi).

418

That means, we have for q̂ =
∑2N
i,j=1 q̄ij and q = q̂ − b that419

(5.9)
q̂0 =

∑N
i=1

(
βif

2
i (yi)s

2βi−1 + κ̂if
′(yi)gi(yi)s

βi
)

; q0 = q̂0 − rs,
q̂k = gk(yk)g′k(yk); qk = q̂k − θk(µk − yk),

k = 1, . . . , N.

420
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5.2. Computation of η′ and η′′. The coefficients η′, η′′ are solution of (3.16).421

We can write η = η̂ + η̃, where422

(5.10)

q̂ =

nσ∑
i=1

η̂′′i σi +
∑

1≤i,j≤nσ

η̂′ij [σi, σj ], η̂′ij = 0 if i = j.

−b =

nσ∑
i=1

η̃′′i σi +
∑

1≤i,j≤nσ

η̃′ij [σi, σj ], η̃′ij = 0 if i = j.

423

For k = 1 to N , this reduces to424

(5.11)

{
η̂′′N+kgk(yk) = g′k(yk)gk(yk);

η̃′′N+kgk(yk) = −θk(µk − yk).
425

So, we have that426

(5.12)


η̂′′N+k = g′k(yk);

η̃′′N+k =
−θk(µk − yk)

gk(yk)
.

427

For the 0th component, (5.10) can be expressed as428

(5.13)



N∑
k=1

(
−η̂′k,N+kf

′
k(yk)gk(yk)sβk − κ̂kf ′k(yk)gk(yk)sβk

)
+

N∑
k=1

(
η̂′′kfk(yk)sβk − βkf2

k (yk)s2βk−1
)

+

N∑
k=1

(
−η̃′k,N+kf

′
k(yk)gk(yk)sβk + η̃′′kfk(yk)sβk

)
− rs = 0.

429

We choose to set each term in parenthesis in the first two lines above to zero. It430

follows that431

η̂′k,N+k = −κ̂k ∈ L∞(Ω), η̂′′k = βkfk(yk)sβk−1.(5.14)432433

If N > 1 we (arbitrarily) choose then to set the last line to zero with434

(5.15) η̃′′k = η̃′k = 0, k = 2, . . . , N.435

It remains that436

η̃′′1 f1(y1)sβ1 − η̃′1,N+1f
′
1(y1)g1(y1)sβ1 = rs.(5.16)437438

Here, we can choose to take either η̃′′1 = 0 or η̃′1,N+1 = 0. We obtain then two439

possibilities:440

(5.17)


(i) η̃′′1 = 0 and η̃′1,N+1 =

−rs1−β1

f ′1(y1)g1(y1)
,

(ii) η̃′′1 =
rs1−β1

f1(y1)
and η̃′1,N+1 = 0.

441

This manuscript is for review purposes only.



16 J. Frédéric Bonnans and Axel Kröner

5.2.1. Estimate of the h function. We decide to choose case (i) in (5.17).442

The function h needs to satisfy (2.28), (2.29), and (3.17) (instead of (2.30)). Instead443

of (2.28), we will rather check the stronger condition (2.34). We compute444

h′σ :=

N∑
k=1

|fk(yk)|sβk
(
|(κ̂k)s|+ |

ρs
ρ
|
)

+ |gk(yk)|
(
|(κ̂k)k|+ |

ρk
ρ
|
)

(5.18)445

+

N∑
k=1

(
βk|fk(yk)sβk−1|+ |g′k(yk)|

)
,446

hr := |r| 12 ,(5.19)447

h′η := ĥ′η + h̃′η,(5.20)448449

where we have450

ĥ′η :=

N∑
k=1

(
βk|fk(yk)|sβk−1 + |g′k(yk)|+

∣∣∣∣fk(yk)|sβk ∂κ̂k
∂s

∣∣∣∣+

∣∣∣∣gk(yk)
∂κ̂k
∂yk

∣∣∣∣) ,
(5.21)

451

h̃′η :=

N∑
k=1

∣∣∣∣θk(µk − yk)

gk(yk)

∣∣∣∣+

∣∣∣∣r f1(y1)

f ′1(y1)g1(y1)

∣∣∣∣+

∣∣∣∣rg1(y1)s1−β1
∂

∂y1

[
1

f ′1(y1)g1(y1)

]∣∣∣∣ .
(5.22)

