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Abstract

We propose a system for detecting, on the day of
hospital admission, patients at risk of developing
complications during their hospital stay. We pro-
pose a method borrowing techniques from Al and
supervised learning for the automatic detection of
at-risk profiles based on a fine-grained analysis of
prescription data at the time of admission. Our sys-
tem relies on a distributed architecture adapted for
processing large volumes of medical records and
clinical data. We report on practical experiments
with real data of millions of patients and hundreds
of hospitals. We demonstrate how big data im-
proves the detection of at-risk patients, making it
possible to construct predictive models that benefit
from volume and variety, while satisfying impor-
tant criteria to be deployed in hospitals.

1 Introduction

A major challenge in healthcare is the prevention of compli-
cations and adverse effects during hospitalization. A compli-
cation is an unfavorable evolution or consequence of a dis-
ease, a health condition or a therapy; and an adverse effect
is an undesired harmful effect resulting from a medication
or other intervention. Typical examples include for instance
pressure ulcers, nosocomial infections, admissions in Inten-
sive Care Unit (ICU), and death.

From the perspective of complications, healthcare estab-
lishements can be considered as risky environments. For in-
stance, in the USA, an estimated 13.5% of hospitalized Medi-
care beneficiaries experienced adverse effects during their
hospital stays; and an additional 13.5% experienced tempo-
rary harm events during their stays' [Levinson, 2010]. How-
ever, physician reviewers determined that 44% of adverse
and temporary harm events were clearly or likely preventable
[Levinson, 2010]. Preventable events are often linked to the
lack of patient monitoring and assessment.

One challenging and very interesting goal is to be able to
predict the patients’ outcomes and tailor the care that certain

! Temporary harm events are those that require intervention but
do not cause lasting harm.

patients receive if it is believed that they will do poorly with-
out additional intervention. In doing so, hospitals could pre-
vent unnecessary readmissions, adverse events, or other de-
lays in getting well [Schaeffer et al., 2016]. For instance, if
we can precisely identify groups of patients associated with
a very high risk of requiring ICU treatment during their stay,
then we can optimize their placement as soon as they are ad-
mitted, by affecting them e.g. to rooms closer to ICU, thereby
drastically reducing transportation delay in life-critical situ-
ations in large hospitals. More generally, many complica-
tions could be avoided by immediate identification of at-risk
patients upon admission and adapted prevention. A crucial
prerequisite to any adapted and meaningful prevention is the
precise identification of at-risk profiles.

The widespread adoption of Electronic Health Records
(EHR) makes it possible to benefit from quality information
provided by healthcare professionals [Hillestad et al., 2005].
This opens the way for applying Al techniques in building
helpful analytics systems for big medical data in which we
can have a high level of trust — since drug prescriptions en-
gage the responsibilities of healthcare professionals.

This paper aims to develop an automatic prediction system
for identifying at-risk patients, based on a fine-grained anal-
ysis of large volumes of electronic health record data. This
has long been viewed as a more challenging task than con-
ventional prediction approaches with summary statistics and
EHR-based scores [Schaeffer et al., 2016; Frost and Sullivan,
2012]. We empirically demonstrate that medical big data can
improve the automatic detection of at-risk patients.

Contributions. Our contributions are threefold:

1. we propose a method borrowing techniques from Al and
machine learning for the automatic detection of at-risk pa-
tients based on a fine-grained analysis of prescription data
at the time of hospital admission;

2. we develop a distributed architecture adapted for comput-
ing our fine-grained analysis on large volumes of medical
records and clinical data;

3. we report on practical experiments with real data of mil-
lions of patients and hundreds of hospitals. We demon-
strate how big data improves the detection of at-risk pa-
tients, making it possible to construct predictive models
that benefit from volume and variety, while satisfying im-
portant criteria to be deployed in hospitals.



2 Methods

We develop a supervised machine learning method that builds
binary classification models to identify at-risk patients. Our
method is implemented on top of a distributed architecture to
ensure better scalability. The machine learning models built
by our method yield predictions at hospital admission time.

