
HAL Id: hal-01519050
https://inria.hal.science/hal-01519050

Submitted on 5 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Novel Application of Open Source Technologies to
Measure Agile Software Development Process

Luis Corral, Andrea Janes, Tadas Remencius, Juri Strumpflohner, Jelena
Vlasenko

To cite this version:
Luis Corral, Andrea Janes, Tadas Remencius, Juri Strumpflohner, Jelena Vlasenko. A Novel Applica-
tion of Open Source Technologies to Measure Agile Software Development Process. 8th International
Conference on Open Source Systems (OSS), Sep 2012, Hammamet, Tunisia. pp.316-321, �10.1007/978-
3-642-33442-9_28�. �hal-01519050�

https://inria.hal.science/hal-01519050
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Novel Application of Open Source Technologies to
Measure Agile Software Development Process

Luis Corral, Andrea Janes, Tadas Remencius, Juri Strumpflohner, Jelena Vlasenko

Free University of Bozen-Bolzano
Piazza Domenicani 3

39100 Bolzano-Bozen, Italy
luis.corral@stud-inf.unibz.it,{andrea.janes,

tadas.remencius,juri.strumpflohner,jelena.vlasenko}@unibz.it

Abstract. In the last 10 years Open Source products have been widely used in
industry. New methodologies and best practices to develop Open Source
software appeared. In this work, we present an application that runs on
Android-based mobile phones and collects proximity data with other devices
via Bluetooth. The application gives new insights into measuring proximity
inside a team of software developers. Data collection process is automatic so
that the team members are not distracted from their daily activities. The
collected data represent time frames when developers work alone at their
machines and when they do Pair Programming with their colleagues.

1 Introduction

In the last 10 years Open Source based products have been widely used in industry
[7], including platforms for mobile devices. For example, from the several operating
systems for mobile phones (iOS, RIM OS, Windows Mobile, Android, etc), Open
Source Android OS stands out as one of the leading platforms. Android is based on
Linux, and ships with tools that provide significant support support for mobile-
oriented software development. Moreover, Android OS supports many technologies,
e.g. 3G, WiFi, Bluetooth, and many others, making it a powerful platform. Taking
advantage of such technologies and its Open Source nature, it opens a new space for
mobile software development. In this work, our focus is to take advantage of these

2 Luis Corral, Andrea Janes, Tadas Remencius, Juri Strumpflohner, Jelena Vlasenko

characteristics and exploring how Open Source platforms and tools can be leveraged
for measuring software development process.

Starting in the early ‘90s there have been several proposals for metrics for
software processes and products [1, 3, 4, 12]. Since then, the way in which people
develop software has changed dramatically. To determine how software is
developed, there have been several studies that have been dedicated to automatic and
non-invasive observation of behavior of software developers [3], in terms of code
quality [9], time to market, effort distribution [1], knowledge transfer, etc.

The purpose of our research is to take advantage of such experience and to
propose a new set of tools and methodologies to collect and interpret software
metrics coming from emerging software production environments [8], making use of
technologies and possibilities that mobile resources offer. In this paper, we present
DroidSense, a mobile application for Android based smartphones, that utilizes
Bluetooth technology to measure proximity between team members. Using these
data we can detect when developers work alone and when they do Pair
Programming, working collaboratively on one task using a single machine.

2 Related Work

There have been several works aiming to compare existing mobile operating systems
in terms of different quality characteristics. In [2], authors evaluate architectural
openness of iPhone, Windows Mobile, Android, and others. The results evidence
that Android and Symbian are more open for modifications than other platforms,
making them attractive to carry out research and experimentation.

In [13], authors explore Bluetooth potentials for designing interacting systems.
Several benefits and weaknesses of this technology have been identified, for
example, Bluetooth chips can be carried by a person or placed in a specific location.
Device names can be easily changed to uniquely identify persons or groups. With
this, from the obtained data it is always possible to detect what kind of device has
been encountered. However, Bluetooth is limited by short-range radio technology, so
that only nearby located devices can be detected. Several scans might be needed to
identify all the participating devices. For product assessment, in [11] authors
developed BlueMonarch, an application to evaluate Bluetooth-based applications.

