R. Chou, J. M. Croswell, T. Dana, C. Bougatsos, I. Blazina et al., Screening for Prostate Cancer: A Review of the Evidence for the U.S. Preventive Services Task Force, Annals of Internal Medicine, vol.155, issue.11, pp.762-771, 2011.
DOI : 10.7326/0003-4819-155-11-201112060-00375

J. Brenner, A. Chinnaiyan, and S. Tomlins, ETS Fusion Genes in Prostate Cancer, Prostate Cancer, ser. Protein Reviews, vol.16, pp.139-183
DOI : 10.1007/978-1-4614-6828-8_5

C. M. Moore, A. Ridout, and M. Emberton, The role of MRI in active surveillance of prostate cancer, Current Opinion in Urology, vol.23, issue.3, pp.261-267, 2013.
DOI : 10.1097/MOU.0b013e32835f899f

G. Lemaitre, R. Marti, J. Freixenet, J. C. Vilanova, P. M. Walker et al., Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review, Computers in Biology and Medicine, vol.60, pp.8-31, 2015.
DOI : 10.1016/j.compbiomed.2015.02.009

URL : https://hal.archives-ouvertes.fr/hal-01235868

G. Lemaitre, Computer-Aided Diagnosis for Prostate Cancer using Multi-Parametric Magnetic Resonance Imaging, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01411957

G. Lemaitre, M. R. Dastjerdi, J. Massich, J. C. Vilanova, P. M. Walker et al., Normalization of t2w-mri prostate images using rician a priori, SPIE Medical Imaging. International Society for Optics and Photonics, pp.978-529, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01265774

L. G. Nyul, J. K. Udupa, and X. Zhang, New variants of a method of MRI scale standardization, IEEE Transactions on Medical Imaging, vol.19, issue.2, pp.143-150, 2000.
DOI : 10.1109/42.836373

S. Parfait, P. Walker, G. Crhange, X. Tizon, and J. Mitran, Classification of prostate magnetic resonance spectra using Support Vector Machine, Biomedical Signal Processing and Control, vol.7, issue.5, pp.499-508, 2012.
DOI : 10.1016/j.bspc.2011.09.003

URL : https://hal.archives-ouvertes.fr/hal-00650862

P. Kovesi, Image features from phase congruency, Videre: Journal of computer vision research, vol.1, issue.3, pp.1-26, 1999.

R. Haralick, K. Shanmugam, and I. Dinstein, Textural Features for Image Classification, IEEE Transactions on Systems, Man, and Cybernetics, vol.3, issue.6, pp.610-621, 1973.
DOI : 10.1109/TSMC.1973.4309314

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Ojala, M. Pietikainen, and T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.7, pp.971-987, 2002.
DOI : 10.1109/TPAMI.2002.1017623

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. J. Huisman, M. R. Engelbrecht, and J. O. Barentsz, Accurate estimation of pharmacokinetic contrast-enhanced dynamic MRI parameters of the prostate, Journal of Magnetic Resonance Imaging, vol.211, issue.4, pp.607-614, 2001.
DOI : 10.1002/jmri.1085

]. G. Brix, W. Semmler, R. Port, L. R. Schad, G. Layer et al., Pharmacokinetic Parameters in CNS Gd-DTPA Enhanced MR Imaging, Journal of Computer Assisted Tomography, vol.15, issue.4, pp.621-628, 1991.
DOI : 10.1097/00004728-199107000-00018

U. Hoffmann, G. Brix, M. V. Knopp, T. He?, and W. J. Lorenz, Pharmacokinetic Mapping of the Breast: A New Method for Dynamic MR Mammography, Magnetic Resonance in Medicine, vol.12, issue.4, pp.506-514, 1995.
DOI : 10.1002/mrm.1910330408

P. S. Tofts, B. Berkowitz, and M. D. Schnall, Quantitative Analysis of Dynamic Gd-DTPA Enhancement in Breast Tumors Using a Permeability Model, Magnetic Resonance in Medicine, vol.26, issue.4, pp.564-568, 1995.
DOI : 10.1002/mrm.1910330416

V. Giannini, S. Mazzetti, A. Vignati, F. Russo, E. Bollito et al., A fully automatic computer aided diagnosis system for peripheral zone prostate cancer detection using multi-parametric magnetic resonance imaging, Computerized Medical Imaging and Graphics, vol.46, pp.219-226, 2015.
DOI : 10.1016/j.compmedimag.2015.09.001

L. Chen, Z. Weng, L. Goh, and M. Garland, An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization, Journal of Magnetic Resonance, vol.158, issue.1-2, pp.164-168, 2002.
DOI : 10.1016/S1090-7807(02)00069-1

G. Litjens, O. Debats, J. Barentsz, N. Karssemeijer, and H. Huisman, Computer-Aided Detection of Prostate Cancer in MRI, IEEE Transactions on Medical Imaging, vol.33, issue.5, pp.1083-1092, 2014.
DOI : 10.1109/TMI.2014.2303821

I. Mani and I. Zhang, knn approach to unbalanced data distributions: a case study involving information extraction, Proceedings of Workshop on Learning from Imbalanced Datasets, 2003.

M. R. Smith, C. Martinez, and . Giraud-carrier, An instance level analysis of data complexity, Machine Learning, vol.8, issue.7, pp.225-256, 2014.
DOI : 10.1007/s10994-013-5422-z

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, Smote: synthetic minority over-sampling technique, Journal of artificial intelligence research, pp.321-357, 2002.

H. Han, W. Y. Wang, and B. H. Mao, Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning, International Conference on Intelligent Computing, pp.878-887, 2005.
DOI : 10.1007/11538059_91

G. Lema??trelema??tre, F. Nogueira, and C. K. Aridas, Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning, Journal of Machine Learning Research, vol.18, issue.17, pp.1-516, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

D. H. Wolpert, Stacked generalization, Neural Networks, vol.5, issue.2, pp.241-259, 1992.
DOI : 10.1016/S0893-6080(05)80023-1

D. W. Hosmer-jr and S. Lemeshow, Applied logistic regression, 2004.
DOI : 10.1002/9781118548387