2.1 Considered Medical Data

We consider real data from United States Hospitals, as pro-
vided by the Premier Perspective™ database, which is the
largest hospital clinical and financial database in the United
States. The database features more than 33 million dis-
charges from a representative group of 417 hospitals drawn
by lot. Each hospital submits quarterly updates of aggregated
data. Patient-level data go through 95 quality assurance and
data validation checks. Once the data have been validated,
patient-level information is available, comprising data con-
sistent with the standard hospital discharge file, demographic
and disease state information, and information on all billed
services, including date-specific logs of medications, labora-
tory, diagnostics, and therapeutic services. This database is
developed and maintained by Premier Inc. and is well-known
in clinical research (see e.g. [Delaney er al., 2008]). The raw
data for the year 2006 contains 33 048 852 admissions, and
more than three billion patient charge records, representing
2.8 Tb of data.

For our study, we focused on basically two kinds of data:
(1) population characteristics (age, gender, marital status,
etc.) and (2) clinical data including all drug prescriptions
(dosage, route of administration of each drug, etc.) for all
admissions.

Filters. We selected adult and adolescent patients (between
15 and 89 years old?), hospitalized for more than 3 days. We
chose this minimal length of stay of 3 days in order to ensure
enough time for manifestation and detection of complications
during the stay. Other exclusion criteria for the patients were:

e patients hospitalized in surgery, because in surgery med-
ical prescription and its complexity varies considerably
according to preoperative, operative and postoperative
phase as described in [Lepelley et al., 2016] and this in-
formation was not available in the database);

e out-patients and consultations;

e those with no drug prescription at admission; without
which we cannot apply our analysis.

A total of 1 487 867 eligible admissions were retained. We
also filtered clinical data to keep only drugs served.

Considered Complications and Ground Truth. To build
the complication prediction system, we need labeled data for
training and evaluation purposes. We consider four compli-
cations:

e death during hospital stay;

2We filtered out other ages because this information was biased
in the database, i.e. age 89 denoting in fact age category 89+.

e admission to ICU on or after the second day (excluding
patients directly admitted to ICU on the first day);
e pressure ulcers that were not present at admission time
but developed during the stay;
e nosocomial infections developed during the stay.
Medical experts guided us to label these complications and
establish a ground truth based on the International Classi-
fication of Diseases, Ninth Revision, Clinical Modification
(ICD-9-CM) codes [Quan ef al., 2005] that are used by the
database.

Participants and Occurrence of Complications. Figure 1
illustrates the repartition of eligible admissions by age and
gender. Among this population, there were 44 667 cases of
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Figure 1: Admissions by Age and Gender.

hospital death (3.00%), 38 040 cases of pressure ulcers com-
plications (2.55%), 50 876 cases of ICU admission on or after
the second day (3.42%), and 37 866 cases of nosocomial in-
fections (2.54%). On average, the probability that a patient
experiences at least one complication among the ones that we
consider during his hospital stay is 10.08%.

2.2 Prediction System

Distributed Architecture. The structure of our prediction
system is illustrated in Fig. 2. Initial data consist in a set
of raw relational tables, that we store in a NFS distributed
file system. This file system communicates with Spark SQL
[Armbrust et al., 2015] that we use for data preprocessing,
integration, and filtering. The feature engineering and clas-
sification components are hand coded in Spark [Zaharia er
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Figure 2: Architecture of Prediction System.



al., 2016] and MLIib [Meng et al., 2015] and are based on
distributed implementations of some widely used algorithms
such as Logistic Regression (LR) [Cox, 1958], Linear Sup-
port Vector Machines (LSVM) [Suykens and Vandewalle,
19991, Decision Trees (DT) [Quinlan, 1986] and FP-Growth
[Han et al., 2004]. We also used TSNE [Maaten and Hin-
ton, 2008] and facilities provided by Pandas and scikit-learn
libraries on smaller excertps of data that were extracted and
preprocessed with Spark. For optimizing the representation
of features, we also use a library for perfect hashing, that we
modified and upgraded for use in our Spark and Python envi-
ronments, based on the work found in [Czech et al., 1997].