In this study, we take advantage of such technologies and to apply them for
software metrics collection. There is also a significant number of devices supporting
Bluetooth communications: phones, headsets, hand-helds, laptops, etc. Some of such
devices, like phones and headsets, very often are carried by people wherever they go,
thus, the presence of such devices can provide a detailed map of the physical
activities that developers do during their work, meetings, etc. Tools using Bluetooth
to determine proximity exist, like ReduxComputing-Proximity [5], Where’s Blue [6],
and Proximity Data Gathering For Android Through Bluetooth [10]. However, they
are primitive and not yet adopted to extract detailed software metrics.

A Novel Application of Open Source Technologies to Measure Agile Software
Development Process

3

3 DroidSense

DroidSense is a system for the automated collection of proximity information
between developers for software process analysis. DroidSense consists of a mobile
Android application and a central server component responsible for receiving,
storing, and analyzing the data. The collected data can then be viewed and analyzed
through an according web interface providing different kinds of visualizations. The
structure of the system is shown in Figure 1:

Fig. 1. High Level System Architecture

DroidSense Android client is the core component of the system, being responsible
for the data collection. It has been designed to be easily extensible to allow the
development of future Android activities that are able to attach to its functionality.
The end-user mainly interacts with the Android client that collects and uploads the
data to the server. The main user interface presented to the user when he starts the
application is the list showing all of the discovered Bluetooth devices.

By selecting an entry of the device list, the according device detail view opens. In
addition to the device’s detail information, it presents the collected proximity raw
data in descending order, showing the most recent value on top of the list. Each entry
shows the calculated value on top, followed by the raw value that has been returned
from the Bluetooth adapter as well as the time stamp of the discovery.

DroidSense server, on the other hand, is responsible of storing and analyzing the
collected values by all of the DroidSense Android clients. It has been implemented
by using a conjunction of Open Source-only application frameworks, on top of J2EE
and Spring. Spring supports Hibernate, which has been used to perform the object-
relational mapping to the underlying MySQL database. Open source technologies
JDOM and Castor prepare the XML received from DroidSense services into Java
objects that can be understood by JDBC to communicate with the database instance.
For the web front-end, the Spring Web MVC framework has been used with JSP and
jQuery.

4 Luis Corral, Andrea Janes, Tadas Remencius, Juri Strumpflohner, Jelena Vlasenko

4 DroidSense in Action

4.1 Case Study

To gain experience on the collection of data using our tool, as well as to prove their
practical usability for the purpose of software process measurement, it was
conducted an experiment of the use of DroidSense by a professional team. An initial
implementation of the prototype took place on a team of 10 programmers, members
of a software development team in a University Research Center which uses Agile
practices such as Extreme Programming, Pair Programing, and Test-Driven
Development. All participants joined the experiment in a voluntary basis.

The experiment covered a period of 3 months. Through the whole phase, more
than 240,000 proximity values have been transmitted by the 10 participants. The
samples were analyzed with the purpose of reconstructing the whole -or at least
significant parts- of the software development process, based on human interaction.
For privacy reasons, all personal names have been obfuscated.

4.2 Interpretation of Data Samples

An example on how data are interpreted is depicted in Figure 2, which shows a
visualization of the raw data collected on a regular working day, from the viewpoint
of developer UE at the University, our experimental setup. The y-axis shows the
RSSI indicator, where lower values indicate shorter distances. The x-axis shows the
time of the day in hours.

Fig. 2. Raw Values Collected at the University Research Center

The visualization contains data of the devices:
• PE: UE’s personal laptop, used at work (triangles)
• MM: DroidSense-equipped Android phone of a member of UE’s team (points)
• MS: Android phone with DroidSense, member of UE’s team (squares)

A Novel Application of Open Source Technologies to Measure Agile Software
Development Process

5

Figure 3 shows an interpretation of the data acquired by DroidSense, saying that MM

was near to PE during the whole period of the scan, while MS dropped in for a small
amount of time at the beginning and the end of the scan (as seen in Figure 2). A pair
programming session between user UE and MM can be inferred:

Fig. 3. Calculated Sessions at the University Research Center

On the other hand, another pair programming session took place in front of the
workstation of UE itself, while the pair programming session shown previously was
in front of the teammate’s computer. The output is not presented as a list of detailed
session detections, but rather the aggregated information of all of them. This helps
on giving an overview of the activities performed through the day. It can be seen that
the raw data is correctly interpreted, showing the user MS only appear for a small
amount of 5 minutes during the scan period, while there is a longer pair
programming session with MM.

