W. Enright, A new error-control for initial value solvers, Applied Mathematics and Computation, vol.31, pp.288-301, 1989.
DOI : 10.1016/0096-3003(89)90123-9

W. Enright, The Relative Efficiency of Alternative Defect Control Schemes for High-Order Continuous Runge???Kutta Formulas, SIAM Journal on Numerical Analysis, vol.30, issue.5, pp.1419-1445, 1993.
DOI : 10.1137/0730074

W. Enright, W. Jackson, S. N?rsett, and P. Thomsen, Interpolants for Runge-Kutta formulas, ACM Transactions on Mathematical Software, vol.12, issue.3, pp.193-218, 1986.
DOI : 10.1145/7921.7923

W. Enright and L. Yan, The reliability/cost trade-off for a class of ODE solvers, Numerical Algorithms, vol.5, issue.1, pp.239-260, 2009.
DOI : 10.1007/s11075-009-9288-x

W. Enright and P. Muir, New interpolants for asymptotically correct defect control of BVODEs, Numerical Algorithms, vol.10, issue.2-3, pp.219-238, 2009.
DOI : 10.1007/s11075-009-9266-3

W. Enright and J. Pryce, Two FORTRAN packages for assessing initial value methods, ACM Transactions on Mathematical Software, vol.13, issue.1, pp.1-27, 1987.
DOI : 10.1145/23002.27645

I. Gladwell, L. Shampine, L. Baca, and R. Brankin, Practical Aspects of Interpolation in Runge-Kutta Codes, SIAM Journal on Scientific and Statistical Computing, vol.8, issue.3, pp.322-341, 1987.
DOI : 10.1137/0908038

E. Hairer, S. N?rsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 1987.
DOI : 10.1007/978-3-662-12607-3

M. Shakourifar and W. Enright, Reliable Approximate Solution of Systems of Volterra Integro-Differential Equations with Time-Dependent Delays, SIAM Journal on Scientific Computing, vol.33, issue.3, 2011.
DOI : 10.1137/100793098

L. Shampine, Interpolation for Runge???Kutta Methods, SIAM Journal on Numerical Analysis, vol.22, issue.5, pp.1014-1027, 1985.
DOI : 10.1137/0722060

L. Shampine, Solving ODEs and DDEs with residual control, Applied Numerical Mathematics, vol.52, issue.1, pp.113-127, 2005.
DOI : 10.1016/j.apnum.2004.07.003

H. Zivaripiran and W. Enright, An efficient unified approach for the numerical solution of delay differential equations, Numerical Algorithms, vol.9, issue.3, pp.397-417, 2009.
DOI : 10.1007/s11075-009-9331-y