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ABSTRACT
Illumination algorithms are a recent addition to the evolutionary
computation toolbox that allows the generation of many diverse and
high-performing solutions in a single run. Nevertheless, traditional
multimodal optimization algorithms also search for diverse and
high-performing solutions: could some multimodal optimization al-
gorithms be be�er at illumination than illumination algorithms? In
this study, we compare two illumination algorithms (Novelty Search
with Local Competition (NSLC), MAP-Elites) with two multimodal
optimization ones (Clearing, Restricted Tournament Selection) in
a maze navigation task. �e results show that Clearing can have
comparable performance to MAP-Elites and NSLC.
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1 INTRODUCTION
Illumination [8] or quality diversity [10] (QD) algorithms refer to a
new type of evolutionary algorithms (EAs) capable of returning a
large set of solutions that are as diverse and as high-performing as
possible. �ese algorithms originated in the �eld of evolutionary
robotics with the introduction of the novelty search algorithm
(NS) [4] which suggests to look for individuals that are behaviorally
di�erent from previously encountered ones. �at is, in NS there is
an explicit distinction between the genotype space (in which the EA
directly operates, e.g., a space of bit strings), the phenotype space
(e.g., the space of neural networks derived from the genotype space)
and the behavior space (e.g., the possible behaviors of individuals
over their lifetimes, such as the end-locations of robots controlled
by the neural networks of the phenotype space).

NS continually explores the behavior space, without consider-
ing the task performance. However, in many cases we are o�en
interested in having pressure for performance (e.g., �nding the
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fastest controller that reaches a certain location and not just any
controller). NS with Local Competition (NSLC) [5] addresses this
issue using a multiobjective approach: it ranks individuals accord-
ing to their novelty (as in NS) and their local performance (i.e., how
many from the k closest neighbors the individual outperforms). �e
Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) [1, 8]
algorithm o�ers a di�erent solution: it discretizes the behavior
space into a number of niches, storing in every niche only the elite
individual throughout the evolutionary simulation.

Niching techniques have traditionally been used in EAs with
the purpose of multimodal optimization (e.g., see [2, 3, 6, 9]), i.e.,
for discovering the multiple optima of the underlying genotype or
phenotype space. In contrast to such approaches, the primary goal
of illumination algorithms is not optimization but diversity [10].
Other di�erences between the way the two approaches are typically
used are the following: (1) the number of solutions returned with
multimodal optimization is in the order of tens or hundreds (e.g.,
see [3]), whereas with illumination algorithms it is in the order of
hundreds or thousands [1, 10]; (2) illumination is performed in be-
havior space [1, 10], whereas multimodal optimization is performed
either in genotype or phenotype space [2].

It is currently unknown how multimodal optimization algo-
rithms behave when they are set to return as many solutions as
illumination algorithms and to operate in behavior space (though
there are works that use speciation in behavior space [12]). �is is
what we investigate in this short paper.

Multimodal optimization has a long history and the purpose
of this study is not to provide a comprehensive evaluation of the
di�erent algorithms that exist. Instead, we select two representa-
tive algorithms that are simple to implement and can be applied
in the behavior space: the “clearing” method [9] and “restricted
tournament selection” (RTS) [3]. Clearing requires from the user
to provide a clearing radius which de�nes the niche of an elite in-
dividual, whereas RTS restricts competition among a user-de�ned
number of randomly selected individuals from the population.

2 EXPERIMENTAL SETUP
We compare 2 illumination (NSLC, MAP-Elites) and 2 multimodal
optimization algorithms (RTS, Clearing) in a maze navigation task
(Fig. 1 upper le�) in which a simulated mobile robot (diameter: 20
units) is controlled by an arti�cial neural network, whose archi-
tecture and parameters are evolved [7]. �e robot starts from the
bo�om of a maze (size: 1000 × 1000 sq. units) and needs to reach
the goal point at the center. �anks to the openings, this maze
permits 16 families of trajectories towards the center (thus, at least
16 behaviorally distinct optima). �e �tness function is the smallest
Euclidean distance between the center of the robot and the goal
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Figure 1: Best distance to the goal (center) for each algorithm in the environment used during evolution (le�most) and all 16
evaluation environments each of which permits a single path to the goal. �e box plots show themedian and the interquartile
range over 30 solutions, apart from the last column which is calculated from the medians over all 17 environments. Overall,
Clearing is comparable to MAP-Elites, which in turn is slightly better than NSLC. RTS has the worst overall performance.

over the robot’s lifetime [7], which is set to 3000 simulation steps.
�e behavior descriptor of each individual (i.e., a point in behavior
space) is the end location (2D) of the robot [4, 7].

We evaluate the quality of the solutions produced by the illumina-
tion and multimodal optimization algorithms by assessing the per-
formance of each individual found in the �nal archive/population
in environments that are modi�ed versions of the one used during
evolution: if the archive is made of diverse and high-performing
individuals, then it should contain individuals with all the kinds of
trajectory, including some that work in the modi�ed environments;
in the extreme opposite, if all the individuals of an archive have the
same behaviors, none of them will work in the modi�ed environ-
ments. In our scenario, we assess whether the resulting sets contain
controllers that �nd all 16 paths to the goal by evaluating all the
solutions produced by each algorithm in 16 di�erent environments
(Fig. 1, top), each of which permi�ing only one path to the goal.

In addition, we measure the QD-score for each algorithm [10],
which is calculated by mapping an archive’s behavior descriptors
to a MAP-Elites grid, keeping the best performing one in a cell, and
summing the �tness scores from all cells.

3 RESULTS AND CONCLUSION
We use 30 independent evolutionary runs of 200k evaluations. MAP-
Elites (712 = 5041 cells), NSLC (max archive size = 5041) and Clear-
ing (pop. size = 5041) return solutions with a median �tness of
less than 10 units in all evaluation environments. RTS (pop. size
= 5041) has the worst overall performance with a median distance
of more than 10 units in 5 environments and more than 100 units
in 2 environments. �is indicates that RTS might have not found
all optima, or it might have found them and eventually lost them.
Interestingly, Clearing has comparable performance to MAP-Elites
and NSLC and be�er performance in 2 environments.

�e QD-scores for a typical archive/population of all algorithms,
calculated in the initial environment using a 32 × 32 grid, are the
following (lower is be�er): MAP-Elites: 129493.8; NSLC: 79396.1;
RTS: 14504.6; Clearing: 1152.4. �is shows that Clearing has a
be�er QD-score, followed by RTS, then NSLC and �nally MAP-
Elites. However, this does not agree with the results of Fig. 1,
according to which RTS archives are substantially less diverse than
MAP-Elites archives, and illustrates that the QD-score does not
capture everything about behavioral diversity: Fig.1 shows that
in all the environments, MAP-Elites found at least a single, high-
performing individual, whereas the QD-score shows that, in the

initial environment, on average, the �tness of the individual found
by MAP-Elites for each bin is lower than the one found by RTS.

�e similarity in performance between MAP-Elites and Clear-
ing could be explained by the fact that they use a �xed niche size,
despite their di�erent niche shapes (MAP-Elites: rectangular; Clear-
ing: spherical) or whether they operate in a bounded (MAP-Elites)
or unbounded (Clearing) space. Clearing has be�er performance
than RTS which is the opposite of the �ndings in multimodal opti-
mization [11].

Overall, this study shows that when some multimodal optimiza-
tion algorithms (e.g., Clearing, but not RTS) are provided with (1)
large population sizes and (2) distance metrics that operate in be-
havior space, they can be as e�ective as illumination algorithms.
More investigation is warranted to understand the links between
the two approaches.
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