27Q K iBQM :> KK b, >B2" "+?B+ H *QMb
S 2b2piBQM IM/2 .27Q K iBQM
IHvbb2 0BKQMi- . KB2M Q?K2'- MiQBM2 "2: mHi- .

hQ +Bi2 i?Bb p2°bBQM,

IHvbb2 0BKQMi- . KB2M _Q?K2 - MiQBM2 "2; mHi-J 'B2@S mH2 * MB
2° "+?B+ H *QMbi> BMi S 2b2 p iBQM IM/2" .27Q K iBQMX *QKTmi2" :°
U3V- TTX9KN@99jX RyXRRRRf+;7XRjyNy X ? H@yR8R38j9

> G A/, 2 H®OYR8R38j9
?2iiTh,ff? HXBM B X7 f? H@yYR8R38j9
am#KBii2/ QM 8 J v kyRd

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://hal.inria.fr/hal-01518534
https://hal.archives-ouvertes.fr

Volume XX(2017), Number XX pp. 1-14 COMPUTER GRAPHICS forum

Deformation Grammars:
Hierarchical Constraint Preservation under Deformation

Ulysse Vimont', Damien Rohmér?, Antoine Begault, and Marie-Paule Cahi

Lnria, Univ. Grenoble Alpes, Grenoble INP & CNRS (LIJRGPE Lyon

Figure 1. Deformation grammars allow to freely deform complex objects or object assemblies, while preserving their consistency. Top
row: Original hierarchical objects (tree, house, bird ock, scene with mixed elements). The tree and the bird ock are made of parts of the
same type, while the other objects are hetegogeneous hierarchies. Bottom row: Deformed objects, where the interpretation of user-control
deformations through deformation grammars is used to automatically maintain consistency constraints.

Abstract

Deformation grammars are a novel procedural framework enabling to sculpt hierarchical 3D models in an object-dependent
manner. They process object deformations as symbols thanks to user-de ned interpretation rules. We use them to de ne hier-
archical deformation behaviors tailored for each model, and enabling any sculpting gesture to be interpreted as some adapted
constraint-preserving deformation. A variety of object-speci ¢ constraints can be enforced using this framework, such as main-
taining distributions of sub-parts, avoiding self-penetrations, or meeting semantic-based user-de ned rules. The operations
used to maintain constraints are kept transparent to the user, enabling them to focus on their design. We demonstrate the
feasibility and the versatility of this approach on a variety of examples, implemented within an interactive sculpting system.

Categories and Subject Descriptaggcording to ACM CCS) a large body of work in the last two decades. While recent techni-
1.3.5 [Computer Graphics]: Computational Geometry and Object cal improvements enabled to model complex and detailed shapes,
Modeling—Hierarchy and geometric transformations their creation and editing are still very tedious, and the quantity and

quality of new 3D content produced fails at matching the increasing

1. Introduction expectations of users.

Modeling and editing complex objects or shape assemblies is one Ideally, once a given 3D object or shape assembly is modeled,
of the bottlenecks of the virtual content production pipeline, despite artists should be able to reuse it in different scenes after the ap-

C 2017 The Author(s)
Computer Graphics Forune 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

propriate modi cations. To achieve this, digital artists should be tremendous efforts in the case of complex objects, de ned as a hi-
able to deform complex objects ef ciently and in an intuitive way. erarchy of many interdependent parts. Procedural modeling tech-
For instance, stretching the model of a tree should either elongateniques have been very ef cient to design complex structured ob-
branches or grow more of them depending on the user's intent, jects from a set of parameters. However, they are usually dedicated
while insuring in both cases that the deformed object is still a valid to a speci ¢ type of objects, such as cities and buildings model-
model of a tree (e.g. branches are not intersecting). ing [Cit, LSWW11, SKK 14, EBP 12, IMAW15], or trees mod-

. eling [PBPS99FP99 BPF 22]. These methods require unfortu-
This problem is made even more challenging when dealing with nately a large amount of parameter tuning and only provide indi-
complex 3D models made_ of het_erogeneogs (_:ompon.ents. Theserect control - through trials and errors - on the results. Interactive
models can be seen as a hierarchical organl_zatlon ofdn‘ferent SUb'approaches have been proposed to bring global control over ob-
parts, each part (or sub-sets of parts) possibly needing to be Ole'jects de ned procedurally, but each approach requires a dedicated

forrgeld N la dSpef' C way. I;ofr mtstatnhce,l |{tthe aforemlenbt |oned| trdet_a system without always providing direct local and global control on
model includes leaves and fruits, the latter may only be scaled in .~ object BBP13KW11, LRBP12.

a uniform way, although branches can also be scaled along their

main axis. Houses with doors, windows, and walls made of bricks, s
or animals with scales and appendices, are other examples of suct}
hierarchical heterogeneous shapes. Dealing with the deformation
of these complex models is currently tedious as each type of sub-

part may require the use of a speci ¢ deformation tool in order to

;:?:;'1;?32::?2:'n':/la?r:f;\rl]?r:’ Otlﬁfeorcrgr']ns?ste;cch %?rtthglsvehﬁg_dfhneﬂy sampling while undergoing free-form deformation that includes
ds t I 9 that int t);l denci ’ changes of topological genuSCC11. In Sorkine and Alexa's
Z;icr:tr;e s to manually ensure that inter-part dependencies are rege inal work BA07, the authors introduce a deformation scheme

that preserves co-rotated distance vectors and tends to maintain lo-
Our work addresses consistent deformation of complex objects. cal shape features under deformations.

Mpre precisely, We propose a un ed f_ramework to handle ar_tlst- In the above methods, the geometric property to be maintained
driven Qeformat|on Se“”? for hierarchical heterogeneous ObJefCtS'during the deformation cannot be selected locally on the model. In
Wg claim that t_he following features are essentlal for an artist- consequence, objects are deformed as if they were made of some
driven deformation tool, and address them speci cally: uniform elastic or plastic material. Moreover, the property which is
The validity, or consistency, of the whole model should be main- preserved through deformation is not chosen by the user, and not
tained throughout the deformation. The user should be able to tted to every type of object.
select the consistency criteria for each type of element and at
different scales, in order to fully express their intent. Analyze-and-edit approachesuse a two-step approach for de-
A hierarchical model should be editable at different scales, rang- forming man-made objects in a way that maintains their struc-
ing from local to global ones. ture MWZ 13]. This means either preserving or duplicating spe-
The artist should be able to apply the edits in the order they wish, Ci ¢ details when the model is stretched. The rst step aims
not only from coarse to ne scales. at computing a set of features on an input model. In the sec-
ond step, the identi ed features are automatically preserved while
Our solution is based on the new concepdeformation grammars the user deforms the object. Features can be selected based on
The latter enable to de ne deformation interpretation rules and al- |ocal geometric criteria such as saliendyK14, ML13], curva-
low to freely deform a complex object while maintaining its con- ture [KSSCOO0§, or wires [GSMCO09; as well as based on
sistency. Our contributions include formal de nitions for the no- higher-level properties such as linear arrangemeBW#/KS11,
tions of complex object, deformations and consistency (Se8&)ion BWSK12, detail patterns AZL12], element type adjacency
the description of a general formalism fdeformation grammars matching [VW 15], ergonomicity ZLDM16], or 2D distributions
(Sectiond), and their extension enabling to freely interleave local of sub-shapesVC 15]. Yumer's work [YCHK15] allows for con-
and global editing (Sectio). We present a variety of applications tinuously deforming an input object through handles that represent
and results produced within an interactive sculpting software (Sec- semantic attributes. All these methods only consider two levels of
tion 6), and discuss the advantages and limitations of our deforma- detail (an object and its main parts or features), so their applicabil-
tion framework (Sectioi) before concluding. ity to shape hierarchies is limited. More general hierarchy of defor-
mations were also studied for generic mesi@BCP13 but with
limited consistency preservation.

