R. Barbulescu, J. Detrey, N. Estibals, and P. Zimmermann, Finding optimal formulae for bilinear maps Arithmetic of finite fields: 4th International Workshop, Proceedings, pp.168-186, 2012.

R. Barbulescu, J. Detrey, N. Estibals, and P. Zimmermann, Finding optimal formulae for bilinear maps URL: https, AriC Seminar, 2012.

A. Bernardi, J. Brachat, P. Comon, and B. Mourrain, General tensor decomposition, moment matrices and applications, 2013. International Symposium on Symbolic and Algebraic Computation, pp.51-71
DOI : 10.1016/j.jsc.2012.05.012

URL : https://hal.archives-ouvertes.fr/inria-00590965

M. Bläser, On the complexity of the multiplication of matrices of small formats, Journal of Complexity, vol.19, issue.1, pp.43-6000007, 2003.
DOI : 10.1016/S0885-064X(02)00007-9

W. Bosma, J. Cannon, and C. Playoust, The Magma Algebra System I: The User Language, Computational algebra and number theory, pp.235-265, 1993.
DOI : 10.1006/jsco.1996.0125

R. W. Brockett and D. Dobkin, On the optimal evaluation of a set of bilinear forms, Linear Algebra and its Applications, vol.19, issue.3, pp.207-23510, 1978.
DOI : 10.1016/0024-3795(78)90012-5

P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory, 2010.
DOI : 10.1007/978-3-662-03338-8

D. Chudnovsky and G. Chudnovsky, Algebraic complexities and algebraic curves over finite fields, Journal of Complexity, vol.488, issue.4, pp.285-31610, 1988.
DOI : 10.1073/pnas.84.7.1739

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC304516/pdf

D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, Journal of Symbolic Computation, vol.9, issue.3, pp.251-28010, 1990.
DOI : 10.1016/S0747-7171(08)80013-2

URL : http://doi.org/10.1016/s0747-7171(08)80013-2

H. F. De-groote, Lectures on the Complexity of Bilinear Problems, 1987.
DOI : 10.1007/BFb0020719

D. Harvey, J. Van-der-hoeven, and G. Lecerf, Even faster integer multiplication, Journal of Complexity, vol.36, 2014.
DOI : 10.1016/j.jco.2016.03.001

URL : https://hal.archives-ouvertes.fr/hal-01022749

D. F. Holt, B. Eick, E. A. O-'brien-chapman, &. Hall, /. Crc et al., Handbook of computational group theory. Discrete mathematics and its applications, 2005.

J. E. Hopcroft and L. R. Kerr, On Minimizing the Number of Multiplications Necessary for Matrix Multiplication, SIAM Journal on Applied Mathematics, vol.20, issue.1, pp.30-3610, 1971.
DOI : 10.1137/0120004

J. Håstad, Tensor rank is NP-complete, Journal of Algorithms, vol.11, issue.4, pp.644-65410, 1990.
DOI : 10.1016/0196-6774(90)90014-6

J. Jájá, Optimal Evaluation of Pairs of Bilinear Forms, SIAM Journal on Computing, vol.8, issue.3, pp.443-46210, 1979.
DOI : 10.1137/0208037

A. Karatsuba and Y. Ofman, Multiplication of multidigit numbers on automata, Soviet Physics-Doklady, vol.7, pp.595-596, 1963.

J. D. Laderman, A noncommutative algorithm for multiplying $3 \times 3$ matrices using 23 multiplications, Bulletin of the American Mathematical Society, vol.82, issue.1, pp.126-128, 1976.
DOI : 10.1090/S0002-9904-1976-13988-2

L. Gall, Powers of tensors and fast matrix multiplication, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC '14, pp.296-303
DOI : 10.1145/2608628.2608664

P. Montgomery, Five, six, and seven-term Karatsuba-like formulae, IEEE Transactions on Computers, vol.54, issue.3, pp.362-369, 2005.
DOI : 10.1109/TC.2005.49

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

I. Oseledets, Optimal Karatsuba-like formulae for certain bilinear forms in GF(2) Linear Algebra and its Applications, pp.2052-2066, 2008.

H. Randriambololona, Bilinear complexity of algebras and the Chudnovsky???Chudnovsky interpolation method, Journal of Complexity, vol.28, issue.4, pp.489-517
DOI : 10.1016/j.jco.2012.02.005

A. Schönhage and V. Strassen, Fast multiplication of large numbers, Computing, vol.150, issue.3-4, pp.281-29210, 1971.
DOI : 10.1007/BF02242355

A. V. Smirnov, The bilinear complexity and practical algorithms for matrix multiplication, Computational Mathematics and Mathematical Physics, vol.53, issue.12, pp.1781-1795
DOI : 10.1134/S0965542513120129

V. Strassen, Gaussian elimination is not optimal, Numerische Mathematik, vol.13, issue.4, pp.354-35610, 1969.
DOI : 10.1007/BF02165411

URL : http://www.digizeitschriften.de/download/PPN362160546_0013/PPN362160546_0013___log38.pdf

A. L. Toom, The complexity of a scheme of functional elements realizing the multiplication of integers, Soviet Mathematics Doklady, vol.3, pp.714-716, 1963.

. Proof, The cardinality of the set Stab(T ? )/ Stab(M 0 ) ? Stab(T ? ) is equal to the cardinality of the orbit of M 0 under the action of Stab(T ? )

. Lemma-30, a polynomial of degree ? ? 1 such that R(0) = 0, ) = 0 and R(M ) = N . Then, ?!N 2 ? Stab(M 0 ) ? Stab(T ? )/ Stab(M 0 ) ? Stab(M ) ? Stab M · N 2 = R(M )

. Proof, The cardinality of the set Stab(M 0 ) ? Stab(T ? )/ Stab(M 0 ) ? Stab(M ) ? Stab(T ? ) is equal to the cardinality of the orbit of M under the action of Stab

?. .. {1 and ?. 1}-×-{0, Multiplying a matrix by M on the left shifts the rows upward and multiplying M on the right shifts the columns on the right. Therefore, denoting by p ij the coefficients of P , with p 00 = 0 and p i0 = 0 for i ? 1, we have ?(i, j), pp.1-1