Defects, Scientific Computation and the Scientific Method

Abstract : Computation has rapidly grown in the last 50 years so that in many scientific areas it is the dominant partner in the practice of science. Unfortunately, unlike the experimental sciences, it does not adhere well to the principles of the scientific method as espoused by for example, the philosopher Karl Popper. Such principles are built around the notions of deniability and reproducibility. Although much research effort has been spent on measuring the density of software defects, much less has been spent on the more difficult problem of measuring their effect on the output of a program. This paper explores these issues with numerous examples suggesting how this situation might be improved to match the demands of modern science. Finally it develops a theoretical model based on Shannon information which suggests that software systems have strong implementation independent behaviour and presents supporting evidence.
Type de document :
Communication dans un congrès
Andrew M. Dienstfrey; Ronald F. Boisvert. 10th Working Conference on Uncertainty Quantification in Scientific Computing (WoCoUQ), Aug 2011, Boulder, CO, United States. Springer, IFIP Advances in Information and Communication Technology, AICT-377, pp.123-138, 2012, Uncertainty Quantification in Scientific Computing. 〈10.1007/978-3-642-32677-6_8〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01518684
Contributeur : Hal Ifip <>
Soumis le : vendredi 5 mai 2017 - 10:56:05
Dernière modification le : vendredi 5 mai 2017 - 10:57:09
Document(s) archivé(s) le : dimanche 6 août 2017 - 12:33:00

Fichier

978-3-642-32677-6_8_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Les Hatton. Defects, Scientific Computation and the Scientific Method. Andrew M. Dienstfrey; Ronald F. Boisvert. 10th Working Conference on Uncertainty Quantification in Scientific Computing (WoCoUQ), Aug 2011, Boulder, CO, United States. Springer, IFIP Advances in Information and Communication Technology, AICT-377, pp.123-138, 2012, Uncertainty Quantification in Scientific Computing. 〈10.1007/978-3-642-32677-6_8〉. 〈hal-01518684〉

Partager

Métriques

Consultations de la notice

69

Téléchargements de fichiers

29