tandard deformation methods aim at deforming a mono-
esolution shape while maintaining some of its properties. In the
context of virtual sculpting of triangular meshes, this includes pre-
serving volume while applying free-form deformations to a shape
[ACWKO04,vFTSO04; or enabling a mesh to maintain quasi-uniform

2. Previous Work .
Closer to our work, ZhenZFCO 11] computes speci ¢ con-

Being able to create and edit shapes in an intuitive way has been &rollers for the components of complex 3D models, allowing the
major goal of computer graphics research for many years. user to deform the right degrees of freedom while maintaining
inter- and intra-parts consistency. Controllers can be grouped,
Interactive and Procedural methods are the most usual ways to forming a hierarchy. Our method can be seen as a generalization
create geometric content. While standard 3D mesh editing tools of this work. We provide a uni ed framework for deforming hier-
enable to interactively model any desired shape, they may requirearchical objects, enabling all the previous deformation modes to be

c 2017 The Author(s)
Computer Graphics Forunt 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

(@

Figure 2: An initial complex object] is deformed by the user using a local tool applied at the top rightThe object is deformed without

any deformation interpretation; Note how branches geometry is degenemdtethé¢ deformation grammar allows us to hierarchically
interpret the deformation in order to preserve the object consistency at each level of its hierarchy: branches remain cydin@iwiging

the rules of the grammar, such as stating that branches can change radius but not length, allows us to change the deformation behavior wt
still respecting the object's consistency.

used, possibly at the same time, on different parts of the model or 3.1. Complex objects
at different scales. Various deformation propagation schemes can . .
. . .In the context of this work, we cadllemens any object of the scene.
be used and several alternative deformation modes can be spemAn elemente can be either a simple or a complex obiect:
ed for a given part. The task of de ning and assigning the desired P p ject.
behavior, at the desired scale, to the components of a hierarchical A simple objects a geometric object in the classical sense, fully
model is left under the user's control, which allows for the creation de ned by the set ofnternal parametersf its visual represen-

of varied and expressive behaviors. Doing so, we skip the analysis tation (such as a triangular mesh de ned by the position of the

step: Our method belongs to edit-only methods, described next. vertices and their indexing into faces).

A complex objects de ned recursively as a set of internal pa-
Edit-only methods relax theanalyze-and-ediparadigm, allow- rameters, plus a set bierarchical parametersvhich are refer-
ing the use of consistency criteria which would be very hard to ences to sub-objects. The sub-objects, are calledttidren of
analyze. For instance, Lip\VWO08] enables the visual editing the element, and notedC(€). In return, an element is referred
of shape grammar rules for modifying building appearance; Mil- to as theparentof its children

liez [MWCS13 allows the mutation and duplication of object

.) Note that the internal parameters of a complex object do not always
parts for structured shapes prede ned using puzzle-grammars; Jor-

- correspond to a visual representation: For instance a heap of stones
dao PPCC14 extend the previous method to crowd-patches em- SP . P P
may include internal parameters such as slope or number of stones,

bedding recomputed crowd animation data; Emili&PCV14 ;
S ; while the visual representation may be only be stored in its children
maintains the consistency of a waterfall scene under vector-based

design: Longay [RBP17 allows us to manipulate a realistic - e.g. simple objects representing the individual stones.

tree through sketching; and StanculesSC{S13 extends quasi- In our formalism, an elemerd can only have a singlparent
uniform meshes3CC1] for accounting for feature lines, using a notedp(e). Pairs of elementéey; 1) are associatedrlation type
taxonomy of possible behaviors. t(ep; €1) that can be eitherhild, parent self(if eg = €1) or nonein

. all the other cases.
Our method can be seen as a super-set of all these previous ones,

allowing them to interoperate on different parts of an object. Since Lastly, asemantic type(g) is associated with each element

it also discards the analysis step, complex consistency criteria arefor instance, the fact that the internal mesh represents a stone. A

allowed, leading to expressive deformation modes. complex object with children of the same semantic type (such as
the heap of stones we already described) is cdll@ogeneoys
otherwise it is calledheterogeneous

3. Hierarchical approach to object deformation . . R
PP J Example: Let us consider a haive model of a tree, where cylindrical

This section de nes the notion of complex object, and formalizes trunk and branches subdivide at their extremity into a few smaller
the concepts of deformation and consistency on that type of object. branches, as can be seenin g@a This tree can be represented as

Cc 2017 The Author(s)
Computer Graphics Forunt 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

Rules: Ro:A7!' B
Ri:B7!' D
R:CT7'F Object hierarchy:

Symbols:
N = fA;B;Cg
S=fD;E;F;,Gg

Axiom: A

Figure 3: Standard use of grammars to de ne hierarchical shapes.

Branch N+ 1
Internal Hierarchical
Branch N data: data:
Idntternal giﬁrarchical - CE!:g 2
ata: ata: - chi
hild 0 o2EEy - child 1
ggganqgﬂy- child 1
Branch N+ 2
Internal Hierarchical
data: data:
-child 0
brancp
geometry

Figure 4: A tree model can be organized hierarchically into a com-
plex object. This allows to consider individually each level of the
hierarchy as well as the relationships between levels.

a complex objecky, using a large cylinder (for the trunk) as inter-
nal representation — in this case this representation is also visual

the coupleD = (G;d)) is performed by applying the deformation
independently to the visual representations of each of the object's
sub-parts. In contrast, our formalism enables us to rede ne the ap-
plication of a deformation in a hierarchical way, a rst step for en-
abling us to preserve the consistency of complex objects through
deformations. The hierarchical decomposition is done as follows:

An element deformatiois de ned as the edit of the element's
internal parameters, which we call ti@ernal deformation fol-
lowed by the element deformations applied to its children (if any),
which we callhierarchical deformationUsing the element formal-
ism for G, whereG = gy is the highest element in the hierarchy, this
enables us to rewrite the object deformatiorGoin a hierarchical
way, as follows:

D= (ep;d)

8
5 i— Ay = Pl i
D =(&;d)= Digeral Dhierarchical 862 E
2 D = D!
- hierarchical
ej2C(e)

1)

where stands for thendependent applicationf element defor-
mations on a set of elements. This operator also allows us to com-
bine any internal element deformation with other deformations.