452

453

Remark 5.2. Had we chosen (ii) instead of (i) in (5.17), this would only change454

the expression of h̃′η that would then be455

(5.23) h̃′η =

N∑
k=1

∣∣∣∣θk(µk − yk)

gk(yk)

∣∣∣∣+

∣∣∣∣rs1−β1

f1(y1)

∣∣∣∣ .456

5.2.2. Estimate of the h function without the commutator analysis. The457

only change in the estimate of h will be the contribution of h′η and h′′η . We have to458

satisfy (2.28)-(2.30). In addition, ignoring the commutator analysis, we would solve459

(5.13) with η̂′ = 0, meaning that we choose460

(5.24) η̂′′k := βkfk(yk)sβk−1 + κ̂k
f ′k(yk)gk(yk)

fk(yk)
, k = 1, . . . , N,461

and take η̃′′1 out of (5.16). Then condition (3.17), with here η̂′ = 0, would give462

(5.25) h ≥ cηhη, where hη := hη̂ + hη̃,463

with464

hη̂ :=

N∑
k=1

(
βk|fk(yk)|sβk−1 + |κ̂k|

∣∣∣∣f ′k(yk)gk(yk)

fk(yk)

∣∣∣∣+ |g′k(yk)|
)
,(5.26)465

hη̃ :=

N∑
k=1

∣∣∣∣θk(µk − yk)

gk(yk)

∣∣∣∣+

∣∣∣∣rs1−β1

f1(y1)

∣∣∣∣ .(5.27)466

467

We will see in applications that this is in general worse.468
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6. Application to stochastic volatility models. The results of Section 5 are469

specified for a subclass of the multiple factor model, in particular for the VAT and470

GMH models. We show that the commutator analysis allows to take smaller values471

for the function h (and consequently to include a larger class of payoff functions).472

6.1. A useful subclass. Here we assume that473

(6.1) |fk(yk)| = |yk|γk ; |gk(yk)| = νk|yk|1−γk ; βk ∈ (0, 1]; νk > 0; γk ∈ (0,∞).474

Furthermore, we assume κ to be constant and475

(6.2) |f ′k(yk)gk(yk)| = const for all yk, k = 1, . . . , N.476

Set477

(6.3)

cs := ‖sρs/ρ‖∞;

c′k =

{
‖ρk/ρ‖∞ if Ωk = R,

0 otherwise.

c′′k =

{
0 if Ωk = R,

‖ykρk/ρ‖∞ otherwise.

478

We get, assuming that γ1 6= 0:479

(6.4)
h′σ :=

N∑
k=1

(
cs|yk|γksβk−1 + νkc

′
k|yk|1−γk

+νkc
′′
k |yk|−γk + βk|yk|γksβk−1 + (1− γk)νk|yk|−γk

)
,

480

481

ĥ′η :=

N∑
k=1

(
βk|yk|γksβk−1 + (1− γk)νk|yk|−γk

)
,(6.5)482

h̃′η :=

N∑
k=1

(
θk|µk − yk|
νk|yk|1−γk

+
r|y1|γ1
γ1ν1

)
.(6.6)483

484

Therefore when all yk ∈ R, we can choose h′ as485

(6.7)
h′ := 1 +

N∑
k=1

(
|yk|γk(1 + sβk−1) + (1− γk)|yk|−γk + |yk|γk−1

)
+
∑
k∈I

|yk|1−γk +
∑
k∈J

|yk|−γk .
486

Without the commutator analysis we would get487

ĥη :=

N∑
k=1

(βk|yk|γksβk−1 + νk|κ̂k||yk|−γk + (1− γk)νk|yk|−γk),(6.8)488

h̃η :=

N∑
k=1

(
θk
|µk − yk|
νk|yk|1−γk

+ rs1−β1 |y1|−γ1
)
.(6.9)489

490
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Therefore we can choose491

(6.10) h := h′′; h′′ := h′ + rs1−β1/|y1|γ1 +
∑
k

νk|κ̂k||yk|−γk .492

So, we always have that h′ ≤ h′′, meaning that it is advantageous to use the commu-493

tator analysis, due to the term rs1−β1/|y1|γ1 above in particular. The last term in494

the above r.h.s. has as contribution only when γk 6= 1 (since otherwise h′ includes a495

term of the same order).496

6.2. Application to the VAT model. For the variant of the Achdou and497

Tchou model with multiple factors (VAT), i.e. when γk = 1, for k = 1 to N , we can498

take h equal to499

(6.11) h′TA := 1 +

N∑
k=1

|yk|(1 + sβk−1),500

when the commutator analysis is used, and when it is not, take h equal to501

(6.12) hTA := hTA + rs1−β1 |y1|−1 +

N∑
k=1

νk|κ̂k||yk|−1.502

Remember that uT (s) = (s−K)+ for a call option, and uT (s) = (K − s)+ for a503

put option, both with strike K > 0.504

Lemma 6.1. For the VAT model, using the commutator analysis, in case of a call505