We use Docker [Merkel, 2014] to improve the run-
time performance of our distributed architecture (mainly in-
put/output) compared to a traditional approach with virtual
machines. We automatically deploy custom Docker images
on each machine of the cluster. On the application layer, we
use Jupyter Notebooks as a prototyping frontend.

Feature Engineering. For each admission, we retained the
following categories of features:

e A list B of basic features including patient age, gender,
and admission type (e.g. whether the patient is admitted
from a doctor’s office and requiring acute care for e.g.
pneumonia or dehydration; or whether the patient in life-
threatening condition such as accident victim, etc.).

e A score M that corresponds to MRCI at admission. The
Medication Regimen Complexity Index (MRCI) [George
et al., 2004] is one of the most valid and reliable scale for
assessing regimen complexity [Paquin et al., 2013]. Tt is
a global score aggregating 65 sub-items for the purpose
of indicating the complexity of a prescribed medication
regimen. The MRCI has 3 sections giving information on
the dosage form (section A), dosing frequency (section
B) and additional instructions (section C) with 32, 23 and
10 items respectively. Each section reflects a different as-
pect of the complexity of prescription regimen. The total
MRCI score is the sum of subscores for the 3 sections®.
While the minimum total score is 2 (e.g. one tablet taken
once a day as needed), there is no maximum score. MRCI
is frequently used and readily available in hospital EHRs.

e A list C of clinical quantities associated with each drug
served during the first day. Since there are many (more
than 10 thousands) drugs possibly prescribed during the
first day, we adopt a sparse representation when prepro-
cessing features.

We performed data mining on the database and used fea-
ture ranking to select basic features among the population
characteristics. A 7.9% overall correlation was found be-
tween patient’s age and occurence of death during hospi-
tal stay. A 4.7% overall correlation was found between the
MRCI value at admission and occurence of death during hos-
pital stay. We retained MRCI as a marker of risk, and also
include it for the purpose of comparison with earlier works

3The considered database lacks data required for computing the
subscore for section C, which we thus arbitrarily set to zero. In the
sequel, the total MRCI score is thus the sum of sections A and B.

Feature Feature Feature Standard Charge
Index Description Value Master Code
0 Age 15
1 Gender (1 for male, O for female) 1
2 | MRCI 24
| 7 8024 | DEXTROSE/NACL SOLUTION 1000ML |~ 1.00 ~ | 250258000970000 |

7955 | NACL SOLUTION 100ML 2.50 250258000220000
7949 | NACL SOLUTION 1000ML 1.00 250258000160000
7084 | DOCUSATE NA CAP 100MG 1.00 250257020020000
6654 ACETAMIN TAB 325MG (EA) 2.00 250257000530000
4869 | SOD BICARB INJ 8.4% S0MEQ 50ML 1.00 250250058740000
4332 POT CHL VL 20MEQ 10ML 0.50 250250053100000
3566 | MORPHINE TAB SR 30MG 0.50 250250044450000
5871 PEG-ES, MIRALAX PWDR 255GM 0.07 250250100890000
3483 | MISC TOPICAL 1.00 250250043560000
1563 DIPHENHYD INJ 50MG 1.00 250250019540000
1292 | CYCLOBENZAPRINE TAB 10MG 2.00 250250016100000
2882 | LANSOPRAZOLE CAP 30MG 1.00 250250036600000
784 | CEFEPIME VL 1GM 2.00 250250010280000
3093 | LORATADINE TAB 10MG 1.00 250250038770000
134 | ALLOPURINOL TAB 100MG 1.00 250250001580000

Table 1: Sparse feature vector for a sample patient who was
served 16 drugs on the day of admission.
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such as [Lepelley er al., 2016]. In the sequel we investi-
gate and report to which extent these correlations can actually
be exploited for prediction purposes. We also investigate the
benefits of considering all clinical quantities associated with
drugs served on the first day, which is made possible by our
distributed architecture.

