Y. Achdou, B. Franchi, and N. Tchou, A partial differential equation connected to option 746 pricing with stochastic volatility: regularity results and discretization, Math. Comp, vol.74, issue.251, pp.747-1291, 2005.

Y. Achdou and O. Pironneau, Computational methods for option pricing, Society for Industrial 749 and Applied Mathematics (SIAM), p.750, 2005.
DOI : 10.1137/1.9780898717495

URL : https://hal.archives-ouvertes.fr/hal-00019751

Y. Achdou and N. Tchou, Variational Analysis for the Black and Scholes Equation with Stochastic Volatility, ESAIM: Mathematical Modelling and Numerical Analysis, vol.13, issue.3, pp.373-395, 2002.
DOI : 10.1017/S0956792500001194

T. Aubin, A course in differential geometry, Graduate Studies in Mathematics, vol.27, p.754, 2001.
DOI : 10.1090/gsm/027

G. Barles, Convergence of numerical schemes for degenerate parabolic equations arising in 755 finance theory, Numerical methods in finance, Publ. Newton Inst, vol.13

J. C. Cox, J. E. Ingersoll, J. , S. A. Ross, C. A. Theory-feehan et al., Schauder a priori estimates and regularity of solutions to 763 boundary-degenerate elliptic linear second-order partial differential equations, J. Differen- 764 tial Equations Degenerate-elliptic operators in mathematical finance and 766 higher-order regularity for solutions to variational equations Derivatives in financial markets with stochastic 769 volatility Efficient simulation of the double Heston model, Tech. report, 771 SSRN working paper series, Sur des inéquations variationnelles] S.L. Heston, A closed-form solution for options with stochastic volatility with applications to 775 bond and currency options [15] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, pp.761-53, 1967.

K. Jacobs, P. Christoffersen, and S. Heston, Die 778 Grundlehren der mathematischen Wissenschaften, Band 181 Correlations and bounds for stochastic volatility models, Ann. Inst. 780 H. Poincaré Anal The shape and term structure of the index option smirk: 782 Why multifactor stochastic volatility models work so well Achdou, Partial differential equations for option pricing, Handbook of nu- 785 merical analysis, Special Volume: Mathematical modeling and numerical methods 786 in finance, pp.779-780, 1914.