Bayes Linear Analysis for Complex Physical Systems Modeled by Computer Simulators

Abstract : Most large and complex physical systems are studied by mathematical models, implemented as high dimensional computer simulators. While all such cases differ in physical description, each analysis of a physical system based on a computer simulator involves the same underlying sources of uncertainty. These sources are defined and described below. In addition, there is a growing field of study which aims to quantify and synthesize all of the uncertainties involved in relating models to physical systems, within the framework of Bayesian statistics, and to use the resultant uncertainty specification to address problems of forecasting and decision making based on the application of these methods. We present an overview of the current status and future challenges in this emerging methodology, illustrating with examples drawn from current areas of application including: asset management for oil reservoirs, galaxy modeling, and rapid climate change.
Type de document :
Communication dans un congrès
Andrew M. Dienstfrey; Ronald F. Boisvert. 10th Working Conference on Uncertainty Quantification in Scientific Computing (WoCoUQ), Aug 2011, Boulder, CO, United States. Springer, IFIP Advances in Information and Communication Technology, AICT-377, pp.78-94, 2012, Uncertainty Quantification in Scientific Computing. 〈10.1007/978-3-642-32677-6_6〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01518669
Contributeur : Hal Ifip <>
Soumis le : vendredi 5 mai 2017 - 10:55:53
Dernière modification le : jeudi 19 juillet 2018 - 16:58:09
Document(s) archivé(s) le : dimanche 6 août 2017 - 12:24:59

Fichier

978-3-642-32677-6_6_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Michael Goldstein. Bayes Linear Analysis for Complex Physical Systems Modeled by Computer Simulators. Andrew M. Dienstfrey; Ronald F. Boisvert. 10th Working Conference on Uncertainty Quantification in Scientific Computing (WoCoUQ), Aug 2011, Boulder, CO, United States. Springer, IFIP Advances in Information and Communication Technology, AICT-377, pp.78-94, 2012, Uncertainty Quantification in Scientific Computing. 〈10.1007/978-3-642-32677-6_6〉. 〈hal-01518669〉

Partager

Métriques

Consultations de la notice

43

Téléchargements de fichiers

35