The hierarchical de nition of deformations in Equatidnis in-
strumental for allowing various sets of consistency constraints to
be maintained when deforming complex objects. Sectiexplains
how we express this deformation propagation process using defor-
mation grammars, and use it for preserving the consistency of the
object.

3.3. Consistency

We call element consistendpe set of properties that an element
must satisfy to be considered as valid. Following our hierarchical
approach, this notion is split into two sub-conceptsernal con-
sistencyand hierarchical consistencyinternal consistency of an

plus a set of references to main branches. Each branch is itself répjement is based on its internal parameters: for example its length
resented as a cylinder plus a set of references to children brancheg,, curvature; It is therefore independent of any other element. Hi-

(see Figurel). The smallest branches at the extremities are simple
objects, with only a visual representation but no sub-branch. The

erarchical consistency of an element relies the relation the element
needs to maintain with its children, for example their relative posi-

other ones are complex objects. Both are of the same semantic typg;qns or matching types.

asep.Therefore, this object is a homogeneous object.

The hierarchy of a complex object can be described manually
by a user or may result from the use of a procedural modeling tool

to build the object, such as a shape grammar or a L-system for

a tree PL17 (see gure3, top-left). Alternatively, this hierarchy

could be retrieved from an input shape using hierarchical segmen-

tation [AFS04Q.

3.2. Deformation

A deformationis any function which maps the values of an object's

We call object consistencthe composition of the consistencies
of all the elements composing an object, i.e. the set of all internal
and hierarchical consistencies of the elements of the object.

Example: In the case of the simple tree model already discussed,
the internal consistency of a branch could be for instance the cylin-
drical aspect of the internal triangular mesh that represents it. The
hierarchical consistency can be the fact that the sub-branches all
depart from the extremity of their parent branch, in addition to the
fact that sub-branches are themselves consistent.

parameters. For example, if the object is a mesh parameterized by a
list of the vertices and their arrangement into faces, an example of4_ Deformation Grammars

deformation is a space deformationR®! R® used to change the
vertices positions. Classically, applying a deformatioio a com-
plex objectG (which we callobject deformatiorand noted using

This section introduces deformation grammars as an ef cient tool
to setup consistency-preserving deformations for complex objects.

Cc 2017 The Author(s)
Computer Graphics Forunt 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

4.1. De nition internal consistencYhierarchical IS @ hon-terminal symbol; It calls
for the independent application of deformations of the children of

Formal grammars are widel inCom r Graphics for repre- . . -
ormal grammars are widely used in Computer Graphics for repre ethat preserve the hierarchical consistencg of

senting hierarchical processes. More speci cally, shape grammars M
such as the one in Figurg are often used to generate the static Dhierarchical = D%%(e) , (5)
geometry of complex objectéfWH 06, EBP 12, SM15. In this e2C(e)

work, we extend the scope of formal grammars to handle the hier-

archical deformation of complex objects whereD®€ = (g de) is an element deformation that preserves the

hierarchical consistency betweerand e. It will be further pro-
A deformation grammamodels a deformation behavior for a cessed for elemers by the ruleR(t(e);t(de)) for preserving the
complex object under a set of deformations. It is de ned as any consistency oé (see Equationd)).

formal grammar by:
g y The rules, in the form of Equatior8), are de ned by the user

a set of non terminal symbols. for each type of symbol, by specifyirDf,;e;na(€) andD%® used

a set of terminal symbolS in Equations 4) and 6). They enable to control the behavior of a
an axiomA2 N complex object under arbitrary deformations, and in particular to
a set of production ruleB= fRg preserve the consistency of the object, as illustrated next.

Symbols. A symbol is an element deformatidh= (€;d), where

e2 E is thetargetof the arbitrary deformatiod. A terminal sym- 4.2. Example

bol is the deformation of the internal parameters of an element, | et us come back to our example of the tree model and detail the
while a non-terminal symbol requires further interpretation. Sym- process of creating a deformation grammar. The structure of the
bols can be assembled using the independent application operagppject has been described in sectbhand the associated consis-

tor . tency constraints in sectich3.
Symbols inherit the partial ordering of the elemeniy = Let the user apply a free form space deformatioiR®! RS as
(e1;dp) is said to belower than Dy = (€z;dz) (notedD1 < Dp) deformation intent. The corresponding axiomAis (ey;d). The
if e is an ancestor of; in the object's hierarchy. naive deformation of the element's internal parameters does not
Besides, symbols are typed according to the types of both the Preserve the consistency of the object, as can be seen in Rigure
target and the deformation: A consistency preserving deformation can be set by using
t(ed)=(t(e);t(d))) rules @) and Equations4) and &) while de ning:

Dinternal = (€,d% where d® is the afne transformation that
moves the two extremities§ andc§ of a cylinder to their im-
Axiom. The axiom is a non terminal symbol created by the user. ~ agesd(cg) andd(cf) respectively;
Its target is the uppermost element of the hierarchy. It representsthe D%® = (€ d). This is used to apply the input space deformation
object deformation intent, such as a free-form deformation interac- t0 € which does not disconnect it froe
tively generated through a sculpting tool. It is the initial symbol
which will be decomposed into other symbols, until only terminal
symbols remain.

Using those de nitions, applying the grammar rules preserves the
cylindricity of the branches (internal consistency) as well as the ad-
jacency between a branch and its sub-branches (hierarchical consis-
Example: In our example, the axiom is the deformation that the tency), as shown in Figurgc. Figure2d shows that different rules
user wants to apply to the tree model. It is processed as a defor-can also preserve the object consistency while offering another de-
mation of the highest elemen in the object's hierarchy (i.e. the ~ formation behavior.

trunk, see Equationl) and decomposed hierarchically using the

| Appendix A fully describes the deformation grammar corre-
grammar rules.

sponding to this example.

Rules. A rule is the substitution of a symbol by a of other sym-
bols. In other words, it is the translation of an element deformation 5. Bilateral Grammar Rules
into the deformations of its components. It is de ned with respect

As stated in Sectiord, an object should be editable at different
to a type of symbol:

scales (i.e. by editing parts at different levels of its hierarchy) in an
R(t(D)) : D 7! D° ?3) arbitrary order. But the deformation grammars de ned so far start
from a deformation of the top level elemeggtand propagates down
to preserve the consistency. Figifeshows that applying the de-
formation on another element thegbreaks the object consistency

whereDCis an element deformation preserving the consistency of
elements of the typge). Following Equation 1), we de neD%as

follows: at the parent level. This comes from the parent rule not interpreting
D= Dinternal Dhierarchical - 4) the deformation. This reduces a lot the amount of user control.
Dinternal = (€ dO) is a terminal symbol; It is a deformation that ap- In order to maintain the object's global consistency during the

plies to the internal parameters of the elememind preserve its deformation at any hierarchical level, deformation grammars needs

Cc 2017 The Author(s)
Computer Graphics Forunt 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

@ (b) © (d

Figure 5: Bilateral grammar rules allow to deform a complex object at any level of the hieracin (nitial model has one of its elements
deformed. £): Result when a local edit is applied to a sub-branch without the use of bilateral grammara)uldsir(g our bilateral grammar
rules maintains consistency, here by ensuring that the edited branch stays in contact with its gar&nta(ternative rule is used to
automatically split elongated branches and generate new sub-branches.

to handle upward consistency management. This section presents The type of bilateral symbols account for its direction as well

bilateral grammars as an extension of descending grammars (pre-as for the types of its component (interpreting and target element,

sented in Sectiod) allowing to solve this problem. deformation) and for the relationship between the target and the
interpreting element.

