Uncertainty and Sensitivity Analysis: From Regulatory Requirements to Conceptual Structure and Computational Implementation

Abstract : An approach to the conversion of regulatory requirements into a conceptual and computational structure that permits meaningful uncertainty and sensitivity analyses is descibed. This approach is predicated on the description of the desired analysis in terms of three basic entities: (i) a probability space characterizing aleatory uncertainty, (ii) a probability space characterizing epistemic uncertainty, and (iii) a model that predicts system behavior. The presented approach is illustrated with results from the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada.
Type de document :
Communication dans un congrès
Andrew M. Dienstfrey; Ronald F. Boisvert. 10th Working Conference on Uncertainty Quantification in Scientific Computing (WoCoUQ), Aug 2011, Boulder, CO, United States. Springer, IFIP Advances in Information and Communication Technology, AICT-377, pp.60-77, 2012, Uncertainty Quantification in Scientific Computing. 〈10.1007/978-3-642-32677-6_5〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01518668
Contributeur : Hal Ifip <>
Soumis le : vendredi 5 mai 2017 - 10:55:52
Dernière modification le : mercredi 29 novembre 2017 - 09:23:15
Document(s) archivé(s) le : dimanche 6 août 2017 - 12:29:18

Fichier

978-3-642-32677-6_5_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Jon Helton, Cédric Sallaberry. Uncertainty and Sensitivity Analysis: From Regulatory Requirements to Conceptual Structure and Computational Implementation. Andrew M. Dienstfrey; Ronald F. Boisvert. 10th Working Conference on Uncertainty Quantification in Scientific Computing (WoCoUQ), Aug 2011, Boulder, CO, United States. Springer, IFIP Advances in Information and Communication Technology, AICT-377, pp.60-77, 2012, Uncertainty Quantification in Scientific Computing. 〈10.1007/978-3-642-32677-6_5〉. 〈hal-01518668〉

Partager

Métriques

Consultations de la notice

29

Téléchargements de fichiers

25