(resp. put) option with strike K > 0, we can take ρ = ρcall, (resp. ρ = ρput), with506

(6.13)
ρcall(s, y) := (1 + s3+ε′′)−1ΠN

k=1e
−εN(yk),

ρput(s, y) :=
sαP

1 + sαP
ΠN
k=1e

−εN(yk),
507

where αP :=
(
ε′ + 2

∑N
k=1(1− βk)− 1

)
+
.508

Proof. (i) In the case of a call option, we have that509

(6.14) 1 ≥ c0sβk−1 for c0 > 0 small enough over the domain of integration,510

so that we can as well take511

(6.15) h(s, y) = 1 +

N∑
k=1

|yk| ≤ ΠN
k=1(1 + |yk|).512

So, we need that ϕ(s, y) ∈ L1,ρ(Ω), with513

(6.16) ϕ(s, y) = h2(s, y)u2
T (s) = (s−K)2

+ΠN
k=1(1 + |yk|)2.514

By lemma 4.2, where here J = {0} and I = {1, . . . , N}, we may take resp.515

(6.17) γ′0 = 2, γ′′0 = 0, γ′k > 0, γ′′k > 0, k = 1, . . . , N,516

and so we may choose for ε′ > 0 and ε′′ > 0:517

(6.18) α′0 = 0, α′′0 = 3 + ε′′, α′k = ε′, α′′k = ε′′, k = 1, . . . , N,518
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so that setting ε := ε′ + ε′′, we can take ρ = ρcall.519

(ii) For a put option with strike K > 0, 1 ≤ c0s
βk−1 for big enough c0 > 0, over the520

domain of integration, so that we can as well take521

(6.19) h(s, y) = 1 +

N∑
k=1

|yk|sβk−1 ≤ ΠN
k=1(1 + |yk|sβk−1)2 ≤ ΠN

k=1s
2βk−2(1 + |yk|)2

522

and523

(6.20) ϕ(s, y) = h2(s, y)u2
T (s) ≤ (K − s)2

+ΠN
k=1s

2βk−2(1 + |yk|)2.524

By lemma 4.2, in the case of a put option and since (K−s)2
+ is bounded, we can take525

γ′k, γ′′k , α′k, α′′k as before, for k = 1 to N , and526

(6.21) γ′0 = 0, γ′′0 = 2

N∑
k=1

(1− βk), α′0 =

(
ε′ + 2

N∑
k=1

(1− βk)− 1

)
+

, α′′0 = 0527

the result follows.528

Remark 6.2. If we do not use the commutator analysis, then we have a greater529

“h” function; we can check that our previous choice of ρ does not apply any more (so530

we should consider a smaller weight function, but we do not need to make it explicit).531

And indeed, we have then a singularity when say y1 is close to zero so that the previous532

choice of ρ makes the p integral undefined.533

6.3. Application to the GMH model. For the generalized multiple factor534

Heston model (GMH), i.e. when γk = 1/2, k = 1 to N , we can take h equal to535

(6.22) h′H := 1 +

N∑
k=1

(
|yk|

1
2 (1 + sβk−1) + |yk|−

1
2

)
,536

when the commutator analysis is used, and when it is not, take h equal to537

(6.23) hH := hH + rs1−β1 |y1|−
1
2 .538

Lemma 6.3. (i) For the GMH model, using the commutator analysis, in case of539

a call option with strike K, meaning that uT (s) = (s −K)+, we can take ρ = ρcall,540

with541

(6.24) ρcall(s, y) := (1 + sε
′′+3)−1ΠN

k=1y
ε′

k (1 + yε+2
k )−1.542

(ii) For a put option with strike K > 0, we can take ρ = ρput, with543

(6.25) ρput(s, y) := ΠN
k=1y

ε′

k (1 + yε+2
k )−1.544

Proof. (i) For the call option, using (6.14) we see that we can as well take545

(6.26) h(s, y) ≤ 1 +

N∑
k=1

(
y

1/2
k + y

−1/2
k

)
≤ (s−K)2

+ΠN
k=1(1 + y

1/2
k + y

−1/2
k ).546

So, we need that ϕ(s, y) ∈ L1,ρ(Ω), with547

(6.27) ϕ(s, y) = h2(s, y)u2
T (s) = (s−K)2

+ΠN
k=1(1 + y

1/2
k + y

−1/2
k ).548
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By lemma 4.2, where here J = {0, . . . , N}, we may take resp.549