Project’s team managers at the Research Center reported a clearer identification
of the execution of pair programming sessions, recognizing how devices group in
front of a particular workstation for a given amount of time. DroidSense was useful
to understand the interaction among developers: the distance between users and
devices can be appraised, allowing to observe how such distance shifts when one
user approaches a colleague, leaving his own workstation. This visualization was
reported by the team managers as suitable to conduct further analysis on the
importance of people’s physical distribution in the way a team collaborates.

5 Conclusions

Measurement has become a major factor of importance in software development.
Project deadlines, limited budget and high customer expectations require the
continuous search for optimizing existing processes.

In this work we presented a new approach in collecting data about Agile software
development process by leveraging proximity measurements gathered using the
Bluetooth technology through DroidSense, a system for Android OS which
implements a software solution to characterize developer’s interaction using data
gathered from their own mobile devices. Thanks to an experiment with several

6 Luis Corral, Andrea Janes, Tadas Remencius, Juri Strumpflohner, Jelena Vlasenko

developers conducting an Agile software development project, we present the
practical use of DroidSense and the resulting process analysis. Using DroidSense
shows that the collected data provides a valuable insight in the stakeholder’s
interactions within the process by automatically detecting a developer’s involvement
in computer work or pair programming sessions.

Using a widely spread technology such as Bluetooth, an Open Source operating
platform like Android, and a wide range of Open Source frameworks and tools
allows a team to slim down the development investment without losing the
functionality required by architecture, design and implementation demands.
Moreover, there is no costly setup required but installing a mobile app, and engineers
do not have to undergo a major training phase or adapt their working habits.

References

1. Abrahamsson, P., Moser, R., Pedrycz, W., Sillitti, A., Succi, G.: Effort prediction in
iterative software development processes--incremental versus global prediction models.
Empirical Software Engineering and Measurement (2007)

2. Anvaari, M., Jansen, S.: Evaluating architectural openness in mobile software platforms.
ECSA 2010, Copenhagen, Denmark (2010)

3. Coman, I.D., Sillitti, A., Succi, G.: A case-study on using an automated in-process
software engineering measurement and analysis system in an industrial environment.
ICSE 2009 Vancouver, Canada (2009)

4. Fenton, N.: New directions for software metrics. ICSE 2007 PROMISE Workshop,
Invited Keynote. Minneapolis, USA (2007)

5. Google: http://code.google.com/p/reduxcomputing-proximity/
(Retrieved 10 March 2012)

6. Engelsma, J.R., Ferrans, J.C., Hans, M.C.: EncounterEngine: Integrating Bluetooth user
proximity data into social applications. WIMOB'08 IEEE International Conference on
Wireless and Mobile Computing, pp. 502-507 (2008)

7. Gurbani, V.K., Garvert, A., Herbsleb, J.D.: A case study of open source tools and
practices in a commercial setting. Proceedings of the 5th workshop on Open Source
software engineering (2005)

8. Janes, A., Scotto, A., Pedrycz, W., Russo, B., Stefanovic, M., Succi, G.: Identification of
defect-prone classes in telecommunication software systems using design metrics.
Information Sciences 176 (24) (2006).

9. Moser, R., Sillitti, A., Abrahamsson, P., Succi, G.: Does refactoring improve
reusability? Reuse of Off-the-Shelf Components, 287-297 (2006)

10. Pullabhatla, A., Gomes, H.: Proximity data Gathering for Android through Bluetooth.
Department of Computer Science Engineering, University of California, San Diego
(2010)

11. Smith, T.J, Saroiu, S., Wolman, A.: BlueMonarch: A System for evaluating Bluetooth
applications in the wild. MobiSys’09, Kraków, Poland (2009)

12. Succi, G., Pedrycz, W., Liu, E., Yip, J.: Package-oriented software engineering: a
generic architecture, IT Professional 3 (2), 29-36 (2001)

13. Sundstrom, P., Taylor, A.S., O'Hara, K.: Sketching in Software and Hardware
Bluetooth as a Design Material, Mobile HCI 2011, Stockholm, Sweden (2011)

	1 Introduction
	2 Related Work
	3 DroidSense
	4 DroidSense in Action
	4.1 Case Study
	4.2 Interpretation of Data Samples

	5 Conclusions
	References