5.1. Closed-loop problem The next section describes how a symbol source and direction

. . are accounted for in the rules.
Let us consider a tree model with two branckeande, such that

& 2 C(e1). Now, e, receives a deformatiodh from the user.

A naive solution to allow for upward consistency management 5.3. Bilateral grammar rules
consists in creating amascending grammar rule @(e);t(d))
generating a deformation of;. For example, we could have
Rascendindt(€2);t(d)) : D = (&;d) 7! D°= (ey;d), whereDC is
a non terminal symbol. Bub® would be translated into a defor-
mation ofey following Equation5. This results in a loop creating
non-terminal symbols, and never converging to terminal ones. The Rup: (€d;S") 7! (p(e);d;S™") 7
deformation operation does not terminate in this case.

Depending on the object we consider, a symbol might need to be

translated to the parent, the grand-parent, or any other ancestor of
the target element, up to the highest element of the hierarchy. This

is achieved by the generic ascending rule:

This rule translates the symbol by changing the interpreting ele-
o ment (setting it to be the parent of the current one) without modi-
5.2. Symbol speci cation fying the other parameters of the symbol.

Our solution to the closed loop problem requires two additions 0 The appropriate level for interpreting the deformation depends
the symbols de nition: ssourceand adirection Rules can make on the object, and is characterized by the user using bilateral sym-
use of this new data to avoid the closed-loop problem, as explainedp types. OnceRyp creates a symbol with the appropriate type,
in the next Sectiond.3). another rule will stop the ascent:

A bilateral symbol is de ned as: Riterp: (€0:S") 7! (C(€9:dnterp:S#) K ®)

D=(edSd2S[N () whereC(e;) is the child ofe which is an ancestor 0§, andK
wheree 2 E is the interpreting elemend, the deformationS2 E isa of descending symbol targetted at the childrere@icept
is the original target of the deformation that we call the source, and C(g;S), and which deformation aims at preserving the hierarchical
d= f" ;#gis the direction of the symbol (ascending or descending). consistency oé. Unlike Rup, Rinterp iS 0Object-speci c.

The distinction between thargetof the deformation and the el- The descent takes place in two phases: The rst one concerns
ement interpreting it allows to manage higher-than-source consis- symbols which interpreting element is higher than the source; The
tencies while keeping track of the element to deform. An ascending second one concern symbols which interpreting element is lower
symbol indicates a deformation needing higher-level interpretation. than the source, and is identical to the regular interpretation of a
Therefore, the axiom is set to ha8e eandd=". mono-lateral grammar.

Cc 2017 The Author(s)
Computer Graphics Forunt 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

The rst phase of the descent is achieved using the generic de- 6. Applications and results

scending rule:
d This section develops several possible applications, inspired by

Rdown: (6,d;S#) 7! (C(€,9); dinterp; S #) 9) state of the art deformation methods, to demonstrate the versatil-
ity of our framework. All the examples were implemented using
different deformation grammar rules, within the same interactive
sculpting software. We also refer the reader to the video accompa-
nying this work.

Once reached the level wheze S, the symbol is interpreted down
as with a descending grammar. Any rigesc: (&;di) ! (gj;d;j)
of a descending grammar can be formulated into a bilateral rule
Roi:(&;di;S#H) ! (e;dj;S#)

In order to prevent any interpretation loop, we state the following

descending monotony principle: A descending symbol shall never 6.1. Grammar creation

be translated into an ascending one.)
Whatever the category of complex object to be deformed, the cre-

ation of a new deformation grammar proceeds as follows:

5.4. Example
1. Design the hierarchy of the object, or use the hierarchy inherited
Let us now extend the example of Sectiér® in order to allow from a previous procedural generation method:;
for bilateral deformation interpretation. We consider an afne de- 5 Eqr each type of element in the object, identify its internal and
formationd applied on a branck, 6 e of a tree. According to hierarchical consistency rules;
Section5.2, the axiom isA = (&;d;e;"). Itis processed by the 3 Based on steps 1 and 2, identify the deformation types applica-
rulesRup into Ay = (p(ez); d; ez;"). ble to each type of element;
We de ne Rinterp Such that: 4. Create a set of downwar_d rules for each pair of element types
and associated deformation type;
Rinterp: (P(€2);d;€2;) 7! (e2;d% e #) (10) 5. Optionally enrich the set of rules with upward rules allowing to

maintain upward hierarchical consistency.

We de ne d° as the af ne transformation which displaces one ~ Since a rule is needed for every tuple
extremity of S while preserving the other: (t(elemeny;t(de formation;t(relation)), the number of rules to
0 design is directly correlated to: the number of element types; for
d(par) = d(PFart)

each element type, the number of possible deformation types; for
dO € \— &
(pend) Pend

(11) each element type, the number of possible children types.

The example grammars presented in this section contain between

On Figurebc, we can see that the interpreted deformation keeps two and ten rules.

e; and e, connected, which respects the consistency of the tree.
Figure5d shows an alternative rule which splits elongated branches
and generates new sub-branches. For that, we d&qg as:

. . oY 71 (a0 o canlit o
Rinterp - (P(€2);d;€2") 7! (&0 &%) (eisplitiey#) (12) Results using deformation grammars were implemented as a C++
wheresplit is a splitting deformation which occurs whenever a sculpting software. Details about the implementation are given in

6.2. Implementation

branch is too long. Appendix C, including an example UML class diagram in Fig-
. urel3
The deformation grammar for this example is fully described in
AppendixB. Each element type corresponds to a class; Each class implements

aprocess() function per deformation type it can handle. Gram-
. » mar rules are implemented inside these functions, and the symbol
5.5. Persistent editing to be processed is passed as argument.
Enabling to apply deformations at different levels of the hierarchy
greatly increases the user's freedom. With this method, small scale
edits may, however, be overwritten by subsequent higher level mod-

i cation, leading to the loss of speci ¢ user changes.

A process() function can be called either from the event
manager (in which case the source of the symbol is 0), or from an-
otherprocess() function (e.g. issuing from the element's parent
during hierarchical interpretation).

Bilateral deformation grammars allow to seamlessly solve this
issue by keeping track of previously locally edited elements. Once
an element s locally edited by the user, it can be taggechas
sistent Grammar rules can then take this tag into account for pre-
serving such elements.

Note that unlike shape grammars, deformation grammar symbols
should be translated at interactive rates inside the sculpting frame-
work. C++ hard-coded grammar rules are compiled along with the
sculpting framework, which allows for fast symbol translation. Fi-
nally, rules are parameterized at run time using state variables en-

Therefore any global deformation applied later on the object will abling to switch of deformation behavior at run time. This is for
not modify the previously edited element enabling the user to iter- example used for enabling/disabling the grammar interpretation in
ate between global and local deformations as desired. the examples illustrated in Figur@sand5.