(6.28) γ′0 = 2, γ′′0 = 0, γ′k = 1, γ′′k = 1, k = 1, . . . , N,550

and so we may choose for ε′ > 0 and ε′′ > 0:551

(6.29) α′0 = 0, α′′0 = 3 + ε′′, α′k = ε′, α′′k = ε′′ + 2, k = 1, . . . , N,552

so that setting ε := ε′ + ε′′, we can take ρ = ρcall.553

(ii) For a put option with strike K > 0,1 ≤ c0s
βk−1 for big enough c0 > 0, over the554

domain of integration, so that we can as well take555

(6.30) h(s, y) = 1 +

N∑
k=1

|yk|sβk−1 ≤ ΠN
k=1(1 + |yk|sβk−1)2 ≤ ΠN

k=1s
2βk−2(1 + |yk|)2

556

and557

(6.31) ϕ(s, y) = h2(s, y)u2
T (s) ≤ (K − s)2

+ΠN
k=1s

2βk−2(1 + |yk|)2.558

By lemma 4.2, in the case of a put option and since (K−s)2
+ is bounded, we can take559

γ′k, γ′′k , α′k, α′′k as before, for k = 1 to N , and560

(6.32) γ′0 = 0, γ′′0 = 0, α′0 = 0, α′′0 = 0.561

the result follows.562

Remark 6.4. If we do not use the commutator analysis, then, again, we have a563

greater “h” function; we can check that our previous choice of ρ does not apply any564

more (so we should consider a smaller weight function, but we do not need to make it565

explicit). And indeed, by the behaviour of the integral for large s the previous choice566

of ρ makes the p integral undefined.567

Appendix A. Regularity results by Lions and Magenes [15, Ch. 1].568

Let H be a Hilbert space identified with its dual and scalar product denoted by569

(·, ·). Let V be a Hilbert space, densely and continuously embedded in H, with duality570

product denoted by 〈·, ·〉V . Set571

(A.1) W (0, T ) := {u ∈ L2(0, T ;V ); u̇ ∈ L2(0, T ;V ∗)}.572

It is known [15, Ch. 1] that573

(A.2) W (0, T ) ⊂ C(0, T ;H) with continuous inclusion,574

and that for any u, v in W (0, T ), and 0 ≤ t < t′ ≤ T , the following integration by575

parts formula holds:576

(A.3)

∫ t′

t

(〈u̇(s), v(s)〉V + 〈v̇(s), u(s)〉V ) ds = (u(t′), v(t′))H − (u(t), v(t))H .577

Equivalently,578

(A.4) 2

∫ t′

t

〈u̇(s), u(s)〉V ds = ‖u(t′)‖2H − ‖u(t)‖2H , for all u ∈W (0, T ).579

This manuscript is for review purposes only.



Analysis for options with stochastic volatility 21

Let A(t) ∈ L∞(0, T ;L(V, V ∗)) satisfy the hypotheses of uniform continuity and semi-580

coercivity, i.e., for some α > 0, λ ≥ 0, and c > 0:581

(A.5)

{
〈A(t)u, u〉V ≥ α‖u‖2V − λ‖u‖H , for all u ∈ V , and a.a. t ∈ [0, T ],
‖A(t)u‖V ∗ ≤ c‖u‖V , for all u ∈ V , and a.a. t ∈ [0, T ].

