D. Levinson, Adverse Events in Hospitals: National Incidence among Medicare Beneficiaries, Tech. Rep., Department of Health and Human Services, 2010.

C. Schaeffer, A. Haque, L. Booton, J. Halleck, and A. Coustasse, Big Data Management in United States Hospitals: Benefits and Barriers, Proceedings of the Business and Health Administration Association Annual Conference, pp.129-138, 2016.

R. Hillestad, J. Bigelow, A. Bower, F. Girosi, R. Meili et al., Can Electronic Medical Record Systems Transform Health Care? Potential Health Benefits, Savings, And Costs, Health Affairs, vol.24, issue.5, pp.1103-1117, 2005.
DOI : 10.1377/hlthaff.24.5.1103

S. Frost, Drowning in Big Data? Reducing Information Technology Complexities and Costs For Healthcare Organizations, Tech. Rep, 2012.

M. Lepelley, C. Genty, A. Lecoanet, B. Allenet, P. Bedouch et al., Use of the Electronic Medication Regimen Complexity Index at admission to predict complications during hospitalization in medical wards, Tech. Rep, 2016.

H. Quan, V. Sundararajan, P. Halfon, A. Fong, B. Burnand et al., Coding Algorithms for Defining Comorbidities in ICD-9-CM and ICD-10 Administrative Data, Medical Care, vol.43, issue.11, pp.1130-1139, 2005.
DOI : 10.1097/01.mlr.0000182534.19832.83

D. Roosan, M. Samore, M. Jones, Y. Livnat, and J. Clutter, Big-Data Based Decision-Support Systems to Improve Clinicians' Cognition, 2016 IEEE International Conference on Healthcare Informatics (ICHI), pp.285-288
DOI : 10.1109/ICHI.2016.39

Z. Czech, G. Havas, B. Majewski, and P. Hashing, Perfect hashing, Theoretical Computer Science, vol.182, issue.1-2, pp.1-143, 1997.
DOI : 10.1016/S0304-3975(96)00146-6

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust et al., Apache Spark, Communications of the ACM, vol.59, issue.11, pp.56-65, 2016.
DOI : 10.1109/BigData.2015.7363840

D. Cox, The Regression Analysis of Binary Sequences, Journal of the Royal Statistical Society. Series B (Methodological), vol.20, issue.2, pp.215-242, 1958.

J. Quinlan, Induction of decision trees, Machine Learning, vol.1, issue.1, pp.81-106, 1986.
DOI : 10.1037/13135-000

J. Han, J. Pei, Y. Yin, and R. Mao, Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach, Data Mining and Knowledge Discovery, vol.8, issue.1, pp.53-87, 2004.
DOI : 10.1023/B:DAMI.0000005258.31418.83

L. Maaten and G. Hinton, Visualizing data using t-SNE, Journal of Machine Learning Research, vol.9, pp.2579-2605, 2008.

J. George, Y. Phun, M. J. Bailey, D. C. Kong, and K. Stewart, Development and Validation of the Medication Regimen Complexity Index, Annals of Pharmacotherapy, vol.94, issue.9, pp.1369-1376, 2004.
DOI : 10.1111/j.1525-1497.2001.00303.x

A. Paquin, K. Zimmerman, T. Kostas, L. Pelletier, A. Hwang et al., Complexity perplexity: a systematic review to describe the measurement of medication regimen complexity, Expert Opinion on Drug Safety, vol.18, issue.6, pp.829-840, 2013.
DOI : 10.1007/s10865-007-9147-y

T. Fawcett, An Introduction to ROC Analysis, Pattern Recogn, Lett, vol.27, issue.8, pp.861-874, 2006.

D. Powers, Evaluation: From precision, recall and f-measure to roc., informedness , markedness & correlation, Journal of Machine Learning Technologies, vol.2, issue.1, pp.37-63, 2011.

I. Guyon, V. Lemaire, M. Boullé, G. Dror, and D. Vogel, Design and analysis of the KDD cup 2009, Proc. of KDD-Cup competition of JMLR Proceedings, pp.1-22, 2009.
DOI : 10.1145/1809400.1809414

J. Davis and M. Goadrich, The relationship between Precision-Recall and ROC curves, Proceedings of the 23rd international conference on Machine learning , ICML '06, pp.233-240, 2006.
DOI : 10.1145/1143844.1143874

J. A. Pérez, C. C. Poon, R. D. Merrifield, S. T. Wong, and G. Yang, Big Data for Health, IEEE Journal of Biomedical and Health Informatics, vol.19, issue.4, pp.1193-1208, 2015.
DOI : 10.1109/JBHI.2015.2450362

W. Lee, Y. Lee, H. Kim, and I. Moon, Bayesian Nonparametric Collaborative Topic Poisson Factorization for Electronic Health Records-Based Phenotyping, IJCAI, vol.362, issue.16, pp.2544-2552, 2016.

Z. Kuang, J. A. Thomson, M. Caldwell, P. L. Peissig, R. M. Stewart et al., Baseline Regularization for Computational Drug Repositioning with Longitudinal Observational Data, ijcai.org/Abstract, pp.2521-2528, 2016.

F. Li, Y. Zhang, M. Zhang, and D. Ji, Joint Models for Extracting Adverse Drug Events from Biomedical Text, IJCAI 2016, pp.2838-2844, 2016.

Y. Luo, Y. Xin, R. Joshi, L. Celi, and P. Szolovits, Predicting ICU Mortality Risk by Grouping Temporal Trends from a Multivariate Panel of Physiologic Measurements, pp.42-50, 2016.

J. Zhang, L. Chen, A. Vanasse, J. Courteau, and S. Wang, Survival Prediction by an Integrated Learning Criterion on Intermittently Varying Healthcare Data, pp.72-78, 2016.

H. Schoonover, C. Corbett, D. Weeks, M. Willson, and S. Setter, Predicting Potential Postdischarge Adverse Drug Events and 30-Day Unplanned Hospital Readmissions From Medication Regimen Complexity, Journal of Patient Safety, vol.10, issue.4, pp.186-91, 2014.
DOI : 10.1097/PTS.0000000000000067

M. Willson, C. Greer, and D. Weeks, Medication Regimen Complexity and Hospital Readmission for an Adverse Drug Event, Annals of Pharmacotherapy, vol.57, issue.1, pp.26-32, 2014.
DOI : 10.1001/archinte.168.13.1371

F. Yam, T. Lew, S. Eraly, H. Lin, J. Hirsch et al., Changes in medication regimen complexity and the risk for 90-day hospital readmission and