C 2017 The Author(s)
Computer Graphics Forunt 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

Spatial complexity Recurrent function calls have a memory cost
which increases linearly with the depth of recursion. Let us con-
sider a complex object described by a hierarchy of deptfihe
worst case scenario of recurrent call depth -i.e. the deepest element
of the hierarchy calls the highest one through successive up-ward
rules - entails at most@recursive function calls.

6.3. Organic shapes (@) (b)

We start by demonstrating our deformation grammar on complex

objects representing organic shapes. Figure 7: An initial housed) is deformed by the user while preserv-

ing properties typical of man made objects such as wall orthogonal-
Figure6 shows three steps of an interactive tree modeling ses- ity and oor linear arrangementj.

sion. In this example, we use the rules given in Sectddhto

ensure that branches remain cylindrical and adjacent. We added

a hilateral grammar rules enabling to prevent self-intersection be-

tween the different object parts. This rule applies the initial defor-

mation to the uppermost branch of the hieraregywith the ini-

tial target branch as source. The deformation is propagated down This example also illustrates the possibility @&ment speci c

the hierarchy only if it does not generate intersections between the deformation interpretationi.e. rules depending on the nature of

sub-branches. Branches longer than a threshold are split and nevthe deformation: For example, a vertical translation of the roof is

branches appear at the junction between consecutive branches at theropagated to the house object and translated as a global vertical

same hierarchical level, using a call to a local L-system generation. scaling, which allows the roof to be supported by the walls at every

Note that our interface makes possibledmamically change the time. A translation of a wall piece is translated as a horizontal wall

deformation behavioby activating or deactivating speci c rules at extrusion, which also results in a re-generation of the roof thanks

run time: This is used, for instance, for interpreting a subsequent to our bilateral grammar rules.

free-form deformation as a radius change only in Fig@d.(Per-

formances for this example are reported in Secich

the roof is positioned at the top of the last oor. See gutandl
(second column).

6.5. Object distributions

Objects distributions are hard to deform because of the inter-
object constraints, such as non penetration and relative positions
(see EVC 15]). They can be represented as complex objects. Usu-
ally, the parent element in the hierarchy does not have any visual
representation, but stores the distribution parameters to be main-
tained as internal parameters. The objects in the distribution are
its children. We implemented three different examples in order to
illustrate the ability of deformation grammars to maintain the con-
sistency in the case of distributions.

The rst example, shown in Figures], is a forest, i.e. a distri-
bution of trees. Naively applying a user-de ned deformation to this
forest would either create empty regions between adjacent trees, or

@) () make some of them too close to each other. We aim at preserving
the visual density of trees. This requires to merge trees that are too
close, and to create new ones in large empty spaces.

%_et us consider that the initial trees are associated to an under-
ying Delaunay triangular mesh whose vertices are the tree po-
sitions. Displacing the trees is expressed as the deformation of
the mesh. Our solution for maintaining the visual appearance of
the distribution is based on quasi-uniform mest®&SC13, which

6.4. Man-made objects are re-expressed as a speci ¢ case of our deformation grammar,

In order to show the versatility of the application of our deforma- a follows: Mesh vertices are maintained at a distadaich that
y PP % < d < dgetail (Wheredgetail is a constant learned from the

tion grammars, we set-up rules to model a deformable house. Thein ut distribution). The edge collapse and split operations used to
house is a hierarchical heterogeneous object whose hierarchy is the P : g P Pit op

. Lo maintain the distribution's consistency trigger the elements merg-
following. A house object is composed of oors and a roof. Each . . . - .

. . : : ing and splitting respectively, which are new types of deformations.
oor is composed itself of walls and windows. In this example,

the consistency properties are the following: adjacent walls must
be orthogonal, the maximum height of each oor is bounded, and We also show a similar example in Figudewhere houses can

Figure 6: Deformation grammars allow to freely deform organic
shapes such as treea):(Initial tree; (©): Deformed tree. Note that
the geometry of the branches is non degenerated and that junction
are evenly distributed.

Cc 2017 The Author(s)
Computer Graphics Forunt 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

(@) (b)

Figure 8: @) Initial 2D distribution of trees.l) Deformed distribu-
tion with newly inserted trees in the stretched regions.

split or merge based on the same rules. But this time, splitting a

@ (b)

large house results in creating several smaller ones, while merging,:igure 11: The user can paint an original set of tragsuging a

has the opposite effect. Such effect could be used, for instance, for

compacting a village while preserving the number of inhabitants it
can house.

The third example (Figurelf, 3rd column), is a volumetric dis-

paining tool (in white). The change of color is interpreted by the
rule such that only the foliage is affected, not the truink (

tribution. Elements are merged when they come close to each other6.7. Heterogeneous distributions

(using an element-speci ¢ merge transformation), therefore avoid-

ing any intersection. In this case, a grid-based acceleration structure

was used to compute element neighborhood.

@ (b)

© (d)

Figure 10: An initial city (left column) is deformed by the user
using af ne and free-form deformations for creating another city
(right column). Here, the city element dispatches deformations to
its sub-elements, i.e. the houses presented in Segtbn

The last example is shown in Figut8. It represents a city gener-
ated from GIS data of the town of Moscow. Footprints are used for
generating buildings of the same type as the house of Se@tibn
Performances for this example are reported in Se@&ién

6.6. Color transformation

Deformation grammars are not limited to geometrical transforma-
tion interpretation: As an illustration, we used the deformation
grammar framework to implement a tool for painting an object dis-
tribution as shown in Figurel(l).

¢ 2017 The Author(s)
Computer Graphics Forunt 2017 The Eurographics Association and John Wiley & Sons Ltd.

On of the main advantage of our deformation grammar is its ability
to seamlessly handle heterogeneous distributions. Therefore, once
a deformation behavior is described in our framework, it can be
further reused as a sub-elements of a larger scene, and interact with
other elements. For instance, outdoor scene such as the one illus-
trated in Figurel, 4th column, is de ned in assembling the de-
formation behavior of the tree distribution, bird ock, and house
deformation where the root element is the entire scene. Each el-
ement can be either globally deformed, or individually while still
preserving the individual and global consistency.

6.8. Persistent editing

Figure (12) illustrates persistent editing. In this case, a forest tree
is locally deformed by the user (Figutb). Next, a global defor-
mation is applied on every tree. If the persistent edit is not applied,
the trees may be re-dispatched for maintaining tree density, there-
fore destroying all previous manual editing operations (Fig2e.
Instead, using our persistent editing method on a similar global de-
formation enables us to preserve the local aspect of the tree while
still allowing it to be translated, and other trees to be deformed (see
Figure120).

6.9. Performance

Tablesl and2 report performances of symbol translation for af ne
and free-form deformations respectively. The measures were made
throughout the production of examples presented in previous Sec-
tions (6.3and6.5).