582

Given (f, uT ) ∈ L2(0, T ;V ∗) × H, we consider the following (backward) parabolic583

equation: find u in W (0, T ) such584

(A.6)

{
−u̇(t) +A(t)u(t) = f in L2(0, T ;V ∗),

u(T ) = uT in H,
585

and recall classical results from [15, Ch. 1].586

Proposition A.1 (first parabolic estimate). The parabolic equation (A.6) has587

a unique solution u ∈W (0, T ), and for some c > 0 not depending on (f, uT ):588

(A.7) ‖u‖L2(0,T ;V ) + ‖u‖L∞(0,T ;H) ≤ c(‖uT ‖H + ‖f‖L2(0,T ;V ∗)).589

We next derive a stronger result with the hypothesis of semi-symmetry below:590

(A.8)

A(t) = A0(t) +A1(t), A0(t) and A1(t) continuous linear mappings V → V ∗,
A0(t) symmetric and continuously differentiable V → V ∗ w.r.t. t,
A1(t) is measurable with range in H, and for positive numbers α0, cA,1:
(i) 〈A0(t)u, u〉V ≥ α0‖u‖2V , for all u ∈ V , and a.a. t ∈ [0, T ],

(ii) ‖A1(t)u‖H ≤ cA,1‖u‖V , for all u ∈ V , and a.a. t ∈ [0, T ],
f ∈ L2(0, T ;H) and uT ∈ V .

591

Proposition A.2 (second parabolic estimate). Let (A.8) hold. Then the solu-592

tion u ∈ W (0, T ) of (A.6) belongs to L∞(0, T ;V ), u̇ belongs to L2(0, T ;H), and for593

some c > 0 not depending on (f, uT ):594

(A.9) ‖u‖L∞(0,T ;V ) + ‖u̇‖L2(0,T ;H) ≤ c(‖uT ‖V + ‖f‖L2(0,T ;H)).595

Appendix B. Parabolic variational inequalities.596

Let K ⊂ V be a non-empty, closed and convex set, K be the closure of K in H,597

and uT ∈ K. Let598

(B.1)

{
L2(0, T ;K) := {u ∈ L2(0, T ;V ); u(t) ∈ K a.e.},
W (0, T ;K) := W (0, T ) ∩ L2(0, T ;K).

599

We consider parabolic variational inequalities as follows: find u ∈ W (0, T ;K) such600

that601

(B.2)

{
〈−u̇(t) +A(t)u(t)− f(t), v − u(t)〉V ≥ 0 for all v ∈ K, a.a. t,

u(T ) = uT in H.
602

Take v ∈ W (0, T ;K). Adding to the previous inequality the integration by parts603

formula604

(B.3) −
∫ T

0

〈v̇(s)− u̇(s), v(s)− u(s)〉V ds = 1
2‖u(0)− v(0)‖2H − 1

2‖u(T )− v(T )‖2H605
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and since u(T ) = uT we find that606

(B.4)
∫ T

0

〈−v̇(t) +A(t)u(t)− f(t), v − u(t)〉V ≥ 1
2‖u(0)− v(0)‖2H − 1

2‖u(T )− v(T )‖2H

for all v ∈W (0, T ;K), u(T ) = uT .

607

It can be proved that the two formulation (B.2) and (B.4) are equivalent (they have the608

same set of solutions), and that they have at most one solution. The weak formulation609

is as follows: find u ∈ L2(0, T ;K) ∩ C(0, T ;H) such that610

(B.5)


∫ T

0

〈−v̇(t) +A(t)u(t)− f(t), v − u(t)〉V ≥ − 1
2‖u(T )− v(T )‖2H

for all v ∈ L2(0, T ;K), u(T ) = uT .

611

Clearly a solution of the strong formulation (B.2) is solution of the weak one.612

Proposition B.1 (Brézis [6]). The following holds:613

(i) Let uT ∈ K and f ∈ L2(0, T ;V ∗). Then the weak formulation (B.5) has a614

unique solution u and, for some c > 0, given v0 ∈ K:615

(B.6) ‖u‖L∞(0,T ;H) + ‖u‖L2(0,T ;V ) ≤ c(‖uT ‖H + ‖f‖L2(0,T ;V ∗) + ‖v0‖V ).616

(ii) Let in addition the semi-symmetry hypothesis (A.8) hold, and let uT belong617

to K. Then u ∈ L∞(0, T ;V ), u̇ ∈ L2(0, T ;H), and u is the unique solution618

of the original formulation (B.2). Furthermore, for some c > 0:619

(B.7) ‖u‖L∞(0,T ;V ) + ‖u̇‖L2(0,T ;H) ≤ c(‖uT ‖V + ‖f‖L2(0,T ;H)).620

Appendix C. Monotonicity. Assume that H is an Hilbert lattice, i.e., is621

endowed with an order relation � compatible with the vector space structure:622

(C.1) x1 � x2 implies that γx1 + x � γx2 + x, for all γ ≥ 0 and x ∈ H,623

such that the maxima and minima denoted by max(x1, x2) and min(x1, x2) are well624

defined, the operator max, min be continuous, with min(x1, x2) = −max(−x1,−x2).625