Table 1 illustrates a sample feature vector for a 15 years-old
patient, who was served 16 drugs on the day of admission.

Classifiers. For experiments we report, we choose a dis-
tributed LR classifier to make predictions. Specifically, we
use the MLIib distributed implementation [Meng et al., 2015;
Zaharia et al., 2016] of the LR classifier [Cox, 1958]. The
reason of this choice is that LR yields the best predictive per-
formance among several widely-used classifiers (See § 3.1
for comparative metrics and Fig. 3 for a comparison). Notice
that LSVM also yields a very similar predictive performance.
When predictive performances are equivalent, we favor LR
because its raw output has a probabilistic interpretation.

Like several other standard machine learning methods, LR
can be formulated as a convex optimization problem, i.e. the
task of finding a minimizer of a convex function f that de-
pends on a variable vector w which has d entries. More for-



mally this can be written as the optimization problem

minwERd f(’LU)

in which the objective function f is of the form:
1 n
f(w) = AR(w) + o ZL(w§$i7yi)
i=1

where the vectors x; € R? are the training data examples, for
1 <4 < n,and y; € R are their corresponding labels, which
we want to predict; and the logistic loss function L is of the
form:

L(w;,y) = log(1 + exp(—yw’z))

Given a new data point, denoted by x, the LR model makes
predictions by applying the logistic function:

1

1) =

where z = w” x. We eventually use a threshold ¢ such that if
f(wTx) > t, the outcome is predicted as positive, or negative
otherwise. By default the Spark/MLIib implementation sets
t = 0.5. We make ¢ vary to compute ROC curves and report
AUC in the sequel. Notice however that the raw output of the
logistic regression model, f(z), already has a probabilistic
interpretation (i.e. the probability that x is positive).

Cross-Validation, Rebalancing and Normalization. We
perform cross-validation: we separate training and testing
subsets and we use only the training subset to fit the model
and only the testing subset to evaluate the accuracy of the
model. We pick the training and testing subsets randomly.

There are many more patients without complication than
patients experiencing complications during their stays (hope-
fully). To deal with this class imbalance, we apply downsam-
pling on patients with no complication in order to rebalance
classes before the random selection of the training subset. We
apply feature normalization for the linear models.

3 Results

We now report on practical experiments with our system
for predicting complications, while illustrating the benefits
brought by volume and variety of considered medical data.

3.1 Performance Metrics

The system outputs a boolean prediction (either positive
or negative) for each admission and for each complication.
To evaluate prediction results, we use recall, precision and
other standard metrics computed from confusion matrices
[Fawcett, 2006; Powers, 2011]. In particular, we use the
area under the ROC curve (AUC) evaluated on the test data,
which is the standard scientific accuracy indicator [Guyon et
al., 2009]. The higher AUC indicates the better prediction
performance. Intuitively, when using normalized units, AUC
is equal to the probability that a classifier will rank a ran-
domly chosen positive instance higher than a randomly cho-
sen negative one [Fawcett, 2006]. We also use the area under
the precision-recall curve (PR-AUC) as an additional insight
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Figure 4: Impact of More Finer-Grained Features (Variety)
on AUC for Predicting Mortality.

(though for any dataset, the ROC curve and PR curve for a
given algorithm contain the same points [Davis and Goad-
rich, 2006]).

We use precision, recall, AUC, and PR-AUC to evaluate
the overall predictive performance in terms of a large variety
of features and a large volume of training data.

3.2 Variety

We investigate the impact of considering more finer-grained
features on accuracy when predicting complications. In other
terms, we examine whether considering more features (Vari-
ety) per instance yields a better predictive performance. Fig. 4
presents ROC curves and AUC results for mortality predic-
tion when we consider the list of basic features (B) for each
patient, the MRCI score (M), clinical quantities (C), and com-
binations of them. The more finer-grained features we con-
sider the better predictive performance we obtain; the best
predictive performance being obtained with the combination
of all features (B+M+C). In particular, we observe that the de-
tailed clinical quantities yield a significant increase in predic-
tive performance compared to just MRCI (Fig. 4). We obtain
similar gains when predicting other complications.