In both of these tables, the rst row represents the number of in-
teractors in the scene for the given deformation type (i.e. the num-
ber of elements able to interpret this deformation). The second row
represents the number of deformations generated by the user during
the sculpting session (i.e. the number of axiom symbols). The third
row represents the number of symbol generated in total (including
those of the second row, plus all the symbols generated internally
by the grammar). Finally, the last row gives the average time spent
for processing an axiom and all its subsequent symbols.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

@

©

Figure 12: §): Initial set of trees. lf): Local editing of a single

(b)

(d)

User perspective.Using deformation grammars is easy: they of-
fer a front-end interface to deformation interpretation. On the other
end, creating a deformation grammar can prove to be a non trivial
task. It requires to identify the design needs in terms of deformation
behavior and consistency, possibly through discussion with an end-
user artist; The deformation behavior has to be formalized into de-
formation interpretation rules; Finally those rules have to be coded
into a programming language (following the process described in
Section6.2).

This whole process, although very generic, intrinsically couples
the object de nition with the deformation interpretation and may
therefore not be non trivial to de ne or code. The total time to de-

ne a fully functional deformation grammar may range between
some hours to days depending on the complexity of the object with
respect to its hierarchy and consistency.

7. Discussion

Two methods aiming at deforming complex objects can be rele-

tree. €): Global deformation without persistent editing leads to a vantly compared to ours in terms of results: WorldBrusk'C 15]

loss of the previous user editsl){ Global deformation with our

and TreeSketchL|RBP13. Each of these methods focuses on a

persistent editing method enables to preserve the local aspect ofparticular type of complex object: distributions of elements and

the previously deformed tree.

Table 1: Performance evaluations in the casafofe deformations

interpretation.

Table 2: Performance evaluations in the caséred-form defor-

mations interpretation.

trees, respectively. Although we do not provide in our implemen-
tation the speci c user interfaces dedicated to trees and elements
distributions, enabling to achieve the high quality interaction pro-

Tree Example City Example
- P y P vided in these prior works, our deformation grammar would en-
interactors 599 4740 . . .
. able to capture similar deformation behaviors: Indeed, all the sub-
axioms 515 903 . . .
elements used in these two works only require to me moved, built,
symbols 125430 33223 and deleted while maintaining speci c rules. On the one hand, inte
mean interpretation time (g 0.005 0.008 gsp ' '

grating the histogram preservation as a consistency criteria would
enable to interactively deform a 2D distribution of elements sim-
ilarly to WorldBrush. On the other hand, implementing new de-
formation types such as element painting, and new branch behav-
ior for trees, would enable to model the deformation behavior of

Tree Example City Example TreeSketch. One of the advantages of using our deformation gram-
interactors 599 4740 mar in such cases would be to fully integrate these two different
axioms 31 21 behaviors within a single framework. Then, within the same scene,
symbols 13855 1116690 the user could seamlessly design the distribution of trees of a for-
mean interpretation time (g 0.13 0.43 est, while being able to control each of the trees similarly to the

approach in TreeSketch.

7.1. Advantages and drawbacks of our approach

Suitability for deforming procedurally generated objects. As
seen in Sectiorb.3, deformation grammars are particularly well

The tree example has a deep hierarchy, which explains the big suited to interact with shapes de ned using shape grammars. These
number of symbol generated in total compared to the number of objects are hierarchical by nature and they can be generated dy-
axioms: Each af ne symbol is interpreted through the hierarchy, namically, enabling us to easily set rules that add or delete parts of
which creates new symbols. The hierarchy of the city example is the object when the latter is deformed.
more shallow, which explains the lower ratio.

Faithfulness trade-off. We call faithfulnessof a deformation in-

Both examples yield interactive computation times with af ne
deformations, which is adequate for sculpting. On the other hand,
the free-form deformations require more time, due to the deforma-
tion eld evaluation and the increased complexity of the interpre- The faithfulness is positively correlated with the predictability
tation. Improvements have to be made on this side, for example by of the deformation behavior, and therefore to the intuitiveness of
using the independence of downward symbol translation on non- the deformation tool: The more the interpreted deformation corre-
hierarchically-connected elements with a parallel implementation. sponds to the input deformation (i.e. the deformation interpretation

terpretation the difference between the non interpreted and the in-
terpreted deformation.

Cc 2017 The Author(s)
Computer Graphics Forunt 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

is faithful), the more the object will behave in the way the user Object. For this example, we consider a hierarchical tree model,
expects it to. On the other hand, a perfectly faithful deformation in- as described in Figur&

terpretation will probably not respect the consistency of the object,
losing all interest. A compromise is to be found between consis-
tency preservation and interpretation faithfulness.

Internal data are representing a branch geometry, in this case we
consider a cylinder;
Hierarchical data are junction points to the branch children.

Over-constrained consistency.Related to the faithfulness, an ob- In this case, the tree is a homogeneous object, all elements are of
ject with many constrains may not provide enough degrees of free- the same typg(e) = branch

dom to be deformed as expected. As interpreted deformation will

fall inside some very limited deformation space, which may result Consistency. The branch consistency is de ned as follows :

into a deformation behavior of little interest. For instance, a cube
constrained to stay cubic will only allow uniform scaling deforma-
tions which may be considered too restrictive by the user.

Internal consistencyThe branch's geometry is cylindrical;
Hierarchical consistencyThe children's geometry starts where
the branch's geometry ends.

Note, however, that even with restrictive individual behaviors,
the deformation of complex heterogeneous objects combining dif- Deformation. We consider a sculpting deformation behavior using
ferent types of elements at different levels of a hierarchy will still a free-form deformation : x 2 R3! d(x) 2 R controlled by the
look rich and expressive. user's mouse displacement applying a weighted local translation in

the view plane.

Stochasticity. Stochasticity allows grammars to choose which
of several applicable rules to use according to a random Grammar Rule. De ning a grammar rule boils down to de ne
law [RMGH15. This property is heavily used with shape gener- Dinternal 2ndDhierarchical (Se€ Equations3(4)).
atiqn grammars for allowing various sljapes to be generateo! fr_om Let us start withDjnternal, Which preserves thmternal consis-
a single input. I_n the case Of. deformat_lon grammars, the _/arlg’_[lon tencyof a branch. We calpstart and peng the extremities of the
of the deformation behavior is not desirable because the intuitive- branch geometry. In order to preserve the cylindrical geometry of

Qﬁss ?f the de(;(_)(;mazlon |Inter;t)t:9t?t|onk relies on its predictability. the branchDinternal to be an af ne transformation whose matrix M
erefore, we did not explore this track. can be expressed as:

. M=T R S
8. Conclusion

where:
We presented the rst general method for specifying the deforma-

tion behavior of complex hierarchical heterogeneous objects. Our T = trans(d(pstart) Pstart)
method relies on the concept of deformation grammar, which is a

special case of formal grammars, where symbols are deformations R = rot
of elements. We showed that this method allows us to expressively
deform a large variety of complex objects, from individual shapes
to object assemblies and to a composite 3D scene, while main-)
taining speci c properties of the elements composing this object and:

as well as their hierarchical relations. trangx) is the translation of vectog,

rot(a; b) is the rotation from vectoa to vectorb;
scaléa;s) is the scaling of axia and magnitudes

d(Pend) d(Pstart) . _Pend Pstart
kd(pend) d(pstar[)kl kpend pslank

= Pend Pstart - kd(pend) d(pstart)k
5= scale KPend Pstartk’ KPend Pstartk

There are several avenues for future work. Inferring rules of our
deformation grammar from a set of input deformed objects using
inverse procedural modeling could be an interesting extension of In the current caséinternal does not disconnect a branch from
this work. Ensuring time-continuous deformations even when new its initially connected children. However, in the general case, one
elements appear or disappear could enable deformation grammargan de ne Dpjerarchical iN SUCh a way that it re-connects a branch
to generate animations. Finally, complex objects could also be com- with its children. According to Equatidy it only requires to de ne
posed of animated elements leading to a wider variety of consis- the deformation from a branahto its childe:

tency preservation. ce ~ . .
Dhierarchical_ trang{Pstart Pend)

9. Acknowledgments Appendix B: Bilateral tree deformation grammar

This work was funded by the advanced grant no. 291184 EX-
PRESSIVE from the European Research Council (ERC-2011-
ADG 20110209).