Setting x+ := max(x, 0) and x− := −min(x, 0) we have that x = x+−x−. Assuming626

that the maximum of two elements of V belong to V we see that we have an induced627

lattice structure on V . The induced dual order over V ∗ is as follows: for v∗1 and v∗2 in628

V ∗, we say that v∗1 ≥ v∗2 if 〈v∗1 − v∗2 , v〉V ≥ 0 whenever v ≥ 0.629

Assume that we have the following extension of the integration by parts formula630

(B.3): for all u, v in W (0, T ) and 0 ≤ t < t′ ≤ T ,631

(C.2) 2

∫ t′

t

〈u̇(s), u+(s)〉V ds = ‖u+(t′)‖2H − ‖u+(t)‖2H .632

and that633

(C.3) 〈A(t)u, u+〉V = 〈A(t)u+, u+〉V .634

Proposition C.1. Let ui be solution of the parabolic equation (A.6) for (f, uT ) =635

(f i, uiT ), i = 1, 2. If f1 ≥ f2 and u1
T ≥ u2

T , then u1 ≥ u2.636
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This type of result may be extended to the case of variational inequalities. If K637

and K ′ are two subsets of V , we say that K dominates K ′ if for any u ∈ K and638

u′ ∈ K ′, max(u, u′) ∈ K and min(u, u′) ∈ K ′.639

Proposition C.2. Let ui be solution of the weak formulation (B.5) of the parabolic640

variational inequality for (f, uT ,K) = (f i, uiT ,K
i), i = 1, 2. If f1 ≥ f2, u1

T ≥ u2
T , and641

K1 dominates K2, then u1 ≥ u2.642

The monotonicity w.r.t. the convex K is due to Haugazeau [13] (in an elliptic643

setting, but the result is easily extended to the parabolic one). See also Brézis [7].644

Appendix D. Link with American options. An American option is the645

right to get a payoff Ψ(t, x) at any time t < T and uT at time T . We can motivate646

as follows the derivation of the associated variational inequalities. If the option can647

be exercized only at times tk = hk, with h = T/M and k = 0 to M (Bermudean648

option), then the same PDE as for the European option holds over (tk, tk+1), k = 0649

to M−1. Denoting by ũk the solution of this PDE, we have that u(tk) = max(Ψ, ũk).650

Assuming that A does not depend on time and that there is a flux f(t, x) of dividents,651

we compute the approximation uk of u(tk) as follows. Discretizing the PDE with the652

implicit Euler scheme we obtain the continuation value ûk solution of653

(D.1)
ûk − uk+1

h
+Aûk = f(tk, ·), k = 0, . . . ,M − 1; uM = max(Ψ, 0),654

so that uk = uk+1 − hAûk + hf(tk, ·), we find that655

(D.2) uk = max(ûk,Ψ) = max(uk+1 − hAûk + hf(tk, ·),Ψ),656

which is equivalent to657

(D.3) min(uk −Ψ,
uk − uk+1

h
+Aûk − f(tk, ·)) = 0.658

This suggest for the continuous time model and general operators A and r.h.s. f the659

following formulation660

(D.4) min(u(t, x)−Ψ(x),−u̇(t, x)+A(t, x)u(t, x)−f(t, x)) = 0, (t, x) ∈ (0, T )×Ω.661

The above equation has a rigorous mathematical sense in the context of viscosity662

solution, see Barles [5]. However we rather need the variational formulation which663

can be derived as follows. Let v(x) satisfy v(x) ≥ Ψ(x) a.e., be smooth enough. Then664

(D.5)

∫
Ω

(−u̇(t, x) +A(t, x)u(t, x)− f(t, x))) (v(x)− u(t, x))dx =∫
{u(t,x)=Ψ(x)}

(−u̇(t, x) +A(t, x)u(t, x)− f(t, x))) (v(x)− u(t, x))dx

+

∫
{u(t,x)>Ψ(x)}

(−u̇(t, x) +A(t, x)u(t, x)− f(t, x))) (v(x)− u(t, x))dx.