3.3 Volume

The experiments reported above confirm that Variety (the
number and granularity of features) can improve the predic-
tive modeling accuracy. An alternative perspective on in-
creasing the number of features is to increase the number of
training instances (Volume) used to construct the model.

Figure 5 presents AUC, Recall and Precision results with
train datasets of increasing sizes. We evaluate our models
on the same randomly chosen test subset of 3200 instances,
while we increase the train dataset size, as reported on the
x-axes of the graphs of Fig. 5 that indicate the number of in-
stances in the training set. Increased volume tends to improve
predictive performance.
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3.4 Predictions of Complications

Our system builds (learns) a specific model for each compli-
cation. We now examine and evaluate the predictions for the
different complications that we consider. We performed ex-
tensive tests using cross-validation methodology (see § 2.2),
and we report on accuracy obtained from randomly choosen
training and testing subsets.

Figure 6 shows a ROC curve obtained when predicting hos-
pital death. We obtain an AUC greater than 76%. Fig. 7
shows ROC curves obtained when predicting occurrence of
the other complications during hospital stay, respectively:
pressure ulcers, ICU admissions, and nosocomial infections.

Overall, the system exhibits best performance for predict-
ing the occurrence of nosocomial infections, pressure ulcers,
and hospital deaths. Table 2 further illustrates detailed met-
rics on randomly selected datasets, with a threshold ¢t = 0.5.
On average, the time spent in constructing the LR model is
4.5 minutes (excluding data preparation time).

3.5 System Deployment: Lessons Learned

An advantage of our system is that of being adapted for de-
ployment in hospitals, because it is implementable in-house
with off-the-shelf big data frameworks (e.g. Spark) running
with modest hardware. In particular, our system does not re-
quire neither external storage of sensitive medical data (thus
avoiding additional issues of confidential data leakage), nor
very expensive hardware (thanks to the distribution of data
and computations).

Distribution and Cost-Effectiveness. All the computa-
tions have been performed on a cluster composed of 2 com-
modity machines totalizing 48 cores and 218Gb of RAM*.
We have configured Spark so that data are split into 400 par-
titions and each Spark executor uses 20Gb of RAM.

Two tasks were the most computationally-intensive: (i)
prefiltering and transformation of data (as explained in § 2.1
and 2.2), and (ii) the construction (learning) of models. Still,
our system manages to compute the models in less than 300
seconds, as shown on Fig. 8. Figure 8 also illustrates how the
distribution of data and computations in our system is benefi-
cial for constructing models and normalizing features. Once
the model is generated, it can be saved and transmitted (e.g.
in PMML standard format) so that it can be executed on a
different single machine for computing predictions.

It is worth noticing that the distribution of data and compu-
tations was instrumental in achieving all the aforementioned
results’. If equivalent computations were to be performed
on a single machine, then this machine would have to be an
order of magnitude more powerful (and expensive), making
the whole system less easily deployable in the setting of an
hospital. The use of Docker also facilitates deployment on
commodity and heterogenous machines.

4 Related Work

With the broad adoption of EHRs systems, the development
of techniques for improving the quality of clinical care has
received considerable interest recently, especially from the Al
community [Lee et al., 2016; Kuang et al., 2016; Li et al.,
2016; Luo et al., 2016; Zhang et al., 2016].

The work found in [Luo et al, 2016] adresses ICU
mortality risk prediction with unsupervised feature learn-
ing techniques from timeseries of physiologic measurements
(whereas we consider supervised techniques on prescribed
drug data at admission). In [Lee er al., 2016] a method is
introduced for the purpose of extracting phenotype informa-
tion from EHRs and for providing analyses on phenotypes.