This appendix describes the bilateral deformation grammar used in
the example of Sectiob.4.

Here the axiomA = (e;d;ep;") only need to go up one level
in the hierarchy in order to maintain the object's consistency (the
connection between branches). This is performedrly, as ex-
This appendix describes the deformation grammar used in the ex-plained in Sectiorb.3. The following rules that comes into play is
ample of Sectiod.2. Rinterp, Which translates the ascending symguafe;); d; ep;") into

Appendix A: Simple tree deformation grammar

C 2017 The Author(s)
Computer Graphics Forunt 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

a descending symbol deformimyg itself using the modi ed af ne method of the concrete class (inherited from the interactor). For
transformationd®. We de ned® as the transformation which pre- example, instances of thEree class can interpreAffineDe-
servespg,, while deformingpgznd as follows: formation s sinceTree inherits fromAffinelnteractor
o 1 Applying anAffineDeformation to aTree instance is done
d=T R S T by calling itsprocess() method inherited fromAffineln-
where: teractor with the correspondingffineSymbol

Sectiord.1tells that a symbol contains the deformation target. In
this implementation, it is not explicitly required: The target of the
deformation is the object having isocess() method called.

T = trans pZar

Peag PZan . kdp2y PRk

S= scale —rgd ot —end =
KPeng Psfark ™ KPeng Psfarik The interactor paradigm allows to implement interpretation of

R = rot pgznd P& d p?nd P art d!fferent deformation types |n5|d(_e a single _e_Iement type. It a]so

gives an easy way to query the interpretability of a deformation

The new symbolez; d% e;; #) will in turn be translated into ater- type by an element, by casting the element into the corresponding

minal symbol (directly modifying the visual representationegf interactor.
and a composition of non terminal symbols deforming the children
of e (while maintaining the connection with the latter). Sculpting framework We used a standard sculpting software

largely developed independently of our grammar framework. El-
ements constituting complex objects are nodes of a scene graph
stored into a scene management object. User actions (mouse clicks,
Generative grammars implementations usually fall into one of the cursor or wheel movements, key pressed) are received by an event
two following categoriesformal translationandrecurrent function management object. The latter infer from the user action and the
calls. Formal translationallows to write grammar rules in a dedi- ~ System state the desired deformation, and instantiates the corre-
cated language (such as CGA+3N15 for architectural design); ~ sponding symbol (using as source). It then calls the appropriate
Rules are interpreted at run time, which allows for exible rule edit- process() methods of the currently selected elements.

ing; Each rule process a symbol from a symbol pool and generates gach yser action creates a grammar symbol which is fully pro-
other symbols into it, there is no recursiétecurrent function calls cegsed before the next user action is carried. Mouse gestures must

on the other hand uses hard-coded rules inside function; Chainedype processed at around 10 fps for the deformation to be smooth and
rule application corresponds to recurrent calls to the corresponding sy pture-like. This motivates the use of recursive function calls for

functions. implementing deformation grammars: The latter are faster to exe-

As stated in sectior6.2, we used the second paradigm; Our cute than the more generic formal interpreter.
choice was driven by rapidity of execution and ease of design.

Appendix C: Implementation Details

References
Interactors A given element can be deformed using different de- ACWKO4] ANGELIDIS A., CANI M.-P., WvvILL G., KING S.:
formation types, it will therefore implement several interpretation ~ Swirling-sweepers: Constant-volume modeling. Graphical Models,
functions. Besides, deformation interpretation might require from proc. of Paci ¢ Graphicg(2004). 2
an element to know which deformation types are applicable to its [AFS06] ATTENE M., FALCIDIENO B., SPAGNUOLO M.: Hierarchical

children. For this reasons, we introduce theractor pattern. mesh segmentation based on tting primitive3he Visual Computer
. . . (2006). 4
Figure 13 shows the architecture of the deformation grammar [AZL12] ALHASHIM I., ZHANG H., Liu L.: Detail-replicating shape

implementation we used for creating the examples of this work. It~ stretching. InThe Visual Compute2012).2

shows the general classes used for representing elements, deforquBPl?,] BARROSOSS., BESUIEVSKY G., PATow G.: Visual copy and
tions, symbols, and grammar rules; Concrete examples are given paste for procedurally modeled buildings by ruleset rewriti@gmput-
for one deformable complex object (a tree) and two deformation ers and Graphic§2013).2

types (af ne and free-form). [BPF 22] BouDON F., PRUSINKIEWICZ P., FEDERL P., GoDIN C.,

. . KARwWOWSKI R.: Interactive design of bonsai tree modeSomputer
TheObject class represent an abstract complex object element Graphics Forum, Proc. Eurographidg2). 2

and stores generic data: a name, a visual representation, a parenfg\yks11] BokeLoH M., WAND M., KOLTUN V., SEIDEL H.-P.:
and a list of children; The last three attributes may be empty de- pattern-aware shape deformation using sliding dockersA\QKl TOG,

pending on the element. Specialized classes inheriOthject proc. of SIGGRAPH2011).2

class for de ning concrete objects: For example, ffree class [BWSK12] BOKELOH M., WAND M., SEIDEL H.-P., KOLTUN V.: An
models a tree, itgenerate() method uses an L-system for cre- algebraic model for parameterized shape editingd@M TOG, proc. of
ating the mesh of the branch, and calls for the generation sub- S/GGRAPH2012).2

branches. [Cit] CITYENGINE: Esri, http://www.esri.com/software/cityengin2.