665

The first integrand is nonnegative, being a product of nonnegative terms, and the666

second integrand is equal to 0 since by (D.3), −u̇(t, x) + A(t, x)u(t, x) − f(t, x)) = 0667

a.e. when u(t, x) > Ψ(x). So we have that, for all v ≥ Ψ smooth enough:668

(D.6)

∫
Ω

(−u̇(t, x) +A(t, x)u(t, x)− f(t, x))) (v(x)− u(t, x))dx ≥ 0.669
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We see that this is of the same nature as a parabolic variational inequality, where K670

is the set of functions greater or equal to Ψ (in an appropriate Sobolev space).671

Appendix E. Some one dimensional problems. It is not always easy to672

characterize the space V. Let us give a detailed analysis in a simple case.673

E.1. The Black-Scholes setting. For the Black-Scholes model with zero inter-674

est rate (the extension to a constant nonzero interest rate is easy) and unit volatility675

coefficient, we have that Au = − 1
2x

2u′′(x), with x ∈ (0,∞). In the case of a put676

option: uT (x) = (K − x)+ we may take H := L2(R+). For v ∈ D(0,∞) and u677

sufficiently smooth we have that − 1
2

∫∞
0
x2u′′(x)dx = a(u, v) with678

(E.1) a(u, v) := 1
2

∫ ∞
0

x2u′(x)v′(x)dx+

∫ ∞
0

xu′(x)v(x)dx.679

This bilinear form a is continuous and semi coercive over the set680

(E.2) V := {u ∈ H; xu′(x) ∈ H}.681

It is easily checked that ū(x) := x−1/3/(1 + x) belongs to V . So, some elements of V682

are unbounded near zero.683

We now claim that D(0,∞) is a dense subset of V . First, it follows from a684

standard truncation argument and the dominated convergence theorem that V∞ :=685

V ∩ L∞(0,∞) is a dense subset of V . Note that elements of V are continuous over686

(0,∞). Given ε > 0 and u ∈ V∞, define687

(E.3) uε(x) :=

 0 if x ∈ (0, ε),
u(2ε)(x/ε− 1) if x ∈ [ε, 2ε],
u(2ε) if x > 2ε.

688

Obviously uε ∈ V∞. By the dominated convergence theorem, uε → u in H. Set for689

w ∈ V690

(E.4) Φε(w) :=

∫ 2ε

0

x2w′(x)2dx.691

Since Φε is quadratic and vε → u in H, we have that:692

(E.5) 1
2

∫ ∞
0

x2(u′ε − u′)2dx = 1
2Φε(uε − u) ≤ Φε(uε) + Φε(u).693

Since u ∈ V , Φε(u)→ 0 and694

(E.6) Φε(uε) ≤ ‖u‖2∞
∫ 2ε

0

ε−2x2dx = O(‖u‖2∞ε).695

So, the l.h.s. of (E.5) has limit 0 when ε ↓ 0. We have proved that the set V 0 of696

functions in V∞ equal to zero near zero, is a dense subset of V . Now define for N > 0697

(E.7) ϕN (x) =

 1 if x ∈ (0, N),
1− log(x/N) if x ∈ [N, eN ],
0 if x > eN.

698

Given u ∈ V0, set uN := uϕN . Then uN ∈ H and, by a dominated convergence699

argument, uN → u in H. The weak derivative of uN is u′N = u′ϕN + uϕ′N . By a700
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dominated convergence argument, xu′ϕN → xu′ in L2(R+). It remains to prove that701

xuϕ′N → 0 in L2(R+). But ϕ′N is equal to 1/x over its support, so that702

(E.8) ‖xuϕ′N‖2L2(R+) =

∫ eN

N

u2(x)dx ≤
∫ ∞
N

u2(x)dx→ 0703

when N ↑ ∞. The claim is proved.704

E.2. The CIR setting. In the Cox-Ingersoll-Ross model [8] the stochastic pro-705

cess satisfies706

(E.9) ds(t) = θ(µ− s(t))dt+ σ
√
sdW (t), t ≥ 0707

We assume the coefficients θ, µ and σ to be constant and positive. The associated708

PDE is given by709

(E.10)

