Interval Based Finite Elements for Uncertainty Quantification in Engineering Mechanics

Abstract : This paper illustrates how interval analysis can be used as a basis for generalized models of uncertainty. When epistemic uncertainty is presented as a range and the aleatory is based on available information, or when random variables are assigned an interval probability, the uncertainty will have a Probability Bound (PB) structure. When Interval Monte Carlo (IMC) is used to sample random variables, interval random values are generated. Interval Finite Element Method (FEM) is used to propagate intervals through the system and sharp interval solutions are obtained. Interval solutions are sorted and PBs of the system response are constructed. All relevant statistics are calculated characterizing both aleatory and epistemic uncertainty. The above mentioned sequence is presented in this work and illustrative examples are solved.
Type de document :
Communication dans un congrès
Andrew M. Dienstfrey; Ronald F. Boisvert. 10th Working Conference on Uncertainty Quantification in Scientific Computing (WoCoUQ), Aug 2011, Boulder, CO, United States. Springer, IFIP Advances in Information and Communication Technology, AICT-377, pp.265-279, 2012, Uncertainty Quantification in Scientific Computing. 〈10.1007/978-3-642-32677-6_17〉
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01518675
Contributeur : Hal Ifip <>
Soumis le : vendredi 5 mai 2017 - 10:55:58
Dernière modification le : vendredi 5 mai 2017 - 10:57:09
Document(s) archivé(s) le : dimanche 6 août 2017 - 12:30:55

Fichier

978-3-642-32677-6_17_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Rafi Muhanna, Robert Mullen. Interval Based Finite Elements for Uncertainty Quantification in Engineering Mechanics. Andrew M. Dienstfrey; Ronald F. Boisvert. 10th Working Conference on Uncertainty Quantification in Scientific Computing (WoCoUQ), Aug 2011, Boulder, CO, United States. Springer, IFIP Advances in Information and Communication Technology, AICT-377, pp.265-279, 2012, Uncertainty Quantification in Scientific Computing. 〈10.1007/978-3-642-32677-6_17〉. 〈hal-01518675〉

Partager

Métriques

Consultations de la notice

52

Téléchargements de fichiers

27