. . [DK14] DEKKERS E., KOBBELT L.: Geometry seam carving. In
Interactor classes are associated to a type of symbol (i.e. * computer-Aided Desigfe014). 2

a type of deformation); They act as interfaces for an object able EBP 12] EMILIEN A., BERNHARDT A., PEYTAVIE A., CANI M.-P.,

to process the corresponding deformation. Deformation interpreta-© GaLin E.: Procedural generation of villages on arbitrary terraifise
tion procedures (i.e. grammar rules) are coded ingideess() Visual Computef2012).2, 5

Cc 2017 The Author(s)
Computer Graphics Forunt 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

Deformation

FreeFormDeformation
def : Function

Af neDeformation
mat : Matrix

DeformationType : Class

Symbol
emitter : Object
def : DeformationType

DeformationType = DeformationType =

Af neDeformation FreeFormDeformation

Af neSymbol

def : Af neDeformation

FreeFormSymbol
def : FreeFormDeformation

SymbolType : Class
Interactor y P

process(SymbolType) : Bool

SymbolType = SymbolType =

Af neSymbol FreeFormSymbol

FreeForminteractor
process(FreeFormSymbol) : Bool

Af nelnteractor
process(Af neSymbol) : Bool

Object
name : String
representation: Mesh
parent: Object
children: Object[]

TreeModel

generate() : Void

DeformableTreeModel

Figure 13: UML class diagram of our C++ implementation of de-

formation grammars through interactors. According to standard

UML notations: stands for inheritance; stands for de-

pendency; stands for realization; And stands for aggre-
gation.
[EPCV14] BMILIEN A., POULIN P., CaNI M.-P., VIMONT U.: Interac-

tive procedural modelling of coherent waterfall scenesCGF, proc. of
Eurographicg2014).3

[EVC 15] EMILIEN A., VIMONT U., CANI M.-P., POULIN P., BENES
B.: Worldbrush: Interactive example-based synthesis of procedural vir-
tual worlds. INnACM TOG, proc. of SIGGRAPKR015).2, 8, 10

[FP99] FeDERL P., RRUSINKIEWICZ P.: Virtual laboratory: an interac-

¢ 2017 The Author(s)
Computer Graphics Forunt 2017 The Eurographics Association and John Wiley & Sons Ltd.

tive software environment for computer graphi@gSomputer Graphics
International(1999).2

[GPCP13] @NZzALEzZ F., PRADINAS T., CoLL N., PaTow G.:
*cages: : A multi-level, multi-cage based system for mesh deformation.
ACM Transactions on Graphig2013).2

[GSMCO09] &AL R., SORKINE O., MITRA N. J., GOHEN-OR D.:
iwires: an analyze-and-edit approach to shape manipulationACIM
TOG, proc. of SIGGRAPKR009). 2

[IMAW15] ILcik M., MUSIALSKI P., AUZINGER T., WIMMER M.:
Layer-based procedural design of facad€amputer Graphics Forum
(2015).2

[JPCC14] ®RDAOK., PETTREJ., CHRISTIE M., CANI M.-P.: Crowd
sculpting: A space-time sculpting method for populating virtual environ-
ments. INCGF, proc. of Eurographic§2014).3

[KSSCO08] KRAEVOY V., SHEFFERA., SHAMIR A., COHEN-OR D.:
Non-homogeneous resizing of complex modelsA@M TOG, proc. of
SIGGRAPH?2008).2

[KW11] KELLY T., WONKA P.: Interactive architectural modeling with
procedural extrusionACM Transactions on Graphi¢®011).2

[LRBP12] LONGAY S., RUNIONSA., BOUDONF., PRUSINKIEWICZ P.:
Treesketch: interactive procedural modeling of trees on a tablgromn
of the international symposium on sketch-based interfaces and modeling
(2012).2, 3,10

[LSWW11] LipP M., SCHERZERD., WONKA P., WIMMER M.: Inter-
active modeling of city layouts using layers of procedural cont€oim-
puter Graphics Forunf2011).2

[LVW 15] Liu H., VIMONT U., WAND M., CANI M.-P., HAHMANN
S., ROHMER D., MITRA N. J.: Replaceable substructures for ef cient
part-based modeling. I@GF, proc. of Eurographic§2015).2

[LWWO08] LirpPM., WONKA P., WIMMER M.: Interactive visual editing
of grammars for procedural architecture. AGM TOG, proc. of SIG-
GRAPH(2008).3

[ML13] MiA0 Y., LIN H.: Visual saliency guided global and local resiz-
ing for 3d models. IrComputer-Aided Design and Computer Graphics
(CAD/Graphics)2013).2

[MWCS13] MiLLIEZ A., WAND M., CANI M.-P., EIDEL H.-P.: Mu-
table elastic models for sculpting structured shapesC@&t¥, proc. of
Eurographics(2013).3

[MWH 06] MULLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GooL L.: Procedural modeling of buildings. IWCM TOG, proc.
of SIGGRAPH2006).5

[MWZ 13] MITRA N. J., WAND M., ZHANG H., COHEN-OR D.,
BOKELOH M.: Structure-aware shape processing. Erographics -
State of the Art Repor{013).2

[PBPS99] RWERJ. L., BRUSHA. J. B., RRUSINKEIWICZ P., SALESIN
D. H.: Interactive arrangement of botanical I-system mod&fsaposium
on Interactive 3D Graphic§1999). 2

[PL12] PrUSINKIEWICZ P., LINDENMAYER A.: The algorithmic beauty
of plants Springer Science & Business Media, 2022.

[RMGH15] RiTCHIE D., MILDENHALL B., GOODMAN N. D.,
HANRAHAN P.: Controlling procedural modeling programs with
stochastically-ordered sequential monte catlb.

[SA07] SoRKINE O., ALEXA M.: As-rigid-as-possible surface model-
ing. In Symposium on Geometry Process{gg07). 2

[SCC11] SANCULESCU L., CHAINE R., CANI M.-P.: Freestyle:
Sculpting meshes with self-adaptive topologyComputers & Graphics
(2011).2,3,8

[SCCS13] SANCULESCU L., CHAINE R., CANI M.-P., SNGH K.:
Sculpting multi-dimensional nested structures Clomputers & Graph-
ics(2013).3

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

[SKK 14] STEINBERGERM., KENZEL M., KAINZ B., MUELLER J.,
WONKA P., SSHMALSTIEG D.: On-the- y generation and rendering of
in nite cities on the gpuComputer Graphics Forum, Proc. Eurographics
(2014).2

[SM15] ScHwWARz M., MULLER P.: Advanced procedural modeling of
architecture5, 12

[VFTS06] vON FuNck W., THEISEL H., SEIDEL H.-P.: Vector eld
based shape deformations.A@M TOG, proc. of SIGGRAP(2006).2

[YCHK15] YUMER M. E., CHAUDHURI S., HODGINS J. K., KARA
L. B.: Semantic shape editing using deformation handleAdn TOG,
proc. of SIGGRAPH2015).2

[ZFCO 11] ZHENGY., FU H., COHEN-OR D., Au O. K.-C., Tal C.-
L.: Component-wise controllers for structure-preserving shape manipu-
lation. InCGF, proc. of Eurographic§011).2

[ZLDM16] ZHENGY., LIU H., DORSEYJ., MITRA N. J.: Ergonomics-
inspired reshaping and exploration of collections of mod&IEE Trans-
actions on Visualization and Computer Graph{2916).2

Cc 2017 The Author(s)
Computer Graphics Forunt 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

Figure 9: An initial distribution of houses (in left) is interactively deformed by the user using space deformation (middle and right gures).
Closed-by houses are merged into larger ones to model the increased density.

Cc 2017 The Author(s)
Computer Graphics Forunt 2017 The Eurographics Association and John Wiley & Sons Ltd.