{
Au := −θ(µ− x)u′ − 1

2xσ̂
2u′′ = 0 (x, t) ∈ R+ × (0, T ),

u(x, T ) = uT (x) x ∈ R+.
710

Again for the sake of simplicity we will take ρ(x) = 1, which is well-adapted in the711

case of a payoff with compact support in (0,∞). For v ∈ D(0,∞) and u sufficiently712

smooth we have that
∫∞

0
Au(x)v(x)dx = a(u, v) with713

(E.11)

a(u, v) := θ

∫ ∞
0

(µ− x)u′(x)v(x)dx+ 1
2 σ̂

2

∫ ∞
0

xu′(x)v′(x)dx+ 1
2 σ̂

2

∫ ∞
0

u′(x)v(x)dx.714

So one should take V of the form715

(E.12) V := {u ∈ H;
√
xu′(x) ∈ L2(R+)}.716

We next determine H by requiring that the bilinear form is continuous; by the Cauchy-717

Schwarz inequality718

(E.13)∣∣∣∣∫ ∞
0

u′(x)v(x)dx

∣∣∣∣ ≤ ‖x1/2u′‖2‖x−1/2v‖2;

∣∣∣∣∫ ∞
0

xu′(x)v(x)dx

∣∣∣∣ ≤ ‖x1/2u′‖2‖x1/2v‖2.719

We easily deduce that the bilinear form a is continuous and semi coercive over V,720

when choosing721

(E.14) H := {v ∈ L2(R+); (x1/2 + x−1/2)v ∈ L2(R+)},722

Note that then the integrals below are well defined and finite for any v ∈ V:723

(E.15)

∫ ∞
0

(x1/2v′)(x−1/2v) =

∫ ∞
0

vv′ = 1
2

∫ ∞
0

(v2)′.724

So w := v2 is the primitive of an integrable function and therefore has a limit at zero.725

Since v is continuous over (0,∞) it follows that v has a limit at zero.726

However if this limit is nonzero we get a contradiction with the condition that727

x−1/2v ∈ L2(R+). So, every element of V has zero value at zero.728

We now claim that D(0,∞) is a dense subset of V. First, V∞ := V ∩L∞(0,∞) is729

a dense subset of V. Note that elements of V are continuous over (0,∞). Given ε > 0730
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and u ∈ V∞, define uε(x) as in (E.3). Then uε ∈ V∞. By the dominated convergence731

theorem, uε → u in H. Set for w ∈ V732

(E.16) Φε(w) :=

∫ 2ε

0

xw′(x)2dx.733

Since Φε is quadratic and uε → u in H, we have that:734

(E.17) 1
2

∫ ∞
0

x2(u′ε − u′)2dx = 1
2Φε(uε − u) ≤ Φε(uε) + Φε(u).735

Since u ∈ V, Φε(u)→ 0 and736

(E.18) Φε(uε) ≤ ε−2u(2ε)2

∫ 2ε

0

xdx = 2u(2ε)2 → 0.737

So, the l.h.s. of (E.17) has limit 0 when ε ↓ 0. We have proved that the set V0 of738

functions in V∞ equal to zero near zero, is a dense subset of V. Define ϕN as in (E.7)739

Given u ∈ V0, set uN := uϕN . As before, uN → u in H, is u′N = u′ϕN + uϕ′N ,740

xu′ϕN → xu in L2(R+), and it remains to prove that xuϕ′N → 0 in L2(R+). But ϕ′N741

is equal to 1/x over its support, so that when N ↑ ∞:742

(E.19) ‖x1/2uϕ′N‖2L2(R+) =

∫ eN

N

x−1u2(x)dx ≤
∫ ∞
N

u2(x)dx→ 0.743

The claim is proved.744

REFERENCES745

[1] Y. Achdou, B. Franchi, and N. Tchou, A partial differential equation connected to option746
pricing with stochastic volatility: regularity results and discretization, Math. Comp. 74747
(2005), no. 251, 1291–1322.748

[2] Y. Achdou and O. Pironneau, Computational methods for option pricing, Society for Industrial749
and Applied Mathematics (SIAM), Philadelphia, PA, 2005.750

[3] Y. Achdou and N. Tchou, Variational analysis for the Black and Scholes equation with stochas-751
tic volatility, M2AN Math. Model. Numer. Anal. 36 (2002), no. 3, 373–395.752

[4] T. Aubin, A course in differential geometry, Graduate Studies in Mathematics, vol. 27, Amer-753
ican Mathematical Society, Providence, RI, 2001.754

[5] G. Barles, Convergence of numerical schemes for degenerate parabolic equations arising in755
finance theory, Numerical methods in finance, Publ. Newton Inst., vol. 13, Cambridge756
Univ. Press, Cambridge, 1997, pp. 1–21.757
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