“BEach machine is equipped with 2 Intel(R) Xeon(R) 1.90GHz
with 24 cores and either 156Gb RAM or 62 Gb RAM.

>Initial attempts with the Pandas library on a single machine with
160 Gb of RAM were non-conclusive. Only a fraction of the dataset
was fitting in memory (after joining and filtering made in Spark) and
yet no transformation requiring copies (e.g. joins) was possible. We
tried to compute joins by chunks and finally stopped the computation
after 3 days (for an estimated time of at least 6 days).
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Metric Death ICU Pressure Ulcers ~ N. Infection = Metric Definition ~ Metric Aliases
True Positive Rate  66.9%  60.6% 61.9% 65.1% TP/P Hit Rate, Recall, Sensitivity
True Negative Rate ~ 72.8%  58.2% 79.7% 78.9% TN/N Specificity
False Positive Rate ~ 27.2% 41.8% 20.3% 21.1% FP/N Fall-out
False Negative Rate ~ 33.1% 39.4% 38.1% 34.9% FN/P Miss Rate
Negative Predictive Value ~ 67.8%  59.5% 66.9% 68.8% TN/(TN+FN)
Positive Predictive Value 71.9% 59.3% 75.9% 76.0% TP/(TP+FP) Precision
False Discovery Rate ~ 28.1%  40.7% 24.1% 24.0% FP/(TP+FP)
Accuracy 69.8% 59.4% 70.6% 71.9% (TP+TN)/(P+N)
Error  302%  40.6% 29.4% 28.1% (FP+FN)/(P+N)

Table 2: Detailed LR prediction metrics on random train and test subsets (threshold=0.5), with notations adopted from [Fawcett,
2006]: TP is the number of true positives, FP: false positives, TN: true negatives, FN: false negatives, P=TP+FN and N=FP+TN.
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In [Kuang et al., 2016], a baseline regularization model is
proposed for the task of finding new indications for existing
drugs leveraging heterogeneous drug-related data based on
EHRs. In [Li et al., 2016] joint models are explored for ex-
tracting mentions of drugs and their side effects, such as dis-
eases that they cause. In [Zhang er al., 2016] survival predic-
tion is explored with a focus on intermittently varying data.
Our work fundamentally differs from previous works by
the initial assumed postulate from which we start. We for-
mulate the hypothesis that the information required for iden-
tifying at-risk profiles is available in the initial patients’ drug
prescription data at the time of hospital admission. In other
terms, our system exclusively relies on analysing prescribed
drug data of the day of admission. Previous studies that
seeked to exploit EHR information with a similar postu-
late have mainly been developing score-based techniques.

For instance the works found in [Schoonover et al., 2014;
Willson et al., 2014; Yam er al., 2016; Lepelley et al., 2016]
also assume that the complexity of the patient’s medica-
tion regimen is a good indicator of the complexity of the
patient’s condition. The existence of correlations between
MRCI at admission and occurence of complications is em-
pirically demonstrated in [Lepelley ef al., 2016]. Compared
to these works, we go further by (1) exploring how this in-
formation can be leveraged for predictive purposes (on large
datasets) and (2) by considering finer-grained features, thanks
to our distributed architecture, which allows to improve pre-
diction accuracy. A simple score such as MRCI constitutes
a rough approximation. For example, the same MRCI value
may denote different situations with radically different evolu-
tion perspectives. Our fine-grained approach is more adapted
to capture these differences. We showed that this leads to in-
creased prediction accuracy.

5 Conclusion

We proposed a novel method for identifying patients at risk
of complications during their hospital stay, which is based
exclusively on data of the day of admission. We tested our
method with the largest US hospital clinical and financial
database. Experimental results suggest that our system might
be especially useful for detecting patient profiles at risk of
nosocomial infections, pressure ulcers and death. We also il-
lustrated how the volume and variety perspectives of big med-
ical data can facilitate the automatic identification of at-risk
patients, for the purpose of developing adapted prevention.
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